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Spectra of charmed and bottom baryons with hyperfine interaction *
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Abstract: Up to now, the excited charmed and bottom baryon states have still not been well studied experimentally

or theoretically. In this paper, we predict the mass of Ω∗
b , the only L=0 baryon state which has not been observed, to

be 6069.2 MeV. The spectra of charmed and bottom baryons with the orbital angular momentum L=1 are studied

in two popular constituent quark models, the Goldstone boson exchange (GBE) model and the one gluon exchange

(OGE) hyperfine interaction model. Inserting the latest experimental data from the “Review of Particle Physics”, we

find that in the GBE model, there exist some multiplets (Σc(b), Ξ′
c(b) and Ωc(b)) in which the total spin of the three

quarks in their lowest energy states is 3/2, but in the OGE model there is no such phenomenon. This is the most

important difference between the GBE and OGE models. These results can be tested in the near future. We suggest

more efforts to study the excited charmed and bottom baryons both theoretically and experimentally, not only for

the abundance of baryon spectra, but also for determining which hyperfine interaction model best describes nature.
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1 Introduction

The Goldstone boson exchange (GBE) and one gluon
exchange (OGE) hyperfine interaction terms describe
quark interactions in the constituent quark model and
are popular for studying baryon spectra [1–5]. These
two different kinds of hyperfine interactions have been
used to describe the observed spectra of light baryons
and ground state heavy baryons [2, 5, 6]. The GBE
model can correctly describe the Roper resonance but
the OGE model cannot, as stated in Ref. [7]. This is a
big difference between the GBE and OGE models in light
baryons. With the ongoing development of experiments
there should be more heavy baryons observed experimen-
tally in the near future, which will in turn guide theoret-
ical studies in this area. The most important motivation
of this paper is to compare the differences between the
numerical results for negative parity charmed and bot-
tom baryons (with the orbital angular momentum L=1)
in these two models.

Baryonic physics in the charmed and bottom sec-
tors has experienced spectacular progress in recent years

due to the experimental activities of the BaBar, CLEO,
Belle, CDF, and LHCb Collaborations and theoretical
developments. Up to now, most of the charmed and
bottom baryon ground states have been observed exper-
imentally, but excited heavy baryon states are still poorly
known [8]. Recently, the LHCb Collaboration observed
four bottom baryon resonances, i.e. MΛ∗0

b
(5912)=5911.97

MeV and MΛ∗0
b

(5920) = 5919.77 MeV, which are inter-
preted as the orbitally excited states of Λ0

b [9], and
M

Ξ
′
−

b

= 5935.02 MeV and MΞ∗−

b
= 5955.33 MeV, which

are expected in this mass region with spin-parity JP =
(1/2)+ and JP = (3/2)+, respectively [10]. There are
also some states which have been observed, but their
JP numbers have not been determined experimentally.
For example, the charmed baryon Σc(2800) (Belle 2005
[11]) was first reported in the decay modes Λ+

c π
−, Λ+

c π
0

and Λ+
c π

+, with the mass differences M(Σc)−M(Λ+
c )

measured to be 61+18+22
−13−13 MeV for the neutral state,

62+37+52
−23−38 MeV for the charged state, and 75+18+12

−13−11 MeV
for the doubly charged state, and was also observed by
the BaBar Collaboration in 2008 [12]. However, the JP

numbers of Σc(2800) have not been determined experi-
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mentally. There will be more heavy baryons to be ob-
served experimentally in the near future, which can help
to examine which hyperfine interaction model can better
describe the baryon spectra.

In our paper, we will study the spectra of charmed
and bottom baryon states with negative parity and obital
angular momentum L=1. The constituent quark model
is a simple and effective phenomenological model to
study mass spectra [13, 14]. With the data for the light
baryons and ground state charmed and bottom baryons
which are labeled with three or four stars in the “Review
of Particle Physics” and hence have been well established
experimentally, we can calculate the parameters in the
constituent quark model. After that, masses of the or-
bitally excited L = 1 charmed and bottom baryons can
be calculated. Many calculations based on the quark
flavor group SU(3) are remarkably consistent with ex-
periments. When we add another degree of freedom in
flavor space, known as charm or beauty, a natural gen-
eralisation is to extend the flavor group to SU(4) (which
means the flavor space we consider is u, d, s, c or u, d,
s, b of SU(4)), which is however actually badly broken.
So in the calculation we introduce a perturbation term
which contains two parts. One is the mass difference be-
tween the light quark (u,d) and the heavy quark (c,b),
and the other is ∆s, which is from the mass difference
between the light quarks (u and d) and the s quark. We
will neglect the quark mass difference between the light
quarks (u and d) in the calculation.

