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Abstract: Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems

and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme

to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral

interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian.

We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed

investigation of the partial wave potentials shows a better description of the 1S0 and 3P0 phase shifts than the leading

order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial

waves with angular momenta J>1, the relativistic results are almost the same as their leading order non-relativistic

counterparts.
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1 Introduction

There is strong evidence that relativistic effects play
an indispensable role in our understanding of the fine
structure of atoms/molecules [1] and nuclei [2], although
non-relativistic methods were historically very popular
and are still routinely utilized in modern studies. The
most familiar manifestations of relativistic effects include
the appearance of anti-fermions, their spin and the re-
sulting spin-orbit interactions, which form a key to un-
derstand the spin-orbit splitting of atomic spectra and
nuclear single particle levels [3]. In contrast to kine-
matical effects, which at low energies can often be ne-
glected or treated perturbatively, these are dynamical
effects, in particular the velocity dependent potentials
such as the spin-orbit force. Today, studies of complex
atomic/molecular systems have reached a high level of
maturity [4], while similar studies of nuclear structure
and reactions are still at an early stage [5].

There are two important differences between these
two systems. A key difference in microscopic studies of
atoms/molecules and nuclei, though they share similar
theoretical approaches, is the dominating fundamental
interaction. For atoms/molecules, the electromagnetic
force is known rather accurately both at the classical
level and at the field theoretical level. On the other hand,
for nuclei, the nuclear force, being a residual interaction
of the strong force, is still far from being completely un-
derstood (see, e.g., Ref. [6]). There is, however, a sec-
ond important difference. In atoms and molecules the
electromagnetic force is a Lorentz-vector and as a con-
sequence the Coulomb potential also causes spin-orbit
splitting. The nuclear force, however, contains extremely
large Lorentz scalars and Lorentz vectors of opposite
sign. This is a direct consequence of QCD, as has been
shown by Cohen et al. [7–9]. Scalar and vector forces
cancel to a large extent in the normal potential, but they
add up in the spin-orbit term. In Coulombic systems, the
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velocity dependent spin-orbit term is small and in many
cases (even in high precision calculations) it is treated
perturbatively. This is possible, because the velocities
are not large. In nuclei the velocities are not large ei-
ther, but, in the velocity dependent terms, the factor in
front of the velocity is very large and forbids a perturba-
tive treatment.

After more than 80 years of extensive study since
the pion-exchange picture was proposed [10], the nuclear
force still remains a central topic in nuclear physics and
nuclear astrophysics. There are a variety of formulations
of the nuclear force. Most studies are performed in the
non-relativistic (NR) framework, including the high pre-
cision phenomenological nuclear potentials, Reid93 [11]
and Argonne V18 [12], or the chiral forces [13, 14]. In the
relativistic framework, only two formulations have been
studied rather extensively, namely the (CD-)Bonn poten-
tial [15, 16] and the covariant spectator theory [17, 18]1).
Of these, the Bonn potential has been successfully ap-

plied in relativistic many-body calculations (e.g. Dirac-
Brueckner-Hartree-Fock theory [22]), to study both nu-
clear matter [23] and, more recently, finite nuclei [24, 25].
However, the connection of the relativistic phenomeno-
logical potentials to the underlying theory of the strong
interaction, Quantum Chromodynamics (QCD), is not
very transparent. In this regard, a relativistic nucleon-
nucleon interaction based on chiral effective field theory
(ChEFT) is indispensable.

As a low energy effective field theory of non-
perturbative QCD [26], ChEFT provides a model inde-
pendent approach to study strong-interaction phenom-
ena. It has been successfully applied to the mesonic
sector and to systems involving baryons and heavy (fla-
vored) hadrons. Due to the large non-zero mass of the
nucleon (compared to the pion mass), in the latter sys-
tems, conventionally NR ChEFT, i.e. the heavy baryon
(HB) scheme [27], is often used, especially for the two-
baryon (few-body) sectors. In the 1990s, Weinberg pro-
posed to construct two-(few)-body interactions from chi-
ral Lagrangians. First, one calculates the irreducible
diagrams in HB ChEFT perturbatively, and then uses
the Lippmann-Schwinger equation to obtain transition
amplitudes [28, 29]. This method is conventionally re-
ferred to as the Weinberg approach. Since then, the
nucleon-nucleon interaction has been extensively investi-
gated [30–43] (see the reviews in Refs. [44–46] and refer-
ences therein). Recently, chiral NN forces have been con-
structed up to the fifth order by the Bochum-Juelich [13]
and the Idaho groups [14, 47]. The dominant two-
and three-pion-exchange contributions at the sixth or-
der have also been worked out, in Ref. [48]. However,
the Weinberg power counting scheme has been found to
be non-renormalizable [49]. To cure this, several possible

approaches have been proposed [50–71], but the problem
has not yet been fully resolved.

