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Abstract: Flavor SU(3) analysis of B meson charmless hadronic two light pseudoscalar decays can be formulated in

two different ways. One is to construct the SU(3) irreducible representation amplitude (IRA) according to effective

Hamiltonian transformation properties, and the other is to draw the topological diagrams (TDA). We first point

out that previous analyses of TDA and IRA approaches do not match in several aspects, in particular a few SU(3)

independent amplitudes have been overlooked in the TDA approach. This has caused confusions in the past and

sometimes resulted in incorrect interpretation of data. We then demonstrate that only if these amplitudes are

included, a consistent and unified picture can be obtained. With the new TDA amplitudes, all charmless hadronic

decays of heavy meson must have nonzero direct CP symmetries as already predicted by the IRA approach. In

addition to their notable impact on CP asymmetry, the new amplitudes are also important to extract new physics

information.
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1 Introduction

Charmless hadronic B to two light pseudoscalar de-
cays provide an ideal platform to extract the CKM ma-
trix elements, test the standard model description of
CP violation and look for new physics effects beyond
the standard model (SM). Experimentally, quite a num-
ber of physical observables like branching fractions, CP
asymmetries and polarizations have been precisely mea-
sured by experiments at the electron-position colliders
and hadron colliders. For a collection of these results,
please see Refs. [1, 2]. On the other hand, theoreti-
cal calculations of decay amplitudes greatly rely on the
factorization ansatz. Depending on explicit realizations
of factorization, several QCD-based dynamic approaches
have been established, such as QCDF [3, 4], PQCD [5–
7], SCET [8, 9]. Apart from factorization approaches,
the flavor SU(3) symmetry has been also wildly used in
two-body and three-body heavy meson decays [10–23].

An advantage of this method is its independence on the
detailed dynamics in factorization. Since the SU(3) in-
variant amplitudes can be determined by fitting the data,
the SU(3) analysis provides a bridge between experimen-
tal data and the dynamic approaches.

In the literature, the SU(3) analysis has been formu-
lated in two distinct ways. One is to derive the decay
amplitudes correspond to various topological diagrams
(TDA) [16–21], and another is to construct the SU(3) ir-
reducible representation amplitude (IRA) by decompos-
ing effective Hamiltonian according to irreducible repre-
sentations [11–15]. These two methods should give the
same physical results in the SU(3) limit when all relevant
contributions are taken into account. However, as we
will show we find that previous analyses in the literature
using these two methods do not match consistently in
several ways, in particular a few SU(3) independent am-
plitudes have been overlooked in the TDA approach for a
heavy meson decaying into two light pseudoscalar SU(3)
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octet (or U(3) nonet) mesons. In this work, we carry
out a systematic analysis and identify possible missing
amplitudes in order to establish the consistence between
the RRA and TDA approaches. We find that these new
amplitudes are sizable and may affect direct CP asymme-
tries in some channels significantly. An important con-
sequence of the inclusion of these amplitudes is that for
any charmless hadronic decay of heavy mesons, the di-
rect CP symmetry cannot be identically zero, though in
some cases it is tiny.

The rest of this paper is organized as follows. In
Sec. 2, we introduce the SU(3) analysis using the TDA
and IRA approaches. We summarize those amplitudes
already discussed in the literature. In Sec. 3, we first
point out the mismatch problem, and then identify those
missed amplitudes. The complete sets of SU(3) indepen-
dent amplitudes in both IRA and TDA approaches will
be given to establish equivalence of these two approaches.
In Sec. 4, we include the missing amplitudes to discuss
the implications for hadronic charmless decays of B and
D and draw our conclusions.

2 Basics for IRA and TDA approaches

2.1 SU(3) structure

We start with the electroweak effective Lagrangian
for hadronic charmless B meson decays in the SM. The
Hamiltonian Heff responsible for such kind of decays at
one loop level in electroweak interactions is given by [24–
26]:

Heff =
GF√
2

{

VubV
∗
uq

[

C1O1+C2O2

]

−VtbV
∗
tq

[ 10
∑

i=3

CiOi

]}

+h.c., (1)

where Oi is a four-quark operator or a moment type op-
erator. The four-quark operators Oi are given as follows:

O1 = (q̄iuj)V−A(ū
jbi)V−A,

O2 = (q̄u)V−A(ūb)V−A,

O3 = (q̄b)V−A

∑

q′

(q̄′q′)V−A,

O4 = (q̄ibj)V−A

∑

q′

(q̄′jq′i)V−A,

O5 = (q̄b)V−A

∑

q′

(q̄′q′)V +A,

O6 = (q̄ibj)V−A

∑

q′

(q̄′jq′i)V +A,

O7 =
3

2
(q̄b)V−A

∑

q′

eq′(q̄
′q′)V +A,

O8 =
3

2
(q̄ibj)V−A

∑

q′

eq′(q̄
′jq′i)V +A,

O9 =
3

2
(q̄b)V−A

∑

q′

eq′(q̄
′q′)V−A,

O10 =
3

2
(q̄ibj)V−A

∑

q′

eq′(q̄
′jq′i)V−A. (2)

In the above the q denotes a d quark for the b→ d
transition or an s quark for the b→ s transition, while
q′=u,d,s.