The remainder of this paper is organized as follows.
In Section 2, we present the theoretical framework, which
includes explicit forms of the employed hyperfine interac-
tions between quarks. Numerical results for the spectra
of L=1 charmed and bottom baryons are presented in
Section 3. Finally, Section 4 contains a brief conclusion.

2 Theoretical framework

In the constituent quark model, the non-relativistic
Hamiltonian for a three-quark system can be expressed
as [2, 3]

H=H0+Hhyp+

3
∑

i=1

mi, (1)

where mi denotes the constituent mass of the ith quark,
Hhyp is the hyperfine interaction between quarks, which
is often treated as a perturbation, and H0 is the Hamil-
tonian concerning orbital motions of the quarks, which
should contain two parts, namely the kinetic term and
the confining potential between quarks. Both the orbital
Hamiltonian H0 and the hyperfine interaction Hhyp for
the three-quark system have been discussed intensively
in the literature [2, 4, 5, 13].

2.1 H0 and the wave-function for a baryon sys-

tem

The form of H0 employed for the non-relativistic har-
monic oscillator potential in the three-quark system is as
follows [2, 3]:

H0=

3
∑

i=1

~p2
i

2mi

+

3
∑

i<j

Vconf(~rij), (2)

where ~pi and mi denote the momentum and mass of
the ith quark, respectively. The quantity ~rij = ~ri−~rj

is the relative position of the (ij) pair of quarks, and
Vconf(~rij) is the confinement potential. The harmonic
oscillator, as one of the most commonly used quark con-
finement potentials, has been successfully applied to the
spectroscopy of nonstrange and strange baryon ground
states and excitations [2, 3]. So we take Vconf(~rij) to be
the harmonic oscillator form as follows:

Vconf(~rij)=
1

2
mω2~r2

ij+V0, (3)

where m is the constituent mass of the light quarks (u,
d), ω is the angular frequency of the oscillator interaction
and V0 represents the unharmonic part of Vconf , which is
treated as a constant in this paper.

For charmed or bottom baryons, compared with a
system including three light quarks, we can rewrite H0

for a system including one heavy quark (c or b) as the
following (here we do not consider the mass difference
between the light quarks (u, d) and s quark):

H0=

3
∑

i=1

~p2
i

2m
+

1

2

3
∑

i<j

mω2(~ri−~rj)
2
+3V0+H ′

0, (4)

where H ′
0 represents the corrections due to the mass dif-

ference between the light quark and the heavy quark.
If we neglect the contribution from the perturbation

term H ′
0, the exact eigenvalue of H0 should be

E0=(N+3)ω+3V0, (5)

where N is the quantum number of the excited state. ω
can be determined from the mass difference between the
nucleon and N(1400), as pointed out in Ref. [2].

For the perturbation term H ′
0 of charmed or bottom

baryons which comes from the heavy quark (c or b) mass
difference with the light quark, as shown in Ref. [3], we
take it to be flavour-dependent,

H ′
0=−

mh−m

2m

3
∑

i=1

~p2
i

mh

δih, (6)

where m and mh represent the constituent masses of the
light and heavy quarks, respectively, and the Kronecker
symbol δih is a flavor dependent parameter with value 1
for a heavy quark and 0 for a light quark.

In the constituent quark model which is governed
by the above non-relativistic Hamiltonian, we introduce
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the three-quark wave function, which is factorized into
orbital⊗colour⊗flavour⊗spin. In this paper, the wave
function is described by the Young pattern [f ], where f is
a sequence of integers that indicate the number of boxes
in the successive rows of the corresponding Young pat-
terns. The pattern [3] represents a completely symmetric
state, [21] is the mixed symmetric state, and [111] is the
completely antisymmetric one. Due to the Pauli princi-
ple, the wave function of a three-quark system must be
totally antisymmetric under the exchange of any quark
pair, so it can be written as [111]XCFS with the sub-
scripts X , C, F and S (we use S to represent the to-
tal spin of the three quarks in the following) represent-
ing orbital, colour, flavour and spin degrees of freedom,
respectively.

For the L=0 baryon state all the quarks are in the
orbital ground state with [3]X configuration, and for the
L=1 state two quarks are in the orbital ground state and
the other in the P state with the [21]X configuration.
Because of colour confinement, the colour wave function
must be [111]C. There are three possible flavour wave
functions for a baryon system: [3]F , [21]F and [111]F in
the Weyl tableaux of the SU(3) group [15–17]. The to-
tal spins could be S=1/2 and S=3/2, corresponding to
[21]S and [3]S configuration, respectively. The explicit
wave functions based on the orbital-colour-flavour-spin
configurations can easily be derived from the Clebsch-
Gordan coefficients.