Meanwhile, in recent years, covariant ChEFT has
been shown to be able to solve a number of long-standing
issues. It has shown relatively faster convergence than its
NR counterpart in the one-baryon sector [72–76] and in
heavy-light systems [77]. In addition to being covariant
it satisfies analyticity constraints (for a short review see
Ref. [78]). Motivated by these successes and the demand
in relativistic nuclear structure studies, we explore a co-
variant power counting scheme, which keeps the small
components of Dirac spinors, to construct, in the frame-
work of ChEFT, a relativistic NN potential in analogy
to the phenomenological Bonn potential. As a first step,
we investigate in this paper the possibility of construct-
ing such a chiral force up to leading order. In the long
run, however, we aim to also include higher orders and to
provide a high-precision relativistic chiral nuclear force
so that relativistic many-body calculations, such as those
of Refs. [23–25] using Dirac-Brueckner-Hartree-Fock the-
ory, can be performed with these relativistic chiral forces.

The covariant power counting scheme presented here
and also the main purpose of this investigation are quite
different from those of Ref. [70], where relativistic effects
are, for the first time, included in a perturbative way, to
derive a chiral force applicable to NR calculations with
particular focus on renormalization group invariance.

In this work, we start from a manifestly Lorentz in-
variant chiral Lagrangian and construct a relativistic chi-
ral nuclear force up to leading order (LO). To account for
the non-perturbative nature of the nucleon-nucleon inter-
action, we use a relativistic three-dimensional reduction
of the Bethe-Salpeter equation, as conventionally done
by the nuclear structure community, to obtain the scat-
tering amplitude from the chiral potential. By fitting to
the Nijmegen partial wave phase shifts, it is shown that
one can achieve a satisfactory description of the phase
shifts of low angular momenta even at LO.

2 Theoretical framework

2.1 Definition of potentials

The concept of potentials is often used in the non-
relativistic Schrödinger and Lippmann-Schwinger equa-
tions. Since we are now working in covariant chiral EFT,
it is worth clarifying the definition of potentials from a
field-theoretical point of view. Such a concept has al-
ready been thoroughly discussed in the 1970s (see, e.g.,
Refs. [79, 80]), namely that the interaction field Hamil-
tonian appearing in a relativistic three-dimensional dy-
namical equation can be referred to as a two-nucleon po-
tential. To keep the manuscript self-contained, we would
like to show the main procedures to introduce the poten-

1) We note that a covariant calculation of two-pion exchanges exists [19, 20] using the infrared regularization [21].
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tial in our relativistic framework. For nucleon-nucleon
elastic scattering, the ladder Bethe-Salpeter equation in
operator form reads as

T (p′,p|W )=A(p′,p|W )

+

∫

d4k

(2π
4)
A(p′,k|W )G(k|W )T (k,p|W ),

(1)

where p (p′) is the initial (final) relative four-momentum
in the center-of-momentum system, and W = (

√
s/2,0)

is half of the total four-momentum with the total energy√
s = 2Ep = 2Ep′ and Ep =

√

p2+m2
N . T denotes the

invariant amplitude, and A is the interaction kernel con-
sisting of all irreducible diagrams appearing in covariant
ChEFT. The free two-nucleon Green function reads

G(k|W )