At the hadron level, QCD penguin operators behave
as the 3̄ representation while tree and electroweak pen-
guin operators can be decomposed in terms of a vector
H3̄, a traceless tensor antisymmetric in upper indices,
H6, and a traceless tensor symmetric in upper indices,
H15. For the ∆S=0(b→d) decays, the non-zero compo-
nents of the effective Hamiltonian are [11, 14, 15]:

(H3̄)
2 = 1,

(H6)
12
1 = −(H6)

21
1 =(H6)

23
3 =−(H6)

32
3 =1,

2(H15)
12
1 = 2(H15)

21
1 =−3(H15)

22
2 =−6(H15)

23
3

= −6(H15)
32
3 =6, (3)

and all other remaining entries are zero. For the ∆S=
−1(b→s) decays the nonzero entries in the H3̄, H6, H15

can be obtained from Eq. (3) with the exchange 2↔ 3
corresponding to the d↔s exchange.

The above Hamiltonian can induce a Bi meson to de-
cay into two light pseudoscalar nonet M i

j mesons. There
are three B mesons (Bi) = (B(b̄u),B(b̄d),B(b̄s)) which
form a flavor SU(3) fundamental representation 3. The
light pseudoscalar mesons M i

j contain nine hadrons:

(M i
j) =

















π
0

√
2
+

η8√
6

π
+ K+

π
− − π

0

√
2
+

η8√
6

K0

K− K
0 −2

η8√
6
,

















+
1√
3











η1 0 0

0 η1 0

0 0 η1,











, (4)

The first term forms an SU(3) octet and the second term
is a singlet. Grouping them together it is a nonet of
U(3). It is similar for other light mesons, like the vector
or axial-vector mesons.

2.2 Irreducible Representation Amplitudes

To obtain irreducible representation amplitudes for
B→PP (P is an element in M i

j) decays, one takes the
various representations in Eq. (3) and uses one Bi and
light meson M i

j to contract all indices in the following
manner
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AIRA
t = AT

3 Bi(H3̄)
i(M)jk(M)kj+CT

3 Bi(M)ij(M)jk(H3̄)
k+BT

3 Bi(H3)
i(M)kk(M)jj+DT

3 Bi(M)ij(H3̄)
j(M)kk

+AT
6 Bi(H6)

ij

k (M)lj(M)kl +CT
6 Bi(M)ij(H6)

jl

k (M)kl +BT
6 Bi(H6)

ij

k (M)kj (M)ll

+AT
15Bi(H15)

ij

k (M)lj(M)kl +CT
15Bi(M)ij(H15)

jk

l (M)lk+BT
15Bi(H15)

ij

k (M)kj (M)ll. (5)

There also exist the penguin amplitudes AIRA
p which

can be obtained by the replacements AT
i →AP

i , B
T
i →BP

i ,
CT

i →CP
i and DT

i →DP
i (i=3,6,15).

Expanding the above AIRA
t , one obtains B→PP am-

plitudes in the first two columns in Tables 1 and 2. No-
tice that the amplitude AT

6 can be absorbed into BT
6 and

CT
6 with the following redefinition:

CT ′
6 =CT

6 −AT
6 , B

T ′
6 =BT

6 +AT
6 . (6)

Thus we have 18 (tree and penguin contribute 9 each)
SU(3) independent complex amplitudes. Since the phase
of one amplitude can be freely chosen, there are 35 in-
dependent parameters to describe the two-body B→PP
decays. If one also considers η−η′ (or η8−η1) mixing, one
more parameter, the mixing angle θ, is requested making
total 36 independent parameters.

2.3 Topological diagram amplitudes

The topological diagram amplitudes are obtained by
diagrams which connect initial and final states by quark
lines as shown in Fig. 1 with vertices determined by the
operators in Eq. (2). As shown in many references for
instance Ref. [21], they are classified as follows:

1) T denoting the color-allowed tree amplitude with
W emission;

2) C, denoting the color-suppressed tree diagram;

3) E denoting the W -exchange diagram;

4) P , corresponding to the QCD penguin contribu-
tions;

5) S, being the flavor singlet QCD penguin;

6) PEW, the electroweak penguin.

In addition, there exists annihilation diagrams, usually
abbreviated as A. In Fig. 1, we have only shown the dia-
grams for tree operators, and those for penguin operators
can be derived similarly.

The electroweak penguins contain the color-favored
contribution PEW and the color-suppressed one PC

EW.
The electroweak penguin operators can be re-expressed
as:

q̄b
∑

q′

eq′ q̄
′q′=q̄būu−1

3
q̄b
∑

q′

q̄′q′, (7)

where the second part can be incorporated into the pen-
guins transforming as a 3̄ of SU(3). The contribution
from q̄būu is similar to tree operators, and thus we will
use the symbol PT and PC to denote this electro-weak
penguin contribution. The q̄b

∑

q′
q̄′q′ is a flavor triplet

whose contribution P ′, as far as flavor SU(3) structure
is concerned, can be absorbed into penguin contribution.
We can write

PEW=PT−
1

3
P ′ , PC

EW=PC−
1

3
P

′C . (8)

The three penguin type of amplitudes P , P ′ and P
′C , can

be grouped together. We can redefine P by P+P ′+P
′C .