In the case of N =0, all the three quarks are in their
ground state, so the matrix elements of H ′

0 are the same
for all the N =0 configurations [3]:

<g.s.|H ′
0|g.s.>=−

1

2
δ, (7)

where |g.s. > represents the ground state and δ = (1−
m/mh)ω.

The perturbation (6) is flavor dependent and its ma-
trix elements between different P shell multiplets of Λ+

c

take the following values [3]:

<Λ+
c |H

′
0|Λ

+
c >[21]FS [111]F [21]S=−

2

3
δ,

<Λ+
c |H

′
0|Λ

+
c >[21]FS [21]F [21]S=−

2

3
δ,

<Λ+
c |H

′
0|Λ

+
c >[21]FS [21]F [3]S=−

7

12
δ, (8)

where the subscript [21]FS[111]F [21]S, for example,
means the configuration with [21]FS flavour-spin sym-
metry, [111]F flavour wave-function and [21]S spin wave-
function, and similarly for the other subscripts.

For the P shell excitations of Σc, the matrix elements

of H ′
0 are [3]

<Σ+
c |H

′
0|Σ

+
c >[21]F S [21]F [21]S=−

2

3
δ,

<Σ+
c |H

′
0|Σ

+
c >[21]F S [3]F [21]S=−

2

3
δ,

<Σ+
c |H

′
0|Σ

+
c >[21]F S [21]F [3]S=−

3

4
δ. (9)

For the L=1 negative parity excitations of Ξc, cor-
rections arising from H ′

0 are the same as those of Λc,
and for the negative parity excitations of Ξ′

c and Ωc, the
corresponding corrections are equal to those of Σc.

2.2 Hyperfine interactions between quarks

To calculate the mass splittings of the degenerate
configurations, explicit perturbative hyperfine interac-
tions are needed. Since the GBE [2, 3] and OGE
[4, 13, 18–20] interactions between quark pairs have been
discussed intensively before, we just present a very brief
review and apply them to charmed and bottom baryons.

For charmed and bottom baryons, the GBE hyperfine
Hamiltonian can be written in the following form, as in
Ref. [21, 22]:

HGBE=
∑

i<j

VMλa
i λ

a
j~σi·~σj , (10)

where λa
i (a = 1,··· ,14) are the SU(4) extension of the

SU(3) Gell-Mann matrices in flavour space, σi are Pauli
spin matrices (the subscribe i and j represent the ith
and jth quarks, respectively), and VM is a flavor depen-
dent parameter to describe the strength of the exchange
of a meson M (M contains π, K, η, D, Ds, B and Bs

mesons). Because ηc and J/ψ are purely cc̄ mesons, we
do not need to consider the fifteenth Gell-Mann matrix
λ15 of SU(4). Explicitly, the hyperfine interaction Eq.
(10) between two quarks has the following form for the
GBE interaction in the case of the SU(4) extension:

HGBE = −
∑

i<j

{

3
∑

a=1

Vπλa
i λ

a
j +

7
∑

a=4

VKλa
i λ

a
j +Vηλ

8
i λ

8
j

+

12
∑

a=9

VDλa
i λ

a
j +

14
∑

a=13

VDs
λa

i λ
a
j

}

~σi·~σj . (11)

For the OGE interaction [4], the commonly used hy-
perfine interaction can be written as:

HOGE=
∑

i,j

Ci,jλ
C
i λC

j ~σi·~σj , (12)

where the λC
i and σi are Gell-Mann SU(3) matrices in

colour space and Pauli spin matrices, respectively, and
Ci,j are the colormagnetic interaction strengths.

093103-3



Chinese Physics C Vol. 41, No. 9 (2017) 093103

3 Numerical results

In this section, we present the numerical results for
the L = 1 charmed and bottom baryon spectra us-
ing the hyperfine interactions given in the GBE and
OGE models. Before that we should fix the parame-
ters in these models. For the constituent quark masses
we take the values from Refs. [21, 24, 25], which are
determined by fitting the experimental baryon masses,
i.e. mu = md = 360 MeV, ms = 530 MeV, mc = 1700
MeV, mb = 5043 MeV. The angular frequency is deter-
mined from the mass difference between the nucleon and
N(1400) [2, 3], ω =157.3 MeV. All other parameters in
these two different hyperfine interaction models will be
obtained from the ground baryon state splittings, which
will be discussed in the following.