=
i

[γµ(W+k)µ−mN+iε](1) [γµ(W−k)µ−mN+iε](2)
,

(2)

where the superscripts refer to particles (1) and (2). The
spin and isospin indices are suppressed. However, in the
low-energy region of the two-nucleon system, this is dif-
ficult to implement in practice, and a three-dimensional
(3D) reduced equation is often used. The reduction pro-
cedure is to replace G by a three-dimensional g which can
produce the analytic structure of G in the physical re-
gion only. In principle, there are infinite choices of g [81].
Nowadays, the commonly used 3D reduced equations
are, e.g., the Thompson equation [82], the Blankenbecler-
Sugar equation [83], the Kadyshevsky equation [84], or
the Gross equation [85]. (Please refer to Ref. [86] for a
comparison of different 3D relativistic scattering equa-
tions). In this work, we employ the Kadyshevsky equa-
tion, as shown in Refs. [70, 87]. The corresponding Green
function g is

g=2π

m2
N

E2
k

Λ(1)
+ (k)Λ(2)

+ (−k)√
s−2Ek+iε

δ

[

k0−
(

Ek−
1

2

√
s

)]

, (3)

where Ek =
√

k2+m2
N and Λ(i)

+ (i = 1, 2) are the pos-
itive energy projection operators for the two interme-
diate nucleons. Using G = g+(G−g), one can rewrite
the Bethe-Salpeter equation schematically as two cou-
pled equations,

T = V+VgT , (4)

V = A+A(G−g)V , (5)

where V is an the effective interaction kernel. After in-
tegrating out the time component k0, Eq. (4) becomes a
three-dimensional integral equation,

T [p′
0=Ep′−1/2

√
s,p′;p0=Ep−1/2

√
s,p|W ]

=V [p′
0=Ep′−1/2

√
s,p′;p0=Ep−1/2

√
s,p|W ]

+

∫

d3k

(2π)3
V [p′

0=Ep′−1/2
√

s,p′;k0=Ek−1/2
√

s,k|W ]

×m2
N

E2
k

Λ(1)
+ (k)Λ(2)

+ (−k)√
s−Ek+iε

×T [k0=Ek−1/2
√

s,k;p0=Ep−1/2
√

s,p|W ]. (6)

We restrict the elements of T connecting the positive-
energy spinors. After sandwiching Eq. (6) between the
Dirac spinors u(p,s), one obtains the T matrix elements
for NN scattering

T (p′,p) = V (p′,p)+

∫

d3k

(2π)3
V (p′,k)

×m2
N

2E2
k

1

Ep−Ek+iε
T (k,p), (7)

where V is our potential, defined as

V (p′,p) = ū(p′,s1)ū(−p′,s2)V [p′
0=Ep′−1/2

√
s,p′;

p0=Ep−1/2
√

s,p|W ]u(p,s1)u(p′,s2). (8)

The effective interaction kernel V , determined by Eq. (5),
can be perturbatively calculated via

V(0) = A(0),

V(2) = A(2)+A(0)(G−g)A(0), (9)

and so on. The superscripts refer to the order of chi-
ral dimension of a particular Feynman diagram defined
in Eq. (11). Therefore, in a covariant formulation of
ChEFT, one can obtain the potential V (p′,p) defined in
Eq. (8) with the help of Eq. (9) , where the interaction
kernel A is the sum of all the irreducible diagrams at a
certain order.

2.2 Leading order potential from covariant

ChEFT

In the relativistic framework, we retain the full form
of Dirac spinors, which have the usual form

u(p,s)=Np





1
σ·p
εp



χs, Np=

√

εp

2MN

, (10)

with εp = Ep+MN and the Pauli spinor χs. A covari-
ant power counting is tentatively introduced, which uses
naive dimensional analysis to determine the chiral di-
mension (nχ) of a Feynman diagram with L loops as

nχ=4L−2Nπ−Nn+
∑

k

kVk, (11)

where Nπ (Nn) is the number of internal pion (nucleon)
propagators, and Vk is the number of vertices from kth-
order Lagrangians. The small expansion parameter in
the covariant power counting is the pion mass or the
three-momentum of the nucleon. We would like to point
out that the current covariant power counting is well de-
fined in the ππ and πN sectors, while for the NN sector,
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such a power counting is not yet systematically formu-
lated up to higher orders. Currently, we follow the ar-
guments of Refs. [88, 89], where the chiral dimension of
effective Lagrangians for contact terms, beyond leading
order, is determined by the partial derivatives on nucleon
fields.