Actually these TDAs can be derived in a similar way
as done for IRAs earlier by indicating q̄uūb (omitting
the Lorentz indices ) by H̄ ij

k . For ∆S=0, the non-zero
elements are H̄12

1 =1 and for ∆S=−1, H̄13
1 =1. The pen-

guin contribution (including P , P ′ and P
′C) is an SU(3)

triplet H̄ i with H̄2 =1 for the b→ d transition and H3

for the b→ s transition. Eq. (7) implies that the loop
induced term proportional to V ∗

tqVtb has both H̄ ij
k and

H̄ i. Note that H̄ ij

k is no longer traceless.

(b)

C

b

ūu

(a)

T

ub

ū

(d)

E
b

ū

u

(c)

A
b

ū ū

Fig. 1. (color online) Topological diagrams induced by tree amplitudes. The four panels denote: the color-allowed
tree amplitude (T ), color-suppressed tree amplitude (C), annihilation (A), and W-exchange (E).
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Table 1. Decay amplitudes for two-body B decays induced by the b→ d transition. Only tree amplitudes whose
CKM matrix elements are VubV

∗
ud are shown, while penguin amplitudes can be obtained by the replacement given

in Eq. (16).

channel IRA TDA

B−→π
0
π
− 4

√
2CT

15
1√
2
(C+T )

B−→π
−η8

√

2
3

(

AT
6 +3AT

15+CT
3 −CT

6 +3CT
15

)

1√
6
(2A+C+2Pu+T )

B−→π
−η1

1√
3
(2AT

6 +6AT
15+3BT

6 +9BT
15+2CT

3 +CT
6 +3CT

15+3DT
3 ) 1√

3
(2A+C+3Au

S+2Pu+3Su+T )

B−→K0K− AT
6 +3AT

15+CT
3 −CT

6 −CT
15 A+Pu

B
0
→π

+
π
− 2AT

3 −AT
6 +AT

15+CT
3 +CT

6 +3CT
15 E+Pu+2Pu

A+T

B
0
→π

0
π
0 2AT

3 −AT
6 +AT

15+CT
3 +CT

6 −5CT
15 −C+E+Pu+2Pu

A

B
0
→π

0η8
1√
3
(−AT

6 +5AT
15−CT

3 +CT
6 +CT

15)
1√
3
(E−Pu)

B
0
→π

0η1 − 1√
6
(2AT

6 −10AT
15+3BT

6 −15BT
15+2CT

3 +CT
6 −5CT

15+3DT
3 ) 1√

6
(3Eu

S+2E−2Pu−3Su)

B
0
→K+K− 2

(

AT
3 +AT

15

)

E+2Pu
A

B
0
→K0K

0
2AT

3 +AT
6 −3AT

15+CT
3 −CT

6 −CT
15 Pu+2Pu

A

B
0
→η8η8 2AT

3 +AT
6 −AT

15+
CT

3

3
−CT

6 +CT
15

1
3

(

C+E+Pu+6Pu
A

)

B
0
→η8η1

1
3
√

2
(−6AT

6 +6AT
15−9BT

6 +9BT
15+2CT

3 −3CT
6 +3CT

15+3DT
3 ) 1

3
√

2
(3Eu

S+2C+2E+2Pu+3Su)

B
0
→η1η1

2
3

(

3AT
3 +9BT

3 +CT
3 +3DT

3

)

2
3

(

3Eu
S+C+E+Pu+3Pu

A+3Su+9Su
S

)

B
0
s→π

0K0 1√
2
(AT

6 +AT
15−CT

3 −CT
6 +5CT

15)
1√
2
(C−Pu)

B
0
s→π

−K+ −AT
6 −AT

15+CT
3 +CT

6 +3CT
15 Pu+T

B
0
s→K0η8

1√
6
(AT

6 +AT
15−CT

3 −CT
6 +5CT

15)
1√
6
(C−Pu)

B
0
s→K0η1 − 1√

3
(2AT

6 +2AT
15+3BT

6 +3BT
15−2CT

3 +CT
6 +CT

15−3DT
3 ) 1√

3
(C+2Pu+3Su)

Table 2. Decay amplitudes for two-body B decays induced by the b→ s transition. Only tree amplitudes whose
CKM matrix elements are VubV

∗
us are shown, while penguin amplitudes can be obtained by the replacement given

in Eq. (16).

channel IRA TDA

B−→π
0K− 1√

2
(AT

6 +3AT
15+CT

3 −CT
6 +7CT

15)
1√
2
(A+C+Pu+T )

