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Stable gravastars: Guilfoyle’s electrically charged solutions
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Abstract: Compelling alternatives to black holes, namely, gravitational vacuum stars (gravastars), which are mul-

tilayered compact objects, have been proposed to avoid a number of theoretical problems associated with event

horizons and singularities. In this work, we construct a spherically symmetric thin-shell charged gravastar model

where the vacuum phase transition between the de Sitter interior and the external Reissner–Nordström spacetime

(RN) are matched at a junction surface, by using the cut-and-paste procedure. Gravastar solutions are found among

the Guilfoyle exact solutions where the gravitational potential W 2 and the electric potential field φ obey a particular

relation in a simple form a(b−ǫφ)2+b1, where a, b and b1 are arbitrary constants. The simplest ansatz of Guilfoyle’s

solution is implemented by the following assumption: that the total energy density 8πρm+Q2

r4
is constant, where

Q(r) is the electric charge up to a certain radius r. We show that, for certain ranges of the parameters, we can avoid

the horizon formation, which allows us to study the linearized spherically symmetric radial perturbations around

static equilibrium solutions. To lend our solution theoretical support, we also analyze the physical and geometrical

properties of gravastar configurations.
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1 Introduction

The final state of a star’s gravitational collapse can
lead to the formation of different objects such as neu-
tron stars, white dwarfs, black holes and naked singu-
larities [1–5]. This end-state of collapse is a widely ac-
cepted field of research in the scientific community from
many perspectives, both theoretical and observational.
However, classical general relativity suffers from some
severe theoretical problems. One problem is related to
the paradoxical features of black holes and naked sin-
gularities. In order to resolve these issues, the idea of
the existence of compact objects without event horizons
has recently been proposed, the so-called gravastar: an
alternative to black holes [6–8]. Moreover, some inter-
esting articles have been published. Within these mod-
els, a massive star in its final stages could end its life
as a gravastar that compresses matter within the grav-
itational radius rs = 2 GM/c2, i.e., very close to the
Schwarzschild radius, but with no singularity or event
horizon. In this situation, the quantum vacuum fluctu-

ations are expected to play a non–trivial role at or near
the event horizon. Based on the gravastar framework,
the solutions of Mazur and Mottola’s gravastar scenario
describe five layers of the gravastar, including two thin
shells. The de Sitter geometry in the interior, with an
equation of state (EOS) p = −ρ, matches to an exterior
Schwarzschild vacuum geometry. Between the interior
and exterior geometry, there is a finite–thickness shell
comprised of stiff fluid matter with EOS p = +ρ. Due
to their extreme compactness, however, it would be very
difficult to distinguish gravastars from black holes. As
an extension of the Mazur–Mottola model and for physi-
cal reasons, Visser and Wiltshire [9] reduced the number
of thin shells from 5 layers to 3 layers with a continuous
layer of finite thickness, where the phase transition layer
was replaced by a single spherical δ-shell. In the model,
by the definition of the gravastar, a de-Sitter spacetime
was matched to a Schwarzschild exterior solution at a
junction surface with surface stresses σ and P . More-
over, the authors provided full dynamic stability against
spherically symmetric perturbations by using the Israel
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thin shell formalism [10] in terms of an effective energy
equation. This simplified form of gravastar structure has
also motivated a number of physicists to consider differ-
ent types of vacuum geometries in the interior and ex-
terior. Among these models, Bilić and his collaborators
have shown how a gravastar structure can form a Born–
Infeld scalar field [11] and a non-linear electrodynamic
gravastar [12]. In Ref. [13], gravastar solutions have been
studied by replacing the δ–shell with a continuous stress-
energy tensor from the asymptotically de Sitter interior
to the exterior Schwarzschild solution. Moreover, an
electrically charged gravastar has been studied by solving
the Einstein–Maxwell field equations in the asymptoti-
cally de Sitter interior [14], whereas a charged gravastar
admitting conformality was constructed in Ref. [15]. In
the same vein, Chan et al. [16] have studied radiat-
ing gravastars by considering Vaidya exterior spacetime.
However, it was shown that the interior de Sitter space-
time may also be replaced by considering a solution gov-
erned by the dark energy equation of state, ω=p/ρ where
ω<−1/3 [17]. Furthermore, much effort has been made
to investigate the properties of gravastars in the context
of alternative scenarios. These were considered in Refs.
[18–22].