According to the above power counting, at leading or-
der one needs to compute the Feynman diagrams shown
in Fig. 1. The relevant Lagrangians are

Leff.=L(2)
ππ

+L(1)
πN+L(0)

NN , (12)

where the superscript denotes the chiral dimension. The
lowest order ππ and πN Lagrangians read,

L(2)
ππ

=
f 2

π

4
Tr
[

∂µU∂µU †+(U+U †)m2
π

]

, (13)

L(1)
πN = Ψ̄

[

i /D−MN+
gA

2
γµγ5uµ

]

Ψ, (14)

with the pion decay constant fπ = 92.4 MeV, the axial
vector coupling gA = 1.267 [90], and the SU(2) matrix

U =u2=exp
(

iΦ
fπ

)

, where Φ and Ψ contain the pion and

nucleon fields,

Φ=

(

π
0

√
2π+

√
2π

− −π
0

)

, Ψ=

(

p

n

)

. (15)

The covariant derivative of Ψ is defined as

DµΨ = ∂µΨ+[Γµ,Ψ], (16)

Γµ =
1

2

(

u†∂µu+u∂µu†
)

, (17)

and the axial current uµ is

uµ=i
(

u†∂µu−u∂µu†
)

. (18)

The covariant four-fermion contact terms are pro-
vided by the following Lagrangian [88, 89, 91],

L(0)
NN =

1

2

[

CS(Ψ̄Ψ)(Ψ̄Ψ)+CA(Ψ̄γ5Ψ)(Ψ̄γ5Ψ)

+CV (Ψ̄γµΨ)(Ψ̄γµΨ)+CAV (Ψ̄γµγ5Ψ)(Ψ̄γµγ5Ψ)

+ CT (Ψ̄σµνΨ)(Ψ̄σµνΨ)
]

, (19)

where CS,A,V,AV,T are low-energy constants (LECs). The
CA term is considered of higher order by some authors
because it connects large and small components of the
Dirac spinors [92]. In our case, we do not expand the
Dirac spinors and therefore retain it. Explicit numerical
studies show that this term plays a relatively minor role,
however.

Fig. 1. Feynman diagrams contributing to the
nucleon-nucleon interaction at leading order in
the covariant power counting. Solid lines denote
nucleons and the dashed line represents the pion.
The box denotes the vertex from L

(0)
NN, while the

dots show vertices from L
(1)
πN .

Since at the lowest order, VLO = ū1ū2ALOu1u2, one
can easily obtain the relativistic potential V , which is
the sum of a contact term and a one-pion-exchange dia-
gram,

VLO=VCTP+VOPEP, (20)

where the contact potential (CTP) is

VCTP(p′,p) = CS (ū(p′,s′
1)u(p,s1))(ū(−p′,s′

2)u(−p,s2))+CA(ū(p′,s′
1)γ5u(p,s1))(ū(−p′,s′

2)γ5u(−p,s2))

+CV (ū(p′,s′
1)γµu(p,s1))(ū(−p′,s′

2)γ
µu(−p,s2))+CAV (ū(p′,s′

1)γµγ5u(p,s1))(ū(−p′,s′
2)γ

µγ5u(−p,s2))

+CT (ū(p′,s′
1)σµνu(p,s1))(ū(−p′,s′

2)σ
µνu(−p,s2)), (21)

and the one-pion-exchange potential (OPEP) is,

VOPEP(p′,p)=− g2
A

4f 2
π

(ū(p′,s′
1)τ1γ

µγ5qµu(p,s1))·(ū(−p′,s′
2)τ2γ

νγ5qνu(−p,s2))

(Ep′−Ep)2−(p′−p)2−m2
π

, (22)

where q represents the four momentum transferred, q=
(Ep′−Ep,p

′−p), and ~τ are the isospin Pauli matrices.
Expressing VLO in terms of the Pauli matrices, one

can easily see that the relativistic contact and OPE po-
tentials contain all six spin operators needed to describe
the nuclear force [93],

1, σ1·σ2,
i

2
(σ1+σ2)·(k×q), σ1·qσ2·q,

σ1·kσ2·k, σ1·(q×k)σ2·(q×k). (23)

In the static limit, Eq. (20) reduces to the LO chiral
force in the HB scheme,

V HB=(CS+CV )−(CAV −2CT )σ1·σ2−
g2

A

4f 2
π

τ1·τ2

σ1·qσ2·q
q2+m2

π

,

(24)
which only contains the central, spin-spin and tensor in-
teractions. It is important to note that at LO the co-
variant power counting introduces three more LECs than
the Weinberg approach and the modified Weinberg ap-
proach.