B−→π
−K

0
AT

6 +3AT
15+CT

3 −CT
6 −CT

15 A+Pu

B−→K−η8 − 1√
6
(AT

6 +3AT
15+CT

3 −CT
6 −9CT

15)
1√
6
(−A+C−Pu+T )

B−→K−η1
1√
3
(2AT

6 +6AT
15+3BT

6 +9BT
15+2CT

3 +CT
6 +3CT

15+3DT
3 ) 1√

3
(2A+C+3Eu

S+2Pu+3Su+T )

B
0
→π

+K− −AT
6 −AT

15+CT
3 +CT

6 +3CT
15 Pu+T

B
0
→π

0K
0 1√

2
(AT

6 +AT
15−CT

3 −CT
6 +5CT

15)
1√
2
(C−Pu)

B
0
→K

0
η8

1√
6
(AT

6 +AT
15−CT

3 −CT
6 +5CT

15)
1√
6
(C−Pu)

B
0
→K

0
η1 − 1√

3
(2AT

6 +2AT
15+3BT

6 +3BT
15−2CT

3 +CT
6 +CT

15−3DT
3 ) 1√

3
(C+2Pu+3Su)

B
0
s→π

+
π
− 2

(

AT
3 +AT

15

)

E+2Pu
A

B
0
s→π

0
π
0 2

(

AT
3 +AT

15

)

E+2Pu
A

B
0
s→π

0η1 −
√

2
3

(

2AT
6 −4AT

15+3BT
6 −6BT

15+CT
6 −2CT

15

)

1√
6
(3Eu

S+C+2E)

B
0
s→K+K− 2AT

3 −AT
6 +AT

15+CT
3 +CT

6 +3CT
15 E+Pu+2Pu

A+T

B
0
s→K0K

0
2AT

3 +AT
6 −3AT

15+CT
3 −CT

6 −CT
15 Pu+2Pu

A

B
0
s→η8η8 2AT

3 −2AT
15+

4CT

3

3
−4CT

15
1
3

(

−2C+E+4Pu+6Pu
A

)

B
0
s→η8η1

1
3

√
2
(

6AT
15+9BT

15−2CT
3 +3CT

15−3DT
3

)

− 1
3
√

2
(−3Eu

S+C−2E+4Pu+6Su)

B
0
s→η1η1

2
3

(

3AT
3 +9BT

3 +CT
3 +3DT

3

)

2
3

(

3Eu
S+C+E+Pu+3Pu

A+3Su+9Su
S

)
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The tree amplitude is given as

ATDA
t =T×Bi(M)ijH̄

jl
k (M)kl +C×Bi(M)ijH̄

lj
k (M)kl

+A×BiH̄
il
j (M)jk(M)kl +E×BiH̄

li
j (M)jk(M)kl ,

(9)

while the penguin amplitude is given as:

ATDA
p = P×Bi(M)ij(M)jkH̄

k+S×Bi(M)ijH̄
j(M)kk

+PA×BiH̄
i(M)jk(M)kj+PT×Bi(M)ijH̄

jl

k (M)kl

+PC×Bi(M)ijH̄
lj

k (M)kl . (10)

Expanding Eq. (9) in the above and Eq. (12) to be
given in the following, we obtain the decay amplitudes
for B→PP in the third column in Tables 1 and 2. It
is necessary to point out that the singlet contribution
in the form M j

j requires multi-gluon exchanges. One
might naively think that its contributions are small com-
pared with other contributions because more gluons are
exchanged. However, at energy scale of B decays, the
strong couplings are not necessarily very small resulting
in non-negligible contributions. One should include them
for a complete analysis.

3 Mismatch and equivalence

From previous discussions, one can see that the total
decay amplitudes for B→PP decays for IRA and TDA

can be written as

AIRA = VubV
∗
uqAIRA

t +VtbV
∗
tqAIRA

p ,

ATDA = VubV
∗
uqATDA

t +VtbV
∗
tqATDA

p . (11)

For the amplitudes given in the previous section, it is
clear that for both Ai

t and Ai
p, the amplitudes do not have

the same number of independent parameters: there are
18 independent complex amplitudes in the IRA, while
only 9 amplitudes are included in the TDA. There seems
to be a mismatch between the IRA and TDA approaches.
However since both approaches are rooted in the same
basis, the same physical results should be obtained. It is
anticipated that some amplitudes have been missed and
must be added.

A close inspection shows that several topological di-
agrams were not included in the previous TDA analysis.
For the tree amplitudes we show the relevant diagrams
in Fig. 2. The missing penguin diagrams can be obtained
similarly. Since there are electroweak penguin operator
contributions, as far as the SU(3) irreducible compo-
nents are concerned, the effective Hamiltonian have the
same SU(3) structure as the tree contributions. Taking
these contributions into account, we have the following
topological amplitudes:

A′TDA
t = SuBi(M)ijH̄

lj
l (M)kk+P uBi(M)ij(M)jkH̄

lk
l

+P u
ABiH̄

li
l (M)jk(M)kj+Su

SBiH̄
li
l (M)jj(M)kk

+Eu
SBiH̄

ji
l (M)lj(M)kk+Au

SBiH̄
ij
l (M)lj(M)kk,

(12)