An interior regular charged perfect fluid solution can
not only contribute to a better understanding of the
structure of spacetime, but physically it also offers many
new and interesting solutions. A static solution around
a spherically non-rotating charged body was stimulated
by the work of Reissner and Nordström [23]. Almost
at the same time, Hermann Weyl [24, 25] studied vac-
uum general relativity and electromagnetism, which to-
gether established a relation between the metric com-
ponent gtt and the electric potential φ. A further dis-
cussion about this relation appeared in 1947 when Ma-
jumdar [26] generalized this result to systems without
spatial symmetry. Regarding this point of view, fur-
ther development on Weyl’s work was examined much
later by Guilfoyle [27]. He considered charged fluid dis-
tributions in which the interior of these solutions is char-
acterized by the relation between the gravitational and
the electric potential, which are functionally related to
each other via W =W (φ). Here W is parametrized by
W 2=a(b−ǫφ)

2
+b1, where a, b and b1 are arbitrary con-

stants, and ǫ=±. Specifically, this relation generalizes
the common Weyl relation, when a=1, and the exten-
sion of this concept was discussed by Lemos and Zanchin
[28]. Here they obtained a relationship between various
fields and matter quantities. The authors also studied
quasiblack holes such as frozen stars [29], and found reg-
ular black holes for the Guilfoyle exact solutions [30] with
the discussion of their physical relevances. In addition,
Lemos and Zanchin [31] applied the method to study rel-
ativistic charged spheres, and showed that when the cen-

tral pressure goes to infinity Guilfoyle’s stars also obey
the Buchdahl-Andréasson bound. Moreover, regarding
the Weyl and Weyl–Guilfoyle relations, general relativis-
tic charged fluids with non–zero pressure turned out to
be an important cornerstone for addressing and discov-
ering new solutions. Thus, it is interesting to embark
on a study of the Guilfoyle model with the presence of
electrically charged matter. We expect that gravastar
solutions should be found within a certain range of the
parameters of the model.

The outline of the paper is as follows. In Section 2,
we present Guilfoyle’s exact solutions with the ansatz
W 2 = a(b−ǫφ)

2
+ b1. In Section 3, the basic equa-

tions for spherically symmetric spacetime with electri-
cally charged perfect fluid matter distribution are writ-
ten, satisfying a particular Weyl–Guilfoyle relation, and
we discuss the interior and exterior solutions with appro-
priate boundary conditions in Section 4. In Section 5,
we briefly review some gravastar models. In Section 6,
we present the basic setup for matching the two distinct
spacetimes and obtaining models of the thin shell gravas-
tar. We investigate the constraints on parameters at the
junction interference with a time-like thin shell in Section
7. In Section 8, we obtain the static gravastar solution,
and briefly outline the linearized stability analysis with
the determined stability regions of the transition layer in
Section 9. We also investigate the stability of the gravas-
tar by using the surface mass of the thin shell, and discuss
in detail some interesting observations. Our conclusions
are given in Section 10. Throughout this work, if not
explicitly stated otherwise, we use the units of G=c=1.

2 Structural equations of Weyl–

Guilfoyle charged fluid

This section is devoted to presenting the basis equa-
tions governing the dynamical behavior of a cold charged
gravitating distribution of a relativistic fluid. The start-
ing point is to revise the Einstein–Maxwell field equa-
tions in a four-dimensional spacetime given by

Gµν=Rµν−
1

2
gµνR=8π(Tµν+Eµν), (1)

and,

∇νF
µν=4πJµ, (2)

∇[αFµν]=0 (3)

where Rµν is the Ricci tensor, R is the Ricci scalar, and
Tµν is the energy–momentum tensor, for which we as-
sume it is a perfect fluid:

Tµν=(ρm+p)UµUν+pgνµ, (4)

where ρm is the energy density, p is the isotropic fluid
pressure, and Uµ is the 4–velocity of the relativistic
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matter fluid. Also, Eµν is the energy tensor of the elec-
tromagnetic field, given by

Eµν=
1

4π

(

F λ
µ Fνλ−

1

4
gµνFλσF

λσ

)

, (5)

with Fµν representing the electromagnetic field-strength
tensor, given by

Fµν=∂µAν−∂νAµ, (6)

whereAµ=
(

φ, ~A
)

is the electromagnetic 4–potential. Fi-

nally, with ρe denoting the associated density of electric
charges, the 4–current density can be expressed as

Jµ=ρeUµ, (7)

whose temporal component J0 is equal to the charge den-
sity ρe, and whose spatial components J i are just the
usual 3–vector current components. A static spherically
symmetric spacetime is described by the line element

ds2=gµνdx
µdxν , (8)

which can be rewritten in the form

ds2=−W 2dt2+hijdx
idxj , (9)

whereW is the gravitational potential, so the 4–potential
Aµ and the 4–velocity Uµ are defined via

Aµ=−φδ0µ, and Uµ=−Wδ0µ. (10)

Notice that we are considering only pure electric fields
Aµ=(−φ,0,0,0), and also, hij are functions of the spatial
coordinates xi only with i=1,2,3. In particular, we are
interested in a class of the Guilfoyle solutions [27, 29]
where the gravitational potential W and the electric po-
tential φ are related by means of the equation

W (φ)=

√

a(b−ǫφ)2+b1, (11)

where a, b and b1 are arbitrary constant and ǫ=±1. Here
the parameter a is the Guilfoyle parameter. As stated in
Ref. [28], from the set of quantities {ρm,p,ρe,ρem} we
obtain the following equation of state:

p=
a(b−ǫφ)ρe−ǫW (φ) [ρm+(1−a)ρem]

3ǫW (φ)
, (12)

where ρem is the electromagnetic energy density defined
by means of the Weyl–Guilfoyle relation:

ρem=
1

8π

(∇iφ)
2

W 2(φ)
. (13)

3 Spherical equations: general analysis

The geometry of the static spherically symmetric so-
lution for a charged fluid distribution found by Guilfoyle
[27] can be written in the usual Schwarzschild coordi-
nates, (t,r,θ,ϕ) as

ds2=−N(r)dt2+B(r)dr2+r2
(

dθ2+sin2θdϕ2
)

, (14)

where the structural functions N and B depend on the
radial coordinate r only, so the gauge field and 4–velocity
are then given by

Aµ=−φδ0µ, and Uµ=−
√

N(r)δ0µ. (15)

We now turn our attention to the stellar mass equation
of the spherically symmetric solutions due to the total
contribution of the matter energy density and electric
energy density. Thus, the mass inside a sphere of radius
r can be obtained from the following relation:

M(r)=4π

∫ r

0

(

ρm(r)+
Q2

8πr4

)

r2dr+
Q2

2r
, (16)

and therefore, the total charge enclosed in the same re-
gion becomes

Q(r)=4π

∫ r

0

ρe(r)
√

B(r)r2dr. (17)

Our main goal here is to study a type of system for which
the lapse function N(r) connects the gravitational and
electric potentials via the Majumdar–Papapetrou rela-
tion N(r)=W 2(φ(r))=a[b−ǫφ(r)]

2
(b1=0 in Eq. (11)),

in which case one gets

ǫφ(r)=b−
√

N(r)

a
. (18)

Due to the additive nature of the fields, the constant
b can be absorbed into the potential, so without loss of
generality we choose b=0 and the lapse function becomes

N(r)=a[ǫφ(r)]2=aφ(r)2. (19)

For static spherically symmetric configurations, as con-
sidered in the present research, we have written only the
components of tt and rr of the Einstein equation (1),
giving the following relations [28, 29]:

1

rB(r)

d

dr
ln[N(r)B(r)]=8π(ρm(r)+p(r)), (20)

d

dr

[

r

B(r)

]

=8π

(

ρm(r)+
Q2

8πr4

)

, (21)

whereas the first integral of the only nonzero component
of Maxwell’s equations (2) gives

Q(r)=
r2φ′(r)

√

N(r)B(r)
, (22)

where an integration constant is set to zero and a prime
denotes a derivative with respect to the radial coordinate
r. Therefore, by making use of Eq. (19) in Eq. (22), we
obtain a differential form for the electric charge,

Q(r)=− ǫ

2
√
a

r2N ′(r)
√

B(r)N(r)
. (23)

Therefore, one can easily obtain the electric charge inside
a spherical surface of radius r, if the metric functions are
known. Finally, the conservation law ∇µT

µν=0 together
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with Maxwell’s equations leads to the hydrostatic equi-
librium equation that determines the global structure of
an electrically charged star by requiring the conservation
of mass-energy [32, 33] for the system:

2p′(r)+
N ′(r)

N(r)
[ρm(r)+p(r)]−2

φ′(r)ρe(r)
√

N(r)
=0, (24)

which is the only non-identically zero component of the
conservation equations. The first two terms on the l.h.s.
come from the gravitational force with an isotropic pres-
sure and density, while the second term is due to the
Coulomb force that depends on the matter by the met-
ric coefficient.

4 Guilfoyle’s solutions for the interior

region

In this section we describe a static spherically symet-
ric distribution of electrically charged matter in the range
06 r6 r0. To do this, we adopt the simplest ansatz of
Guilfoyle’s solution [27] given by

8πρm+
Q2

r4
=

3

R2
, (25)

where r 6 r0 and R is a constant which characterizes
the length associated with the inverse of the total energy
density. It can also be related to the parameters of the
exterior solution, namely the total charge q and the total
mass m evaluated at the junction boundary r=r0,

1

R2
=

2

r30

(

m− q2

2r0

)

, (26)

where

m=M(r0)=4π

∫ r0

0

(

ρm(r)+
Q2

8πr4

)

r2dr+
q2

2r0
. (27)

q=Q(r0). (28)

Using this additional assumption, Guilfoyle [27]
found the exact solutions of the Einstein–Maxwell equa-
tions, which can be summarized as follows. The struc-
tural functions become

B(r)=1− r2

R2
, (29)

N(r)=

[

(2−a)

a
F (r)

] 2a
(a−2)

, (30)

with the function F (r) defined as

F (r)=co

√

1− r2

R2
−c1, (31)

where the integration constants c0 and c1, obtained via
the junction conditions, are given by

c0=
R2

r20

(

m

r0
−q2

r20

)(

1− r20
R2

)−1/a

, (32)

c1=c0

√

1− r20
R2

[

1− a

(2−a)

r20
R2

(

m

r0
−q2

r20

)−1
]

. (33)

Thus, from Eq. (19), the electric potential is given by

φ(r)=
ǫ√
a

[

(2−a)

a
F (r)

] a

(a−2)

, (34)

whereas the fluid quantities are given by

8πρm(r)=
3

R2

[

1− ac20
3R2(2−a)2

r2

F 2(r)

]

, (35)

8πp(r)=− 1

R2

[

1+
ac20

R2(2−a)2
r2

F 2(r)
+− 2a

(2−a)

F (r)+c1
F (r)

]

,

(36)

8πρe(r)=
ǫ
√
a

R4(2−a)

r2

F 2(r)

[

c20+
3F (r)(F (r)+c1)

r2

]

. (37)

Finally, inserting the above relations into Eqs. (16) and
(17), the mass and electric charge functions M(r) and
Q(r) are found to be

M(r)=
r3

2R2

[

1+
ac20

R2(2−a)2
r2

F 2(r)

]

, (38)

and

Q(r)=
ǫ
√
ac0

R2(2−a)

r3

F (r)
, (39)

respectively.