2.3 Partial wave decomposition

In this subsection, we follow the standard procedures
given in Ref. [80] and evaluate the potentials in the LSJ
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basis, where L denotes the total orbital angular momen-
tum, S the total spin, and J the total angular momen-
tum. First, one calculates the matrix elements of the
relativistic potential in the helicity basis, then one ro-
tates them to the total angular momentum space |JM〉
with the help of Wigner d-functions. Finally, one trans-
forms them to the LSJ basis in terms of the Clebsch-
Gordon coefficients. Below, we present the contact po-
tential VCTP contributing to different partial waves in the
|LSJ〉 basis,

Interesting consequences can be seen in the contri-
butions of VCTP to different partial waves in the |LSJ〉
basis,

V1S0 = ξN

[

C1S0

(

1+R2
pR

2
p′

)

+Ĉ1S0

(

R2
p+R2

p′

)

]

,

V3P0 = −2ξNC3P0RpRp′ ,

V1P1 = −2ξN

3
C1P1RpRp′ ,

V3P1 = −4ξN

3
C3P1RpRp′ ,

V3S1 =
ξN

9

[

C3S1

(

9+R2
pR

2
p′

)

+Ĉ3S1

(

R2
p+R2

p′

)

]

,

V3D1 =
8ξN

9
C3S1R

2
pR

2
p′ ,

V3S1−3D1 =
2
√

2ξN

9

(

C3S1R
2
pR

2
p′+Ĉ3S1R

2
p

)

,

V3D1−3S1 =
2
√

2ξN

9

(

C3S1R
2
pR

2
p′+Ĉ3S1R

2
p′

)

, (25)

where

ξN =4πN 2
pN 2

p′ , Rp=|p|/εp, and Rp′ =|p′|/εp′ .

The seven combinations of CS,A,V,AV,T are

C1S0 = (CS+CV +3CAV −6CT ),

Ĉ1S0 = (3CV +CA+CAV +6CT ),

C3P0 = (CS−4CV +CA−4CAV ),

C1P1 = (CS+CA),

C3P1 = (CS−2CV −CA+2CAV +4CT ),

C3S1 = (CS+CV −CAV +2CT ),

Ĉ3S1 = 3(CV −CA−CAV +2CT ). (26)

VCTP contributes to all partial waves with J=0, 1, differ-
ent from the (modified) Weinberg approach, where the
contact terms only contribute to the 1S0 and 3S1 partial
waves. The LO relativistic corrections in V1S0 and V3P0

have the same form as those introduced in the “renor-
malization group invariant” formulation [59, 60, 66, 69].

For the OPEP, one can repeat the above procedure
to obtain the partial wave potentials for all angular mo-
menta J>0. Besides, in order to include the retardation
effect in the OPEP, consistent with the assumption of the
Kadyshevsky equation, the following two types of inte-
grals are needed, containing the Legendre polynomials
PJ ,
∫ +1

−1

dz
PJ(z)

(Ep′−Ep)2−(p′−p)2−m2
π

=− 1

|p||p′|QJ(zπ),

(27)
∫ +1

−1

dz
zPJ(z)

(Ep′−Ep)2−(p′−p)2−m2
π

=− 1

|p||p′|Q
(1)
J (zπ),

(28)
where z denotes the cosine of the angle between p and
p′. QJ(zπ) is the Legendre function of the second kind,
and Q(1)

J (zπ) = zπQJ(zπ)−δJ0 with zπ = (EpEp′ −m2
N +

1/2m2
π
)/(|p||p′|).

With these integrals, the partial wave potentials of
VOPEP read as

• the spin singlet state:

V 0J
JJ =

πgA

f 2
π

(

Q(1)
J (zπ)−EpEp′−m2

N

|p||p′| QJ(zπ)

)

. (29)

• the uncoupled spin triplet state:

V 1J
JJ =

πgA

f 2
π

(

EpEp′−m2
N

|p||p′| QJ(zπ)− J+1

2J+1
QJ−1(zπ)− J

2J+1
QJ+1(zπ)

)

. (30)

• and the coupled triplet states:

V 1J
J−1,J−1=

πgA

(2J+1)f 2
π

[

EpEp′−m2
N

|p||p′|

(

−JQ(1)
J (zπ)+

(J+1)2

2J+1
QJ−1(zπ)+

J(J+1)