(a)

P u

(b)

Su

(d) (f)(e)

(c)

P u
A

Su
S

ū ū

Au
S

u

ū

Eu
S

u

u

u

u

Fig. 2. (color online) Typical diagrams for the newly introduced amplitudes in Eq. (12). The crossed vertex denotes
the ūu annihilation and the creation of two or more gluons.
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A′TDA
p = St

SBiH̄
i(M)jj(M)kk+AtBiH̄

il
j (M)jk(M)kl

+EtBiH̄
ji

k (M)kl (M)lj+Et
SBiH̄

ji

l (M)lj(M)kk

+At
SBiH̄

ij
l (M)lj(M)kk. (13)

The mismatch problem can be partly traced to the fact
that H̄ ij

k defined in the TDA analysis is not traceless,
that is H̄ lj

l 6= 0. Because of this fact, Bi and the two
M i

j can contract with H̄ lj

l to form SU(3) invariant am-
plitudes and also the trace for M i

j is not zero when η1
is included in the final states. While in the previous
discussions, these terms are missed.

One can expand the above new terms to obtain the
results for tree amplitudes in Tables 1 and 2. With these
new amplitudes at hand, one can derive the relation be-
tween the two sets of amplitudes:

AT
3 = −A

8
+
3E

8
+P u

A, BT
3 =Su

S+
3Eu

S−Au
S

8
,

CT
3 =

1

8
(3A−C−E+3T )+P u,

DT
3 = Su+

1

8
(3C−Eu

S+3Au
S−T ),

B′T
6 =

1

4
(A−E+Au

S−Eu
S), C ′T

6 =
1

4
(−A−C+E+T ),

AT
15 =

A+E

8
, BT

15=
Au

S+Eu
S

8
, CT

15=
C+T

8
. (14)

Here we have absorbed the AT
6 into B′T

6 and C ′T
6 . In the

appendix, we give a direct derivation of relations between
IRA and TDA amplitudes, in which the amplitude AT

6 is
kept.

Naively there are total 10 tree amplitudes and 10 pen-
guin amplitudes defined in Eq. (9,12). However, only 9
of the 10 tree amplitudes are independent. Choosing the
option to eliminate the W-exchange E, we can express
the TDA amplitudes in terms of the IRA ones:

T+E = 4AT
15+2C ′T

6 +4CT
15,

C−E = −4AT
15−2C ′T

6 +4CT
15,

A+E = 8AT
15, P u−E=−5AT

15+CT
3 −C ′T

6 −CT
15,

P u
A+

E

2
= AT

3 +AT
15, Eu

S+E=4AT
15−2B′T

6 +4BT
15,

Au
S−E = −4AT

15+2B′T
6 +4BT

15,

Su
S−

E

2
= −2AT

15+BT
3 +B′T

6 −BT
15,

Su+E = 4AT
15−B′T

6 −BT
15+C ′T

6 −CT
15+DT

3 . (15)

The analysis of penguin contributions is similar with

the replacement for TDA amplitudes:

T→PT , C→PC , A→At, P u→P,E→Et,

P u
A→PA, E

u
S→Et

S, A
u
S→At

S, S
u
S→St

S, S
u→S. (16)

From the above discussions we see that the two sets of
amplitudes in IRA and TDA can be mutually expressed
by each other. The IRA and TDA approaches are com-
pletely equivalent. As long as all amplitudes are taken
into account in the analysis, they give the same results
for B→PP decays, and we expect the equivalence for
other decays1).

4 Discussions and conclusions

We now make a few remarks about our results ob-
tained.

Several missing terms in the TDA analysis involve the
trace M j

j . The trace actually singles out the singlet in
the nonet representation M i

j . To have a color singlet in

the diagram shown in Figs. 1 and 2, the singleM j
j need to

exchange two or more gluons. As pointed out earlier that
these contributions are expected to be small compared
with other contributions. However, at energy scale of
B decays, the strong couplings are not necessarily very
small resulting in non-negligible contributions. Terms
associated with the trace H̄ lj

l actually can be thought of
as turning the tree operator into penguin operator with
u quark exchange in the loop whose Wilson coefficient
contains the large logarithms ln(µ/mu) which can also
make non-negligible contributions. One should include
them for a complete analysis.

Recently, Ref. [15] has performed a fit of B→PP de-
cays in the IRA scheme. Depending on various options
to use the data, four cases are considered in Ref. [15]. As
an example, we quote the results in their case 4:

|CT
3̄ | = −0.211±0.027,

δT3̄ = (−140±6)◦,

|BT

15| = −0.038±0.016,

δBT

15

= (78±48)◦, (17)

where the magnitudes and strong phases relative to CP
3̄

have been given. From Eq. (14), one can see that the CT
3̄

is a combination of color-allowed tree T , color-suppressed
tree amplitude C and others while the BT

15
corresponds

to (Au
S+TTS)/8 in TDA approach. The fitted result in

Eq. (17) indicates that compared to CT
3̄ , the BT

15
can

reach 20% in magnitude, and more importantly, the
strong phases are different significantly. The BT

15
, equiv-

alently Au
S and TTS , have non-negligible contributions

supporting our call for a complete analysis. With more
and more accurate data for B→PP from experiments,

1) In a recent study [27], TDA amplitudes have been obtained. However, the independence of amplitudes is not discussed in TDA
approach.
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one can now carry out a more careful analysis to obtain
the amplitudes and derive implications for model calcu-
lations of the relevant amplitudes.