5 Review of gravastar models

This section presents a quick review of the main fea-
tures of two gravastar models, which have some interest-
ing properties for our subsequent study.

5.1 Mazur–Mottola model

The first model presented here is the so–called Mazur

& Mottola gravastar model [6]. According to this model,
the interior of the gravastar is a de Sitter spacetime sur-
rounded by a layer of ultra–stiff matter, while the exte-
rior is then suitably matched by a Schwarzschild space-
time i.e., there are five different regions (including two
thin shells), each with its own features:

1) Inside the gravastar 06r<r1, a de Sitter spacetime
with p=−ρ.

2) An interior thin shell at r1.rs with surface density
σ− and surface tension ϑ−.

3) A finite layer of ultra–stiff matter, p=ρ, placed at
r1<r<r2.

4) An exterior thin shell at r2&rs with surface density
σ+ and surface tension ϑ+.

5) An exterior Schwarzschild vacuum r > r2 with
p=ρ=0.
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These features are the most important for a gravastar
model having negative central pressure, positive density
and the absence of event and cosmological horizons. No-
tice that here ρ is the energy density and p is the isotropic
pressure of the gravastar, whereas the interior has a con-
stant energy density given by ρint =3H2

0/8π> 0. From
a physical point of view, region (3) is the most impor-
tant because that is where the non–trivial model for the
gravastar can be specified.

5.2 The thin–shell gravastar model

The second model to be reviewed is the Visser &

Wiltshire gravastar model [9], in which the authors tried
to determine the possibility of dynamically testing the
stability of the gravastar model against radial perturba-
tions. In this sense, the scenario allows a precise forma-
tion mechanism, in which the number of layers of the
original model is reduced from five to three. Therefore,
the most important features of the model are:

1) Inside the gravastar, r < r0, a de Sitter spacetime
with p=−ρ is assumed, together with the strong
condition ρ>0.

2) The spacetime is assumed to be free of singulari-
ties everywhere. In order to avoid both event and
cosmological horizons, a single thin shell with a
surface density σ and surface tension ϑ is placed at
r=a&rs.

3) The interior spacetime is matched to the exterior
vacuum at the junction interface Σ situated at
r=a.

A particular illustration in this model that offers a
de Sitter interior solution was matched smoothly to the
exterior Schwarzschild geometry at a junction surface,
composed of a thin shell with surface energy density σ
and surface pressure P . Using this technique, we ob-
tain a condition for dynamical stability for the thin shell
against radial perturbations in terms of a thin shell’s
equation of motion given by 1

2
ȧ2+V (a) = 0, with R ≡

dR
dτ

and τ being the proper time of the timelike hyper-
surface. In this context, we perform a similar procedure
outlined by Visser & Wiltshire and analyze the stability
of gravastars against radial perturbations.

6 Construction of gravastar model

This section is devoted to modelling a specific gravas-
tar geometry by matching an interior de Sitter space-
time with an exterior Reissner–Nordström spacetime at
a junction interface Σ. So, the structural functions N(r)

and B(r) are given by

N(r)=B(r)−1=



















1− r2

R2
when r<a(τ),

1−2m

r
+
q2

r2
when r>a(τ),

(40)

where r=a(τ) is the timelike hypersurface at which the
infinitely thin shell is located at the proper time τ . Now
we focus on the analysis of the separating surface be-
tween the two spacetimes, which is defined by the ra-
dial coordinate r0=a(τ). In the procedure of matching
the interior de Sitter spacetime to the exterior Reissner–
Nordström spacetime, we must consider two different
manifolds: an exterior V+ and an interior V−, which
are joined at the surface layer Σ, and induce the met-
rics g+

ij and g−

ij , respectively. Thus, a single manifold
V=V+∪V− is obtained by gluing them together at their
boundaries. The induced metric on the hypersurface is a
timelike hypersurface Σ, defined by a parametric equa-
tion in the form f (xµ(ξi))=0, where ξi=(τ,θ,ϕ) denotes
the intrinsic coordinates on Σ. In order to describe the
position of the junction surface, we consider ξµ(τ,θ,ϕ) =
(t(τ),a(τ),θ,ϕ), and the induced metric on the hypersur-
face can be written as

ds2=−dτ2+a2(τ)dΩ2
2 , (41)

where τ is the proper time along the hypersurface Σ.
Next, we use the Darmois–Israel formalism to deter-

mine the relation between the geometry and thin layer
of matter at the shell across a junction surface, which is
given by the Lanczos equations [10, 34]:

Si
j=− 1

8π

(

κi
j−δijκ

m
m

)

, (42)

where Sij represents the surface energy–momentum ten-
sor and the discontinuity in the second fundamental form
or extrinsic curvatures across a junction surface is given
by the quantity κij=K+

ij−K−

ij , which is associated with
both sides of the shell. Also, the extrinsic curvature K±

ij

is defined on each side of the shell, and is given by

K±

ij=−η±

ν

(

∂2xν

∂ξi∂ξj
+Γ ν±

αβ

∂xα

∂ξi
∂xβ

∂ξj

)

, (43)

where ην represents the unit normal vector to Σ and
ξi represents the intrinsic coordinates. Thus, at the
hypersurface Σ, whose parametric equation is given by
f (xµ(ξi))=0, the respective unit 4–normal vectors η±

ν to
Σ are

n±

µ =±
∣

∣

∣

∣

gαβ ∂f

∂xα

∂f

∂xβ

∣

∣

∣

∣

− 1
2 ∂f

∂xµ
, (44)

where the unitary conditions nµn
µ=+1 and nµe

µ
(i)=0 are

oriented outwards from the origin. By using Eq. (44),
normal vectors may be determined from the interior and
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exterior spacetimes given in Eq. (40), so they become

nµ
−=









ȧ
(

1− a2

R2

) ,

√

(

1− a2

R2

)

+ȧ2,0,0









, (45)

nµ
+=







ȧ

1−2M

a
+
q2

a2

,

√

1−2M

a
+
q2

a2
+ȧ2,0,0






, (46)

where the (±) superscripts correspond to the exterior
and interior spacetimes, respectively.

The discontinuity of the extrinsic curvature κij can
be written in a simple form due to spherical symmetry
as κi

j =diag(κτ
τ ,κ

θ
θ,κ

θ
θ), with κθ

θ =κϕ
ϕ. By employing the

expressions through Eq. (42), we find the non–vanishing
components of surface stress–energy tensor that can be
written in terms of Si

j =diag(−σ,P ,P), where σ is the
surface energy density and P is the surface pressure.

Now, using Eq. (40) and Eq. (43), the non–trivial
components of the extrinsic curvature are given by

Kθ−
θ =

1

a

√

(

1− a2

R2

)

+ȧ2 , (47)

Kτ−

τ =

(

ä− a

R2

)

√

(

1− a2

R2

)

+ȧ2

, (48)

Kθ+
θ =

1

a

√

1−2M

a
+
q2

a2
+ȧ2 , (49)

Kτ+
τ =

ä+
M

a2
− q2

a3
√

1−2M

a
+
q2

a2
+ȧ2

, (50)

where dots denote the derivatives with respect to τ .
Therefore, using Eqs. (47, 48, 49, 50) in the Lanc-
zos equations (42), we find that the energy density
σ ≡ −κθ

θ/4π and the pressure at the junction surface
P≡(κτ

τ+κθ
θ)/8π become

σ=− 1

4πa

[
√

1−2M

a
+
q2

a2
+ȧ2−

√

1− a2

R2
+ȧ2

]

, (51)

and

P=
1

8πa









1−M

a
+ȧ2+aä

√

1−2M

a
+
q2

a2
+ȧ2

−
1−2a2

R2
+ȧ2+aä

√

1− a2

R2
+ȧ2









, (52)

respectively. Notice that the surface density σ has the
opposite sign to the surface pressure P , and also that all
the energy–momentum that plunges into the thin shell

still satisfies an energy conservation law, ∇iS
ij =0, by

virtue of ∇i(κij−δijκ)=0 at the junction interface.
Now, using two equations, Eqs. (51) and (52), it is

easy to check the energy conservation equation is ful-
filled:

d

dτ
(σa2)+P d

dτ
(a2)=0, (53)

from which immediately follows

σ̇=−2(σ+P)
ȧ

a
. (54)

Integrating out the above equation, it yields

σ′=−2

a
(σ+P), (55)

where primes and dots denote differentiation with re-
spect to a and τ , respectively. The first term on the left
side of Eq. (53) represents the internal energy change of
the shell, while the work done by internal forces of the
shell is given in the second term.

Now, by taking into account Eqs. (51-52) and substi-
tuting into Eq. (55), we obtain the following expression,

σ′=
1

4πa2









1−3M

a
+
2q2

a2
+ȧ2−aä

√

1−2M

a
+
q2

a2
+ȧ2

− 1+ȧ2−aä
√

1− a2

R2
+ȧ2









, (56)

which plays an important role in determining the stabil-
ity regions when the static solution a0 is being consid-
ered.

According to Refs. [35, 36], the total surface mass of
the thin shell is given by ms=4πa2σ. For this case the
total mass of the system M evaluated at a static solution
a0 is given by (by rearranging Eq. (51))

M=
a3
0

2R2
+

q2

2a0

+ms

[
√

1− a2
0

R2
−ms(a0)

2a0

]

. (57)

Note that M(a) is the total active gravitational mass
and q(a)2/2a is the mass equivalent to the electromag-
netic field.