3.1 Fine structure corrections of the light,

charmed and bottom ground baryons

Generally, the fine structure corrections (δM) con-
tain three parts, the hyperfine interaction, the difference
∆s between the constituent masses of the light quarks
(u and d) and s quark, and the energy shift in Eq. (6)
which is caused by the heavy quark mass difference. For
L=0 states, the energy shift is − 1

2
δ. For the GBE and

OGE models, all these corrections (δM) are presented in
Table 1 and Table 2, where all the masses of baryons are
taken from the “Review of Particle Physics” [8], except
for Ω∗

b , which has not been observed experimentally. We
calculate the mass of Ω∗

b below.
In the GBE hyperfine interaction, we assume that V qq

η

in qq pair state and V qs
η in qs pair state are equal to the

exchange potential from π and K as in Ref. [2], respec-
tively. In the OGE hyperfine interaction, Cqq is a flavor
dependent strength parameter. The parameters Vπ, VK ,

Cqs and Cqq can be obtained from the N(939)−∆(1232)
and Σ(1193)−Σ∗(1385) mass splittings:

M∆(1232)−MN(939)=10Vπ=16Cqq,

MΣ∗(1385)−MΣ(1193)=10VK=16Cqs. (13)

Therefore,

Vπ=29.31 MeV, Cqq =18.31 MeV,

VK =20.32 MeV, Cqs=11.96 MeV. (14)

To determine the parameters VD, VDs
, Cqc and Csc,

we consider the Σc−Σ∗
c and Ωc−Ω∗

c mass splittings:

MΣ∗

c
−MΣc

=6VD=16Cqc,

MΩ∗

c
−MΩc

=6VDs
=16Csc. (15)

Therefore,

VD=10.77 MeV, Cqc=4.04 MeV,

VDs
=11.78 MeV, Csc=4.42 MeV. (16)

The mass splitting between Σb and Σ∗
b is:

MΣ∗

b
−MΣb

=6VB=16Cqb. (17)

Therefore,

VB=3.37MeV, Cqb=1.26MeV. (18)

Then we consider the Ξ∗
b−Ξ′

b mass splitting,

MΞ∗

b
−MΞ′

b
=3VB+3VBs

=8Cqb+8Csb. (19)

Substituting VB = 3.37 MeV, Cqb = 1.26 MeV, and
the masses of Ξ∗

b and Ξ′
b into Eq. (19), we can get

VBs
=3.40 MeV and Csb=1.24 MeV. In Refs. [2, 3], it is

pointed out that VK =(mu

ms
)Vπ, Vss=(mu

ms
)VK . Therefore,

Vss =
V 2

K

Vπ

= 14.08 MeV. All the parameters in the two
different hyperfine interaction models are summarized in
Table 3.

Table 1. Fine structure corrections (δM) to the masses (in MeV) of the light ground state baryons (L=0) from the
GBE interaction and OGE interaction. The experimental values are from Ref. [8].

[f ]C [f ]FS [f ]F [f ]S state δM (GBE) δM (OGE) Exp. mass

[111]C [3]FS [21]F [21]S N(939) −14Vπ−
1

2
δ −8Cqq−

1

2
δ 938.92

[111]C [3]FS [3]F [3]S ∆(1232) −4Vπ−
1

2
δ 8Cqq−

1

2
δ 1232

[111]C [3]FS [21]F [21]S Λ(1116) −8Vπ−6VK+∆s−
1

2
δ −8Cqq+∆s−

1

2
δ 1115.68

[111]C [3]FS [21]F [21]S Σ(1193)
4

3
Vπ−

38

3
VK+∆s−

1

2
δ

8

3
Cqq+

−32

3
Cqs+∆s−

1

2
δ 1193.15

[111]C [3]FS [3]F [3]S Σ∗(1385)
4

3
Vπ−

8

3
VK+∆s−

1

2
δ

8

3
Cqq+

16

3
Cqs+∆s−

1

2
δ 1384.57

[111]C [3]FS [21]F [21]S Ξ(1318) −
38

3
VK−

4

3
V ss

η +2∆s−
1

2
δ

−32

3
Cqs+

8

3
Css+2∆s−

1

2
δ 1318.29

[111]C [3]FS [3]F [3]S Ξ∗(1530) −
8

3
VK−

4

3
Vss+2∆s−

1

2
δ

16

3
Cqs+

8

3
Css+2∆s−

1

2
δ 1533.4

[111]C [3]FS [3]F [3]S Ω∗−(1672) −4V ss
η +3∆s−

1

2
δ 8Css+3∆s−

1

2
δ 1672.45
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Table 2. Fine structure corrections (δM) to the masses (in MeV) of the charmed and bottom ground baryons (L=0)
from the GBE interaction and the OGE interaction. The experimental values are from Ref. [8].