Without the new contributions in the TDA analysis,
some of the amplitudes only have terms proportional to

V ∗
tqVtb, such as B

0→K0K̄0 and B
0

s→K0K̄0. In Ref. [21],

the amplitudes for B
0→K0K̄0 are given as

A(B
0→K0K̄0)=VtbV

∗
td

(

P−1

2
PC

EW+2PA

)

, (18)

where in our work, we have observed the electro-weak
penguin into the QCD penguin amplitudes. This im-
plies that CP violation in these two decays are identically
zero. However, these two decay modes receive contribu-
tions from the new terms P u+2P u

A which is multiplied
by V ∗

uqVub:

A(B
0→K0K̄0)=VubV

∗
ud(P

u+2P u
A)+VtbV

∗
td(P+2PA).

(19)

In principle they can have non-zero CP violation. There-
fore if one takes into account the missing tree and pen-
guin amplitudes, an important consequence is that no
charmless and hadronic B decay channel has a vanishing
direct CP asymmetry.

Flavor SU(3) symmetry is an approximate symmetry,
and symmetry breaking sources exist in QCD, mostly
caused by the unequal masses for the light u,d,s quarks.
How SU(3) breaking effect manifest itself is not com-

pletely clear. Experimental data [2, 28] for B
0→K−

π
+

and Bs→K+
π

− agree with relations predicted for these
two modes under SU(3) symmetry [13, 29]. A more con-
clusive analysis is inevitable in light of the large amount
of data from Belle II [30] and LHCb [31] in future. One
should keep in mind that for such an appropriate anal-
ysis of SU(3) symmetry breaking, one must take into

account all the above amplitudes, otherwise, the missing
amplitudes will be disguised as symmetry breaking ef-
fects. As we have shown above, the modification due to
the missing amplitudes can reach 20%, which is compa-
rable with the generic SU(3) symmetry breaking effects.
Thus the additional TDAs must be treated carefully to
correctly interpret the data.

Our analysis is also applicable to other decay chan-
nels of heavy mesons and baryons. In the appendix, we
give a discussion on the D meson decays. For charm
quark decay, penguin operators are often negligible and
the 3̄ representation does not contribute either. So there
are five independent tree amplitudes, while in TDA only
four amplitudes, T,C,E,A, are used for the global fit.

In summary, we have carried out an analysis com-
paring two different approaches, the irreducible repre-
sentation amplitude and topological diagram amplitude,
to study B→PP decays. We find that previous analyses
in the literature using these two methods do not match
consistently in several ways. A few SU(3) independent
amplitudes have been overlooked in the TDA approach.
Taking these new amplitudes into account, we find a
consistent description in both approaches. These new
amplitudes can affect direct CP asymmetries in some
channels significantly. A consequence is that for any
charmless hadronic decays of heavy mesons, the direct
CP symmetry cannot be identically zero. With more
data become available, we can have a a better under-
standing of the role of flavor SU(3) symmetry in B
decays.

The authors are grateful to Cheng-Wei Chiang for

useful discussions and valuable comments. We thank

Martin Beneke, Cai-Dian Lü and Ulrich Nierste for use-

ful discussions. WW thanks the hospitality from NCTS

when this work was finalized.

Appendix A

A derivation of decomposition

Using O12
1 =ūbd̄u as an example, we have the decomposi-

tion of tree operator:

O
12
1 =

1

8
O15+

1

4
O6−

1

8
O3̄+

3

8
O3̄′ , (A1)

with

O15 = 3ūbd̄u+d̄būu−2d̄bd̄d−s̄bd̄s−d̄bs̄s,

O6 = ūbd̄u−d̄būd−s̄bd̄s+d̄bs̄s,

O3̄ = d̄būu+d̄bd̄d+d̄bs̄s,

O3̄′ = ūbd̄u+d̄bd̄d+s̄bd̄s. (A2)

It implies:

H̄
ij
k =

1

8
(H15)

ij
k +

1

4
(H6)

ij
k −1

8
(H3)

i
δ
j
k+

3

8
(H3′)

j
δ
i
k. (A3)

Substituting this expression into the amplitude T for in-
stance, we have

T×Bi(M)ijH̄
jl
k (M)kl =T×Bi(M)ij(M)kl

×
(

1

8
(H15)

jl
k +

1

4
(H6̄)

jl
k −

1

8
(H3)

j
δ
l
k+

3

8
(H3′)

l
δ
j
k

)