7 Junction conditions

Keep in mind that a gravastar model does not possess
an event horizon. For instance, if the thin–shell transi-
tion layer Σ is located at r=a(τ), then to avoid horizon
formation we demand

0<
∣

∣

∣

r

R

∣

∣

∣<1 and 0<
∣

∣

∣

2M

r
−q2

r2

∣

∣

∣<1. (58)

For the present analysis, one can obtain the solution of
the non–rotating thin shell gravastar when the space-
times given by the metrics (40) are matched at a.
The restriction of charge–to–mass ratio |q|/M < 1 for
the Reissner-Nordström spacetime corresponds to two
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horizons, namely the Cauchy and event horizons r± =

M
(

1±
√

1−q2/M 2

)

. When |q|/M → 1, these are glued

into a single horizon. For the case when |q|/M>1, it is a
naked singularity. Moreover, we consider the case when
|q|/M 6 1 in order to avoid the horizon from geometry,

where a>r+=M
(

1+
√

1−q2/M 2

)

. We develop the rest

of the section by assuming |q|/M61, where the junction
surface r=a is situated outside the event horizon.

8 Static gravastars

Now, we resolve the static case, which is given by
ȧ=ä=0. In this case, Eqs. (51) and (52) reduce to

σ(a0)=− 1

4πa0

[
√

1−2M

a0

+
q2

a2
0

−
√

1− a2
0

R2

]

, (59)

P(a0)=
1

8πa0













1−M

a0
√

1−2M

a0

+
q2

a2
0

−
1−2a2

0

R2
√

1− a2
0

R2













. (60)

It is worth noting that the gravastar solution is also con-
sidered a self-gravitating object, which can avoid the for-
mation of the black hole horizon. Hence, a gravastar
model can be considered as one type of compact object
where the surface redshift is an important source of in-
formation. We expect that the redshifts of gravastars
would be higher than any ordinary objects. The surface
gravitational redshift is defined by z=∆λ/λe = λ0/λe,
where ∆ is the fractional change between the observed
wavelength λ0 and the emitted wavelength λe.

Thus, in our notation, the redshift factor za0
is

za0
=−1+

∣

∣

∣gtt(a0)
∣

∣

∣

−1/2

, (61)

Now, the behavior of the surface redshift is not larger
than z=2 [37] for a static perfect fluid sphere. This value
may increase up to 3.84, when we consider anisotropic
fluid spheres [38].

In order to specify an equilibrium solution for the
thin–shell gravastar, we introduce the dimensionless con-
figuration variables defined by Ref. [39],

x≡M

a0

, y≡M

R
, and w≡ q

M
. (62)

Therefore, assuming the condition of |q|<a0<R, the sur-
face energy density σ(a0)=σ(x) and the surface pressure
P(a0)=P(x) can be written as

σ(x)=− 1

4πR

x

y

(

√
1−2x+w2x2−

√

1− y2

x2

)

, (63)

and

P(x)=
1

8πR

x

y









1−x√
1−2x+w2x2

−
1−2

y2

x2
√

1− y2

x2









. (64)

Fig. 1. Unification diagram for surface energy den-
sity σ(a0). We have considered the dimensionless
parameters x=M/a0 and y=M/R. The qualita-
tive values used for drawing the graphs are w=0.5
and R=3. Note that surface energy density and
surface pressure are both positive in the range.
See the Appendix for more details.

Fig. 2. Surface pressure, with w = 0.5 and R = 3
used as the values of the parameters for graphical
representation.

9 Linearized stability of gravastars

In this section we study the stability of the gravas-
tar model about the static solutions a0, also known as
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the linearized stability of the solutions. In order to test
whether the equilibrium solution is stable or not, we re-
arrange Eq. (51) in the following suggestive form,

1

2
ȧ2+V (a)=0, (65)

which is known as the thin–shell equation of motion, with
the effective potential given by

V (a)=−256σ4(a)π4a4−32π2a2σ2(a)Ξ(a)+ζ2(a)

64σ2(a)π2a2
, (66)

where, for computational convenience, we introduce the
functions Ξ(a) and ζ(a) with the following definitions:

Ξ(a) =

(

1−2M

a
+
q2

a2

)

+

(

1− a2

R2

)

, (67)

ζ(a) =

(

1−2M

a
+
q2

a2

)

−
(

1− a2

R2

)

. (68)

This allows us to write the potential in a second-order
differential form as

V ′′(a)=
1

32σ4a4π2

[

∆1σ
′′+16σ4π2Ξ′′a4−σ2ζa2ζ ′′+∆2σ

′

+∆3(σ
′)2−256σ6π4a4−σ2ζ ′2a2+4σ2ζ ′ζa−3σ2ζ2

]

,
(69)

where

∆1 = −256a6π4σ5+a2ζ2σ,

∆2 = −1024a5π4σ5+4a2σζζ ′−4aζ2σ,

∆3 = −256a6π4σ4−3a2ζ2.