2J+1
QJ+1(zπ)

)

−QJ(zπ)

]

, (31)

V 1J
J+1,J+1=

πgA

(2J+1)f 2
π

[

EpEp′−m2
N

|p||p′|

(

−(J+1)Q(1)
J (zπ)+

J(J+1)

2J+1
QJ−1(zπ)+

J2

2J+1
QJ+1(zπ)

)

+QJ(zπ)

]

, (32)
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V 1J
J−1,J+1 =

πgA

f 2
π

√

J(J+1)

2J+1

[

EpEp′−m2
N

|p||p′|

(

Q(1)
J (zπ)+

J+1

2J+1
QJ−1(zπ)+

J

2J+1
QJ+1(zπ)

)

− (Ep−Ep′)mN

|p||p′| (QJ+1(zπ)−QJ−1(zπ))−2QJ(zπ)

]

, (33)

V 1J
J+1,J−1 =

πgA

f 2
π

√

J(J+1)

2J+1

[

EpEp′−m2
N

|p||p′|

(

Q(1)
J (zπ)+

J+1

2J+1
QJ−1(zπ)+

J

2J+1
QJ+1(zπ)

)

− (Ep−Ep′)mN

|p||p′| (QJ−1(zπ)−QJ+1(zπ))−2QJ(zπ)

]

. (34)

In order to compare with the LO potential from the
(modified) Weinberg power counting, we decompose the
relativistic potential into the sum of the static contribu-
tion and the relativistic corrections. For instance, the
1S0 partial wave potential [Eq. (25)], expanded in terms
of 1/MN , reads

V1S0 = 4π

[

C1S0+(C1S0+Ĉ1S0)

(

p2+p′2

4M 2
N

+···
)]

+
πg2

A

2f 2
π

∫ 1

−1

dz

q2+m2
π

[

q2−
(

(p2−p′2)2

4M 2
N

+···
)]

.

(35)

It is easy to single out the static contributions because
the relativistic corrections are suppressed by 1/M 2n

N (n=
1,2,···). In the covariant power counting, this argument
is only true for the OPEP, where the same coefficient,
πg2

A/(2f 2
π
), multiplies both the static contribution and

the relativistic corrections. However, the situation for
the contact interaction is different: an independent LEC,
(C1S0+Ĉ1S0), determines the relativistic corrections of the
CTP. Here, the 1/MN expansion of Eq. (35) is shown
simply for the purpose of comparison. In the numeri-
cal evaluation, we have used the relativistic interactions
given in Eq. (25) and Eqs. (29-34), where the retardation
effect of the OPEP is taken into account.

2.4 Scattering equation and phase shifts

In order to calculate the partial wave T -matrix ele-
ments, the projected Kadyshevsky equation with specific
LSJ can be written as

T SJ
L′,L(p′,p) = V SJ

L′,L(p′,p)+
∑

L′′

∫ +∞

0

k2dk

(2π)3
V SJ

L′,L(p′,k)

× M 2
N

2(k2+M 2
N)

1
√

p2+M 2
N−
√

k2+M 2
N+iε

×T SJ
L′′,L(k,p). (36)

Furthermore, to remove ultraviolet divergences and to
facilitate numerical calculations, the potential has to be
regularized. Here, we choose the commonly used separa-
ble cutoff function [38],

VLO→V Reg.
LO =VLO exp

(−p2n−p′2n

Λ2n

)

, (37)

with n=2. One should note that Eq. (37) is not a covari-
ant cutoff function. Although there are covariant cutoff
functions of q2, they are not favored in constructing chi-
ral forces because they will introduce additional angular
dependence to partial wave potentials and thus affect the
interpretation of contact interactions [59, 94]. In the fu-
ture, it would be interesting to construct a separable but
covariant cutoff function and study the consequences.
We also note that in Ref. [43] an appropriate regular-
ization method of the long-range interaction is applied
to construct the chiral nuclear force. It would be in-
teresting to apply such a prescription to our relativistic
chiral force as well.