, (A4)
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contributing to

C
T
15 =

1

8
T+...,

C
T
6 =

1

4
T+...,

C
T
3 =

3

8
T+...,

D
T
3 = −1

8
T+.... (A5)

Others TDA amplitudes can be analyzed similarly, and thus
one has

A
T
3 =−A

8
+
3E

8
+P

u
A, B

T
3 =S

u
S+

3Eu
S−Au

S

8
,

C
T
3 =

1

8
(3A−C−E+3T )+P

u
, D

T
3 =S

u+
1

8
(3C−E

u
S+3Au

S−T ),

A
T
6 =

1

4
(A−E), B

T
6 =

1

4
(Au

S−E
u
S),

C
T
6 =

1

4
(−C+T ), A

T
15=

A+E

8
,

B
T
15=

Au
S+Eu

S

8
, C

T
15=

C+T

8
. (A6)

The inverse relation is given as:

T = 2CT
6 +4CT

15, C=4CT
15−2CT

6 ,

A = 2AT
6 +4AT

15, E=4AT
15−2AT

6 ,

P
u = −A

T
6 −A

T
15+C

T
3 −C

T
6 −C

T
15,

P
u
A = A

T
3 +A

T
6 −A

T
15, E

u
S=4BT

15−2BT
6 ,

A
u
S = 2BT

6 +4BT
15,

S
u
S = B

T
3 +B

T
6 −B

T
15,

S
u = −B

T
6 −B

T
15+C

T
6 −C

T
15+D

T
3 . (A7)

From the expansion of IRA amplitudes, one can notice that
the AT

6 can be absorbed into BT
6 and CT

6 .

D meson decays

The effective Hamiltonian for charm quark decay is given
as

Heff =
GF√
2

{

VcsV
∗
ud[C1O

sd
1 +C2O

sd
2 ]+VcdV

∗
ud[C1O

dd
1 +C2O

dd
2 ]

+VcsV
∗
us[C1O

ss
1 +C2O

ss
2 ]+VcdV

∗
us[C1O

ds
1 +C2O

ds
2 ]

}

,

(A8)

where

O
sd
1 = [s̄iγµ(1−γ5)c

j ][ūi
γ
µ(1−γ5)d

j ],

O
sd
2 = [s̄γµ(1−γ5)c][ūγ

µ(1−γ5)d], (A9)

and other operators can be obtained by replacing the
d,s quark fields. In the above equations, we have neglected
the highly-suppressed penguin contributions. Tree operators

transform under the flavor SU(3) symmetry as 3̄⊗3⊗ 3̄ =
3̄⊕3̄⊕6⊕15. For the c→sud̄ transition, we have

(H6)
31
2 =−(H6)

13
2 =1, (H15)

31
2 =(H15)

13
2 =1, (A10)

while for the doubly Cabibbo suppressed c→dus̄ transition,
we have

(H6)
21
3 =−(H6)

12
3 =−sin2

θC , (H15)
21
3 =(H15)

12
3 =−sin2

θC .

(A11)

The CKM matrix elements for c→ud̄d and c→us̄s transi-
tions are approximately equal in magnitude but different in
sign: VcdV

∗
ud=−VcsV

∗
us−VcbV

∗
ub≈−VcsV

∗
us (accurate at 10−3).

With both contributions, the contributions from the 3̄ repre-
sentation vanish, and one has the nonzero components:

(H6)
31
3 =−(H6)

13
3 =(H6)

12
2 =−(H6)

21
2 =sin(θC),

(H15)
31
3 =(H15)

13
3 =−(H15)

12
2 =−(H15)

21
2 =sin(θC). (A12)

A few remarks are in order.

1) The expanded amplitudes are given in Tab. A1 for
Cabibbo-allowed channels, Tab. A2 for singly Cabibbo-
suppressed modes, and Tab. A3 for doubly Cabibbo-
suppressed decay channels.

2) One can derive the following relations between the two
sets of amplitudes:

A
T
6 =

1

2
(A−E),AT

15=
1

2
(A+E),BT

6 =
1

2
(AS−ES),

B
T
15 =

1

2
(AS+ES), C

T
6 =

1

2
(T−C), CT

15=
1

2
(T+C).

(A13)

The superscript u has been dropped for charm quark
decays.

3) The amplitudes AT
6 can be incorporated in BT ′

6 and
CT ′

6 , and then we have

A
T
15 =

1

2
(A+E),

B
′T
6 =

1

2
(AS−ES+A−E),BT

15=
1

2
(AS+ES),

C
′T
6 =

1

2
(T−C−A+E),CT

15=
1

2
(T+C), (A14)

with the inverse relation:

T = A
T
15+C

′T
6 +C

T
15−E,

C = −A
T
15−C

′T
6 +C

T
15+E,

A = 2AT
15−E,

AS = −A
T
15+B

′T
6 +B

T
15+E,

ES = A
T
15−B

′T
6 +B

T
15−E. (A15)

One of the amplitudes T,C,A,E [32, 33] is not indepen-
dent, and we have eliminated E in the above equations.
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Table A1. Decay amplitudes for two-body Cabibblo-Allowed D decays.