In the study of the stability of a static solution at a0,
we perform a Taylor expansion of V (a) about a0 until
second–order terms, given by

V (a) = V (a0)+V ′(a0)(a−a0)+
1

2
V ′′(a0)(a−a0)

2

+O[(a−a0)
3], (70)

where a prime denotes the derivative with respect to a.
Here we adapt and apply the criteria for stability anal-
ysis of a static configuration at a = a0, which requires
V (a0) = V ′(a0) = 0. The condition for stability is that
V ′′(a0)>0, to guarantee that the second derivative of the
potential is positive. In order to determine the stability
of the gravastar we first calculate V ′′(a0). Using Eq. (55)
and by introducing a new parameter η0=P ′(a0)/σ

′(a0)
into Eq. (69), we obtain

V ′′(a0) =
1

32π2σ4
0a

8
0R4

{

−1024

(

η0+
3

4

)

π4R4a8
0σ

6
0−1024σ5

0π
4R4a8

0

(

η0+
3

2

)

p0

−64

[(

16a4
0p

2
0π

2+Ma0−
3

2
q2
)

R2+
1

2
a4
0

]

π2R2a4
0σ

4
0−48p2

[(

Ma0−
1

2
q2
)

R2−a4
0

2

]2

+16p

[(

M

(

η0−
1

2

)

a0−
1

2
q2
(

η0+
3

2

))

R2−1/2

(

η0−
13

2

)

a4
0

][(

Ma0−
q2

2

)

R2−a4
0

2

]

σ0

+

[(

16M 2a2
0η0−16Mq2

(

η0−
1

4

)

a0+4

(

η0−
3

4

)

q4
)

R4−16

(

M

(

η0−
3

4

)

a0−
1

2
q2
(

η0−
1

4

))

a4
0R

2

+ 4

(

η0−
15

4

)

a8
0

]

σ2
0

}

. (71)

Therefore, by demanding that V ′′(a0) > 0, we find an inequality for the η0 parameter, which yields

η0>
768σ6

0π
4R4a8

0+1536σ5
0π

4R4a8
0p0+64π2R2a4

0σ
4
0Θ1+σ2

0Θ2+8πσa0Θ3+48p2
0Θ4

4σ0(σ0+p0)(−256σ4
0π4a8

0R4+4M 2a2
0R4−4Ma0R4q2−4Ma5

0R2+R4q4+2a4
0R2q2+a8

0)
, (72)

if σ0(σ0+p0)(−256σ4
0π

4a8
0R

4+4M 2a2
0R

4−4Ma0R
4q2−4Ma5

0R
2+R4q4+2a4

0R
2q2+a8

0)>0,

and

η0<
768σ6

0π
4R4a8

0+1536σ5
0π

4R4a8
0p0+64π2R2a4

0σ
4
0Θ1+σ2

0Θ2+8πσa0Θ3+48p2
0Θ4

4σ0(σ0+p0)(−256σ4
0π4a8

0R4+4M 2a2
0R4−4Ma0R4q2−4Ma5

0R2+R4q4+2a4
0R2q2+a8

0)
, (73)

if σ0(σ0+p0)(−256σ4
0π

4a8
0R

4+4M 2a2
0R

4−4Ma0R
4q2−4Ma5

0R
2+R4q4+2a4

0R
2q2+a8

0)<0.
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For notational simplicity, in Eqs. (72) and (73), we use

Θ1 =

(

16a4
0p

2
0π

2+Ma0−
3q2

2

)

R2+
a4
0

2
,

Θ2 = (−4Ma0q
2+3q4)R4+2a4

0(q
2−6Ma0)R

2+15a8
0,

Θ3 =

[(

Ma0+
3q2

2

)

R2−13a4
0

2

][(

Ma0−
q2

2

)

R2−a4
0

2

]

,

Θ4 =

[(

Ma0−
q2

2

)

R2−a4
0

2

]2

.

Obviously, to ensure stability, we demand that in
equilibrium the configurations satisfy the usual condition
V ′′(a0)>0. To justify our assumption for a given set of
parameters and find the range of a0 for which V ′′(a0)>0,
we use a graphical representation, due to the complexity
of the expression V ′′(a0). In Figs. 3, 4, 5, the stable
solutions are displayed for different values of q,M and
R. From Eqs. (72)–(73), we find that the regions in the
η0×a0 plane where the stability conditions are satisfied.

Fig. 3. (color online) Stability regions in terms of
η0 as a function of a0 for M =1 and q=1. The
shaded region is for a0<rh, and the dashed ver-
tical line is for a0=R.

Fig. 4. (color online) Stability regions in terms of
η0 as a function of a0 for M=2 and q=1.5. The
shaded region is for a0<rh and the dashed verti-
cal line is for a0=R.

Fig. 5. (color online) Stability regions in terms of
η0 as a function of a0 for M =2 and q=2. The
shaded region is for a0<rh and the dashed verti-
cal line is for a0=R.