The partial wave S matrix is related to the on-shell
T matrix by

SSJ
L′L(pcm)=δL′L+2πiρT SJ

L′L(pcm), ρ=− 1

16π
3

|pcm|M 2
N

Ep

,

(38)
where pcm is the C.M. three-momentum of the two-
nucleon system. The phase space factor ρ is determined
by the elastic unitarity of the relativistic scattering equa-
tion, in this case the Kadyshevsky equation. For the un-
coupled cases, the phase shifts δSJ

L can be obtained from
the on-shell S matrix,

S0J
JJ =exp(2iδ0J

J ), S1J
JJ =exp(2iδ1J

J ), (39)

In order to calculate the phase shifts in the coupled
channels (J > 0), we use the “Stapp”- or “bar”- phase
shift parametrisation [95] of the S matrix, which can be
written as

S=

(

S1J
−− S1J

−+

S1J
+− S1J

++

)

=

(

exp(iδ1J
− ) 0

0 exp(iδ1J
+ )

)(

cos(2εJ) isin(2εJ)

isin(2εJ) cos(2εJ)

)(

exp(iδ1J
− ) 0

0 exp(iδ1J
+ )

)

, (40)
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where the subscript “+” is J +1, “−” for J−1. The
resulting phase shifts and mixing angles are

tan(2δ1J
± )=

Im(S1J
±±/cos(2εJ))

Re(S1J
±±/cos(2εJ))

, tan(2εJ)=
−iS1J

+−
√

S1J
++S1J

−−

.

(41)

3 Results and discussion

Numerically, we perform a simultaneous fit to the
J = 0, 1 Nijmegen partial wave phase shifts of the np
channel at laboratory kinetic energy (Elab) [96] values of
1, 5, 10, 25, 50, and 100 MeV. We do not take into ac-
count the errors of the phase shifts in the fit-χ̃2, defined
as χ̃2 = (δLO−δPWA)2, mainly because the low energy
partial wave phase shifts have very small uncertainties
compared to the higher chiral order contributions ne-
glected in our LO study. In the present work, the pion
and nucleon masses are fixed at mπ = 138.00 MeV and
MN = 938.92 MeV. The momentum cutoff Λ is varied
between 500 MeV and 1000 MeV.

The best fit result of χ̃2/d.o.f. is shown in Fig. 2 as
a function of the momentum cutoff Λ. The minimum
of χ̃2/d.o.f., ∼ 2.0, appears at Λ = 750 MeV. The cor-
responding LECs CS,A,V,AV,T are listed in Table 1 and
they are of similar magnitude. The cutoff dependence
indicates that the LO relativistic chiral force is not renor-
malization group invariant. In the following discussion,
although we take Λ=750 MeV as our relativistic result,
the variance with the cutoff changing from 500 MeV to
1000 MeV should also be taken into account.

 0

 2

 4

 6

 8

 10

 12

 500  600  700  800  900  1000

χ2 /d
.o

.f.

Λ [MeV]
Fig. 2. (color online) Dependence of χ̃2/d.o.f. as a

function of the momentum cutoff Λ. The fit is to
the J =0, 1 partial wave shifts of the np channel
with Elab=1, 5, 10, 25, 50, and 100 MeV [96].

Table 1. Values of the leading order LECs (in unit
of 104GeV−2) from the best fit (see text for de-
tails).

LECs CS CA CV CAV CT

best fit −0.125 0.040 0.248 0.221 0.059
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Fig. 3. (color online) Neutron-proton phase shifts
for J 6 1. The red solid lines denote the best
fitting results from the relativistic chiral NN po-
tential, while the dashed and dotted lines repre-
sent the LO and NLO non-relativistic results re-
spectively [38]. The red bands are the relativistic
results with the cutoff ranging from 500 MeV to
1000 MeV. Solid dots and open triangles repre-
sent the np phase shift analyses of Nijmegen [96]
and VPI/GWU [97] respectively. The gray back-
grounds denote the energy regions where the the-
oretical results are predictions.