channel IRA TDA

D0→π
+K− −AT

6 +AT
15+CT

6 +CT
15 E+T

D0→π
0K

0 1√
2
(AT

6 −AT
15−CT

6 +CT
15)

1√
2
(C−E)

D0→K
0
η8

1√
6
(AT

6 −AT
15−CT

6 +CT
15)

1√
6
(C−E)

D0→K
0
η1

1√
3
(−2AT

6 +2AT
15−3BT

6 +3BT
15−CT

6 +CT
15)

1√
3
(3ES+C+2E)

D+→π
+K

0
2CT

15 C+T

D+
s →π

+η8

√

2
3

(

AT
6 +AT

15−CT
6 −CT

15

)

√

2
3
(A−T )

D+
s →π

+η1
1√
3
(2AT

6 +2AT
15+3BT

6 +3BT
15+CT

6 +CT
15)

1√
3
(2A+3ES+T )

D+
s →K+K

0
AT

6 +AT
15−CT

6 +CT
15 A+C

Table A2. Decay amplitudes for two-body Singly Cabibblo-Suppressed D decays.

channel IRA TDA

D0→π
+
π
− sinθC

(

AT
6 −AT

15−CT
6 −CT

15

)

−sinθC(E+T )

D0→π
0
π
0 sinθC

(

AT
6 −AT

15−CT
6 +CT

15

)

sinθC(C−E)

D0→π
0η8 − 1√

3
sinθC

(

AT
6 −AT

15−CT
6 +CT

15

)

1√
3
sinθC(E−C)

D0→π
0η1 − 1√

6
sinθC

(

2AT
6 −2AT

15+3BT
6 −3BT

15+CT
6 −CT

15

)

1√
6
sinθC (3ES+C+2E)

D0→K+K− sinθC
(

−AT
6 +AT

15+CT
6 +CT

15

)

sinθC(E+T )

D0→η8η8 −sinθC
(

AT
6 −AT

15−CT
6 +CT

15

)

sinθC(E−C)

D0→η8η1
1√
2
sinθC

(

2AT
6 −2AT

15+3BT
6 −3BT

15+CT
6 −CT

15

)

− 1√
2
sinθC (3ES+C+2E)

D+→π
+
π
0

√
2sinθCCT

15
1√
2
sinθC(C+T )

D+→π
+η8 −

√

2
3
sinθC

(

AT
6 +AT

15−CT
6 +2CT

15

)

− 1√
6
sinθC(2A+3C+T )

D+→π
+η1 − 1√

3
sinθC

(

2AT
6 +2AT

15+3BT
6 +3BT

15+CT
6 +CT

15

)

− 1√
3
sinθC (2A+3AS+T )

D+→K+K
0

−sinθC
(

AT
6 +AT

15−CT
6 −CT

15

)

sinθC(T−A)

D+
s →π

+K0 sinθC
(

AT
6 +AT

15−CT
6 −CT

15

)

sinθC(A−T )

D+
s →π

0K+ 1√
2
sinθC

(

AT
6 +AT

15−CT
6 +CT

15

)

1√
2
sinθC(A+C)

D+
s →K+η8 − 1√

6
sinθC

(

AT
6 +AT

15−CT
6 +5CT

15

)

− 1√
6
sinθC(A+3C+2T )

D+
s →K+η1

1√
3
sinθC

(

2AT
6 +2AT

15+3BT
6 +3BT

15+CT
6 +CT

15

)

1√
3
sinθC (2A+3AS+T )

Table A3. Decay amplitudes for two-body Doubly Cabibblo-Suppressed D decays.

channel IRA TDA

D0→π
0K0 − 1√

2
sin2θC

(

AT
6 −AT

15−CT
6 +CT

15

)

− 1√
2
sin2θC(C−E)

D0→π
−K+ −sin2θC

(

−AT
6 +AT

15+CT
6 +CT

15

)

−sin2θC(E+T )

D0→K0η8 − 1√
6
sin2θC

(

AT
6 −AT

15−CT
6 +CT

15

)

− 1√
6
sin2θC(C−E)

D0→K0η1
1√
3
sin2θC

(

2AT
6 −2AT

15+3BT
6 −3BT

15+CT
6 −CT

15

)

− 1√
3
sin2θC (3ES+C+2E)

D+→π
+K0 −sin2θC

(

AT
6 +AT

15−CT
6 +CT

15

)

−sin2θC(A+C)

D+→π
0K+ − 1√

2
sin2θC

(

AT
6 +AT

15−CT
6 −CT

15

)

− 1√
2
sin2θC(A−T )

D+→K+η8
1√
6
sin2θC

(

AT
6 +AT

15−CT
6 −CT

15

)

− 1√
6
sin2θC(T−A)

D+→K+η1 − 1√
3
sin2θC

(

2AT
6 +2AT

15+3BT
6 +3BT

15+CT
6 +CT

15

)

− 1√
3
sin2θC (2A+3AS+T )

D+
s →K+K0 −2sin2θCCT

15 −sin2θC(C+T )
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