[f ]C [f ]FS [f ]F [f ]S state δM (GBE) δM (OGE) Exp. mass

[111]C [3]FS [21]F [21]S Λc −8Vπ−6VD−
1

2
δ −8Cqq−

1

2
δ 2286.46

[111]C [3]FS [21]F [21]S Σc −
4

3
Vπ−10VD−

1

2
δ

8

3
Cqq−

32

3
Cqc−

1

2
δ 2452.90

[111]C [3]FS [3]F [3]S Σ∗
c −

4

3
Vπ−4VD−

1

2
δ

8

3
Cqq+

16

3
Cqc−

1

2
δ 2517.50

[111]C [3]FS [21]F [21]S Ξc −8VK−3VD−3VDs
+∆s−

1

2
δ −8Cqs+∆s−

1

2
δ 2467.80

[111]C [3]FS [21]F [21]S Ξ′
c −

4

3
VK−5VD−5VDs

+∆s−
1

2
δ

8

3
Cqs−

16

3
Cqc−

16

3
Csc+∆s−

1

2
δ 2575.60

[111]C [3]FS [3]F [3]S Ξ∗
c −

4

3
VK−2VD−2VDs

+∆s−
1

2
δ

8

3
Cqs+

8

3
Cqc+

8

3
Csc+∆s−

1

2
δ 2645.90

[111]C [3]FS [21]F [21]S Ωc −
4

3
V ss

η −10VDs
+2∆s−

1

2
δ

8

3
Css−

32

3
Csc+∆s

−
1

2
δ 2695.20

[111]C [3]FS [3]F [3]S Ω∗
c −

4

3
V ss

η −4VDs
+2∆s−

1

2
δ

8

3
Css+

16

3
Csc+∆s−

1

2
δ 2765.90

[111]C [3]FS [21]F [21]S Λb −8Vπ−6VB−
1

2
δ −8Cqq−

1

2
δ 5619.50

[111]C [3]FS [21]F [21]S Σb −
4

3
Vπ−10VB−

1

2
δ

8

3
Cqq−

32

3
Cqb−

1

2
δ 5813.4

[111]C [3]FS [3]F [3]S Σ∗
b

−
4

3
Vπ−4VB−

1

2
δ

8

3
Cqq+

16

3
Cqb−

1

2
δ 5833.6

[111]C [3]FS [21]F [21]S Ξb −8VK−3VB−3VBs
+∆s−

1

2
δ −8Cqs+∆s−

1

2
δ 5794.9

[111]C [3]FS [21]F [21]S Ξ′
b

−
4

3
VK−5VB−5VBs

+∆s−
1

2
δ

8

3
Cqs−

16

3
Cqb−

16

3
Csb+∆s−

1

2
δ 5835.02

[111]C [3]FS [3]F [3]S Ξ∗
b

−
4

3
VK−2VB−2VBs

+∆s−
1

2
δ

8

3
Cqs+

8

3
Cqb+

8

3
Csb+∆s−

1

2
δ 5955.33

[111]C [3]FS [21]F [21]S Ωb −
4

3
V ss

η −10VBs
+2∆s−

1

2
δ

8

3
Css−

32

3
Csb+∆s−

1

2
δ 6048.8

[111]C [3]FS [3]F [3]S Ω∗
b

−
4

3
V ss

η −4VBs
+2∆s−

1

2
δ

8

3
Css+

16

3
Csb+∆s−

1

2
δ

Table 3. Parameters (in MeV) of the two hyperfine
interaction models.

GBE Vπ 29.31 VK 20.32 Vss 14.08

VD 10.77 VDs
11.78 VB 3.37 VBs

3.40

OGE Cqq 18.31 Cqs 11.96 Css 7.82

Cqc 4.04 Csc 4.42 Cqb 1.26 Csb 1.24

For the L=0 baryon state, Ω∗
b is the only state which

has not been observed experimentally. From Table 2, for
both GBE and OGE models, we find that

(MΩ∗

b
−MΩb

)+(MΣ∗

b
−MΣb

)=2(MΞ∗

b
−MΞb

). (20)

Note that there is no difference for the relations in Eq.
(20) between these two different hyperfine interaction
models. We predict MΩ∗

b
=6069.2 MeV from Eq. (20).