To illustrate the above stability conditions, we use η0
as a parameter so that there is no need to specify any
surface equation of state. The parameter η0 is normally
interpreted as the speed of sound, which should lie within
the limit (0, 1] based on the physical requirement. How-
ever, η0 may lie outside the range of (0, 1] on the surface
layer. For an extensive discussion see Refs.[21, 35].

10 Stability analysis using the surface

mass of the thin shell

In this section we study the gravastar stability
through the surface mass of the thin shell, following
Ref. [39], which is given by ms=4πa2σ. For the stability
analysis, we do not need to introduce a particular param-
eter; rather, we can simply choose σ(a), or equivalently
ms, as an arbitrarily specifiable function that encodes
the whole gravastar stability.

For our purpose, in the exterior Reissner-Nordström
spacetime, with de Sitter interior geometry, the surface
mass of the thin shell for a static configuration is given
by

ms(a0)=−a0

[
√

1−2M

a0

+
q2

a2
0

−
√

1− a2
0

R2

]

, (74)

while for first–order differentiation we have

m′

s(a0)=













1−2a2
0

R2
√

1− a2
0

R2

−
1−M

a0
√

1−2M

a0

+
q2

a2
0













. (75)

For a static shell, one can derive the inequality for
m′′

s (a0), which may be used for a stable configuration,
as the above expression contains two terms with oppo-
site signs.

Generally, we require that the thin–shell matter sat-
isfies the weak and dominant energy conditions. In this
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analysis, we shall adapt the cases of σ>0, which corre-
spond to positive surface energy densities (see the Ap-
pendix for more details). By considering a stable static
solution at a0, we must have:

a0m
′′

s (a0)>



















(a0

R

)2
[

2
(a0

R

)2

−3

]

(

1− a2
0

R2

)3/2
−

(

M

a0

)2
[( q

M

)2

−1
]

(

1−2M

a0

+
q2

a2
0

)3/2



















(76)
Now, from the master equation (76), we mimic the stable
equilibrium regions of the respective solutions. To deter-
mine the stability regions of this solution, we choose the
parameters such that the transition layer is located at
some value between |q|<a0<R. Since the explicit form
of the inequalities is extremely lengthy, we produce the
graphical representation shown in Fig. 6, where the sta-
bility regions are represented above this surface. This is
in good agreement with our previous results.

Fig. 6. Plot of the inequality (76) for the function
a0m

′′
s in the case that V =0. We define the graph

for a positive surface energy density and for the
values of q/m<a0 and a0<R. The stability re-
gions are given above the surface.

11 Summary and discussion

As an alternative to black holes, compact objects like
gravastars have been proposed as a different final state
of a gravitational collapse, though the evidence for the
existence of black holes is well accepted astrophysically.
In this paper, a spherically symmetric charged thin-shell
gravastar has been investigated for a certain range of
parameters where the metric potentials and electromag-
netic fields are related in some particular relation called
Guilfoyle’s solutions. We consider a gravastar composed
of a de Sitter core, a thin shell, and an exterior Reissner-
Nordström electrovacuum region.

The most relevant property is that within the δ-shell
models surface energy density and surface pressure are
positive for a certain range of parameters. Therefore,
the obtained solutions satisfy the NEC as illustrated in
Fig. 1. For completeness, we have extended our anal-
ysis by exploring the linearized spherically symmetric
radial perturbations about static equilibrium solutions.
In this case, stability regions are given by the plots de-
picted in Figs. (3,4,5). Furthermore, we have discussed
the gravastar stability through the surface mass of the
thin shell, and we have show that the obtained results
are in good agreement with our previous results. There-
fore, we draw the conclusion that a variety of electrically
charged gravastar solutions may be constructed from the
Guilfoyle exact solutions.

Moreover, when considering charged stars it is use-
ful to examine the mass-radius-charge bounds discussed
so far in the literature. However, a separate study is
needed for these quantities. Therefore, we plan in the
near future to extend our work by considering the mass-
radius-charge bounds discussed by Andréasson [40], and
Bohmer & Harko [41].

AB is thankful to the authority of Inter-University

Centre for Astronomy and Astrophysics, Pune, India for

providing research facilities.

Appendix: static gravastars

We derive the surface stress-energy tensor in terms of sur-
face energy density σ and surface pressure P , around a stable
solution situated at a0. To see the qualitative behavior de-
picted in Figs. 1 and 2, let us start with Eqs. (59, 60) and
introduce new variables x=M/a0 and y=M/R. Then the
surface energy density and the surface pressure read, respec-
tively,

σ(a0) = −
1

4πa0

[

√

1−
2M

a0
+
q2

a2
−

√

1−
a2
0

R2

]

= −
1

4πR

x

y

[

√

1−2x+
q2

m2
x2−

√

1−
y2

x2

]

, (A1)
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P(a0) =
1

8πa0













1−M

a0
√

1−2M

a0

+
q2

a2
0

−
1−2a2

0

R2
√

1− a2
0

R2













=
1

8πR

x

y









1−x
√

1−2x+
q2

m2
x2

−
1−2y2

x2
√

1− y2

x2









. (A2)

Note that surface energy density and surface pressure are both positive in their respective ranges.
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