With the best fit LECs, the description of the Ni-
jmegen multi-energy [96] and the VPI/GWU single-
energy [97] np phase shifts up to Elab = 300 MeV are
shown in Fig. 3. The data of the latter analysis are not
included in our fits. For comparison, the non-relativistic
results [38] up to LO and NLO with Λ = 500 MeV are
also given in Fig. 3. Furthermore, the variations from
the best fit results with the cutoff ranging from 500 MeV
to 1000 MeV are shown as the red bands in the figure.
The relativistic formulation can improve the description
of the phase shifts of 1S0 and 3P0 in comparison with
the LO non-relativistic results. The results of the LO
relativistic chiral force are similar to those of the NLO
non-relativistic chiral force. Furthermore, the variation
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of the cutoff does not qualitatively change the overall pic-
ture. The best description of the 1P1 wave is slightly bet-
ter than the NR counterpart, while the result for 3P1 is
slightly worse in the high energy region. For the coupled
3S1-

3D1 waves, the LO relativistic and non-relativistic
results are quantitatively similar when the cutoff varia-
tion is taken into account.

To understand the improvement in the two J = 0
waves, we take the 1S0 channel as an example. The
largest relativistic correction of the CTP is of the form

− π

M 2
N

(C1S0+Ĉ1S0)(p
2+p′2). (42)

This momentum-dependent term is desired to achieve
a reasonable description of the 1S0 channel for momenta
around mπ, as shown in Refs. [98, 99], where the (p2+p′2)
term is promoted on phenomenological grounds and the
dibaryon field is introduced to deal with its resummation.
This term has the same form as the NLO contribution
of the NR chiral potential [38]. Lorentz invariance rear-
ranges some of the higher order contributions in the NR
potential to leading order in the relativistic potential.
This mechanism is also behind the improved description
of the 3P0 partial wave phase shifts, where one contact
term exists in the V3P0 at LO, which has the same form
as the NR NLO potential.

For the 1P1 and 3P1 partial waves, although there is
one similar contact term to the 3P0 case, the descrip-
tion of phase shifts is almost the same as in the LO NR
case. The reason is that the one-pion-exchange contribu-
tion could already describe the 1P1 and 3P1 partial waves
rather well. Numerically, we find that the contribution
from the contact term is rather small.

For the coupled 3S1-
3D1 partial waves, the relativis-

tic corrections are much more suppressed. For instance,
the relativistic correction of V3D1 is suppressed by at
least 1/M 4

N . As a result, the descriptions of these partial
waves are similar to those of the LO Weinberg approach.

Furthermore, in Fig. 4, we present the description of
the J=2 phase shifts, where only one-pion-exchange dia-
grams contribute. Using the same notation as Fig. 3, we
study the results obtained with Λ=750 MeV as a central
value and the variation bands obtained with the cutoff
varying from 500 MeV to 1000 MeV. The non-relativistic
LO results from Ref. [38] are also shown for comparison.
We can see that they are almost the same, as expected
from Eq. (35), where the relativistic corrections of the
OPEP are largely suppressed.

Finally, using the LECs of Table 1, we predict the
binding energy of the deuteron to be Bd = 2.07 MeV,
which differs from its experimental value Bexp

d = 2.22
MeV by about 7%. The scattering lengths of 1S0 and
3S1 turn out to be a1S0 =−20.2 fm and a3S1 = 5.6 fm,
differing from their experimental counterparts, −23.7 fm

and 5.4 fm, by 15% and 4%, respectively.
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Fig. 4. Neutron-proton phase shifts for J=2. The
notations are the same as Fig. 3.

4 Summary and conclusion

We have explored a new covariant power counting
scheme to construct the nucleon-nucleon interaction in
chiral effective field theory. At leading order, the chiral
force includes part of the sub-leading terms in the non-
relativistic construction. This force has been shown to
lead to a description of the Nijmegen partial wave phase
shifts better than the LO Weinberg approach and sim-
ilar to the next-to-leading order Weinberg approach for
the angular momenta J=0 partial waves. For the higher
waves, both approaches yield similar descriptions. Such
an improvement of the description of phase shifts, even
at leading order, encourages us to construct higher order
relativistic chiral nuclear forces, which may provide an
essential input to relativistic nuclear structure studies.

In the present work, renormalization group invari-
ance has not been achieved, as shown by the dependence
of the results on the cutoff. In future, we would like
to study this issue further, e.g., by modifying the power
counting scheme. In addition, it will be interesting to
study the convergence of the relativistic chiral force when
higher order results become available. Furthermore, ap-
plications of the relativistic chiral force to nuclear mat-
ter using the Dirac Brueckner-Hartree-Fock theory and
to relativistic three-body problems using the approach
proposed by H. Kamada et al. [100] are in progress.
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