We will discuss the L=1 charmed and bottom baryons
in the GBE and OGE models in the next subsection.

3.2 Masses of charmed and bottom baryon

states with L = 1

With all the fixed hyperfine interactions parameters
and the configurations of the negative parity charmed
and bottom baryon systems with L = 1 outlined in Ta-
ble 4, the masses of the charmed and bottom baryon
states can be calculated. There are three steps to ob-
tain numerical results in our models. First, one has to
calculate the fine structure corrections of charmed and
bottom baryon configurations with L=1 from these two
different kinds of hyperfine interactions. These can be
obtained by calculating the matrix elements of the hy-
perfine interations in Eq. (10) and Eq. (12), ∆s and the
energy shift in Eq. (6). Second, one should calculate
the mass of the configurations from the mass splittings
between charmed and bottom baryon states with L=0.
Finally, by diagonalization of the matrices, we can get
the masses of the baryon states.
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Table 4. Flavor-spin configurations for the
charmed and bottom baryon systems with L=1.

configuration multiplet

|Λc(b)〉1 [21]X [111]c[21]FS [111]F [21]S
1

2

−

,
3

2

−

,Λc(b)

|Λc(b)〉2 [21]X [111]c[21]FS [21]F [21]S
1

2

−

,
3

2

−

,Λc(b)

|Λc(b)〉3 [21]X [111]c[21]FS [21]F [3]S
1

2

−

,
3

2

−

,
5

2

−

,Λc(b)

|Σc(b)〉1 [21]X [111]c[21]FS [21]F [21]S
1

2

−

,
3

2

−

,Σc(b)

|Σc(b)〉2 [21]X [111]c[21]FS [3]F [21]S
1

2

−

,
3

2

−

,Σc(b)

|Σc(b)〉3 [21]X [111]c[21]FS [21]F [3]S
1

2

−

,
3

2

−

,
5

2

−

,Σc(b)

|Ξc(b)〉1 [21]X [111]c[21]FS [111]F [21]S
1

2

−

,
3

2

−

,Ξc(b)

|Ξc(b)〉2 [21]X [111]c[21]FS [21]F [21]S
1

2

−

,
3

2

−

,Ξc(b)

|Ξc(b)〉3 [21]X [111]c[21]FS [21]F [3]S
1

2

−

,
3

2

−

,
5

2

−

,Ξc(b)

|Ξ′
c(b)

〉1 [21]X [111]c[21]FS [21]F [21]S
1

2

−

,
3

2

−

,Ξ′
c(b)

|Ξ′
c(b)

〉2 [21]X [111]c[21]FS [3]F [21]S
1

2

−

,
3

2

−

,Ξ′
c(b)

|Ξ′
c(b)

〉3 [21]X [111]c[21]FS [21]F [3]S
1

2

−

,
3

2

−

,
5

2

−

,Ξ′
c(b)

|Ωc(b)〉1 [21]X [111]c[21]FS [21]F [21]S
1

2

−

,
3

2

−

,Ωc(b)

|Ωc(b)〉2 [21]X [111]c[21]FS [3]F [21]S
1

2

−

,
3

2

−

,Ωc(b)

|Ωc(b)〉3 [21]X [111]c[21]FS [21]F [3]S
1

2

−

,
3

2

−

,
5

2

−

,Ωc(b)

For the Λ+
c multiplet, Λc(2595)+ and Λc(2625)+, with

JP = 1
2

−
and JP = 3

2

−
, respectively, MΛc(2595)+ = 2592.25

MeV, MΛc(2625)+ = 2628.11 MeV from the latest “Review
of Particle Physics” [8]. Then we can easily get the mass
splitting MΛc(2625)+−MΛc(2595)+ =35.86 MeV. Similarly,

for the states Ξc(2790)+(JP = 1
2

−
) and Ξc(2815)+(JP =

3
2

−
), the mass splitting is 27.5 MeV. There are also two

orbitally excited singly bottom baryons measured exper-
imentally: Λb(5912) and Λb(5920) with JP = 1

2

−
and

JP = 3
2

−
, respectively, and MΛb(5912) = 5912.11 MeV,

MΛb(5920) = 5919.81 MeV. The mass difference of these
two states is small (< 8 MeV). The spin-orbital interac-
tion has a smaller influence on the mass of the charmed
and bottom baryons with the increase of constituent
quark masses. As Capstick and Isgur pointed out in Ref.
[23], the spin-orbit terms are quite small. So we can
safely neglect the impact of spin-orbit coupling on our
calculation. Since we have neglected spin-orbital effects,
S becomes a good quantum number.

Because Λc and other states have two configurations
with the same total spin S=1/2 as listed in Table 4, we
need to consider the mixing of these two configurations.
However, for the total spin S=1/2 and S=3/2 states the
mixing is zero because [21]S is orthogonal to [3]S. Then
after explicit derivation, the matrices of fine structure
corrections in these two models are:

HGBE
Λc

=













−
8

3
Vπ−4VD−

2

3
δ −

8

9
Vπ+

2

3
VD 0

−
8

9
Vπ+

2

3
VD −

8

3
Vπ+2VD−

2

3
δ 0

0 0
8

3
Vπ−2VD−

7

12
δ













=







−139.3 −18.9 0

−18.9 −203.9 0

0 0 −110.5






,

HGBE
Σc

=













4

3
Vπ−2VD−

2

3
δ −

8

9
Vπ+

4

3
VD 0

−
8

9
Vπ+

4

3
VD

4

3
Vπ+4VD−

2

3
δ 0

0 0 −
4

3
Vπ+2VD−

3

4
δ













=







−65.1 −11.7 0

−11.7 −0.5 0

0 0 −110.5






,

HGBE
Ξc

=













−
8

3
VK−2VD−2VDs

+∆s−
2

3
δ −

4

9
VK+

1

3
VD+

1

3
VDs

0

−
4

9
VK+

1

3
VD+

1

3
VDs

−
8

3
VK+VD+VDs

+∆s−
2

3
δ 0

0 0
8

3
VK−VD−VDs

+∆s−
7

12
δ













=







−11.9 −1.5 0

−1.5 55.7 0

0 0 129.3






,

HGBE
Ξ′

c
=













4

3
VK−VD−VDs

+∆s−
2

3
δ −

8

9
VK+

2

3
VD+

2

3
VDs

0

−
8

9
VK+

2

3
VD+

2

3
VDs

4

3
VK+2VD+2VDs

+∆s−
2

3
δ 0

0 0 −
4

3
VK+VD+VDs

+∆s−
3

4
δ













=







91.9 −3.0 0

−3.0 159.5 0

0 0 72.5






,
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HGBE
Ωc

=













4

3
V ss

η −2VDs
+2∆s−

2

3
δ −

4

9
V ss

η +
4

3
VDs

0

−
4

9
V ss

η +
4

3
VDs

4

3
V ss

η +4VDs
+2∆s−

2

3
δ 0

0 0 −
4

3
V ss

η +2VDs
+2∆s−

3

4
δ













=







253.8 9.0 0

9.0 324.5 0

0 0 250.5






, (21)

where, for example, the matrix (HGBE
Λc

)ij is the element of the matrix of i〈Λc|HGBE +H ′
0+n∆s|Λ〉j , and n is the

number of s quarks in the baryon state.

HOGE
Λc

=













−
8

3
(Cqq+2Cqc)−

2

3
δ

8

3
(Cqq−Cqc) 0

8

3
(Cqq−Cqc) −

8

3
(Cqq+2Cqc)−

2

3
δ 0

0 0
8

3
(Cqq+2Cqc)−

7

12
δ













=







−153.0 38.1 0

38.1 −153.0 0

0 0 −1.9






,

HOGE
Σc

=













−
8

3
(2Cqc+Cqq)−

2

3
δ

16

3
(Cqq−Cqc) 0

16

3
(Cqq−Cqc) −

8

3
(2Cqc+Cqq)−

2

3
δ 0

0 0
8

3
(2Cqc+Cqq)−

3

4
δ













=







−153.0 76.1 0

76.11 −153.0 0

0 0 −22.6






,

HOGE
Ξc

=













−
8

3
(Cus+Cuc+Csc)+∆s−

2

3
δ

4

3
(2Cqs−Cqc−Csc) 0

4

3
(2Cqs−Cqc−Csc) −

8

3
(Cus+Cuc+Csc)+∆s−

2

3
δ 0

0 0
8

3
(Cus+Cuc+Csc)+∆s−

7

12
δ













=







32.9 20.6 0

20.6 32.9 0

0 0 152.1






,

HOGE
Ξ′

c
=













−
8

3
(Cus+Cuc+Csc)+∆s−

2

3
δ −

8

3
(2Cqs−Cqc−Csc) 0

−
8

3
(2Cqs−Cqc−Csc) −

8

3
(Cus+Cuc+Csc)+∆s−

2

3
δ 0

0 0
8

3
(Cus+Cuc+Csc)+∆s−

3

4
δ













=







32.9 −41.2 0

−41.2 32.9 0

0 0 131.5






,

HOGE
Ωc

=













−
8

3
(2Csc+Css)+2∆s−

2

3
δ

16

3
(Css−Csc) 0

16

3
(Css−Csc) −

8

3
(2Csc+Css)+2∆s−

2

3
δ 0

0 0
8

3
(2Csc+Css)+2∆s−

3

4
δ













=







210.2 23.5 0

23.5 210.2 0

0 0 294.1






.

(22)

From Eqs. (1) to (6) and the corresponding calcu-
lation above, we can find that the eigenvalues for the
configurations are:

E=

3
∑

i=1

mi+(N+3)ω+3V0+〈HGBE(OGE)〉+〈H
′〉+n∆s, (23)

where mi denotes the constituent mass of the ith quark,
and N and n represent the quantum number of the ex-

cited state and the number of s quarks in the baryon
state, respectively. Then, the expressions for the mass
splittings between the L=1 Λc and L=0 Λc states are:

ML=1
|Λc〉1

−ML=0
Λc

=











16

3
Vπ+2VD−

1

6
δ+ω,

16

3
Cqq−

16

3
Cqc−

1

6
δ+ω,

(24)
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ML=1
|Λc〉2

−ML=0
Λc

=











16

3
Vπ+2VD−

1

6
δ+ω,

16

3
Cqq−

16

3
Cqc−

1

6
δ+ω,

(25)

ML=1
|Λc〉3

−ML=0
Λc

=











32

3
Vπ+4VD−

1

12
δ+ω,

32

3
Cqq+

16

3
Cqc−

1

12
δ+ω,

(26)

where the first (second) line in each equation is the result
in the GBE (OGE) model.

Inserting the parameters listed in Table 3 and the
values for ML=0

Λc
into the above expressions, one can eas-

ily get the masses ML=1
|Λc〉1,2,3

. Similarly, we can also ob-

tain the masses of Σc, Ξc, Ξ′
c, Ωc states with L = 1 by

considering the mass splittings between them and their
corresponding ground states, which are listed in Table 2.
These masses just represent the energies of the configu-
rations and are listed in the diagonal terms of matrices
(27) and (28), but are not the real charmed baryons’
physical masses, which will be calculated later. All the
input masses of corresponding ground states are taken
from the latest “Review of Particle Physics” [8].

Then we can get matrices 〈H〉 (H represents the non-
relativistic Hamiltonian for a three-quark system) for ev-
ery multiplet configuration, and the numerical values are
listed in the following matrices:

EGBE
Λc

=







2600.9 −18.9 0

−18.9 2665.6 0

0 0 2789.2






, EGBE

Σc
=







2753.8 −11.7 0

−11.7 2818.5 0

0 0 2708.4






,

EGBE
Ξc

=







2735.4 −1.5 0

−1.5 2803.0 0

0 0 2893.9






, EGBE

Ξ′

c
=







2856.6 −3.0 0

−3.0 2924.3 0

0 0 2831.5






, EGBE

Ωc
=







2966.1 9.0 0

9.0 3036.8 0

0 0 2962.8






, (27)

EOGE
Λc

=







2499.2 38.1 0

38.1 2499.2 0

0 0 2650.3






, EOGE

Σc
=







2513.4 76.1 0

76.1 2513.4 0

0 0 2643.8






,

EOGE
Ξc

=







2645.7 20.6 0

20.6 2645.7 0

0 0 2896.7






, EOGE

Ξ′

c
=







2671.0 −41.2 0

−41.2 2671.0 0

0 0 2839.8






, EOGE

Ωc
=







2808.4 23.5 0

23.5 2808.4 0

0 0 2962.8






. (28)

In the GBE model, from matrix (27), one can see the
lowest energy states of three multiplets (Σc, Ξ′

c and Ωc)
have spin 3/2. According to our analysis, this is because
the contributions from fine structure corrections to Σc,
Ξ′

c and Ωc states with spin 3/2 are smaller than those
states with spin 1/2 in the GBE model from the matrix
(). However, in the OGE model there is no such phe-
nomenon. This is the most important difference between
the GBE and OGE models.

By diagonalizing matrices (27) and (28), we can get
the energies for the physical charmed baryon states as
shown in Table 5, in which we also show these states
as the linear combinations of the configurations given in
Table 4, with the corresponding coefficients for the com-
binations listed in Table 5. From Table 5 we can also
see the spin of the states with the lowest energy is also
S=3/2 for Σc, Ξ′

c and Ωc states only in the GBE model,
but not in the OGE model.

As shown in Table 5, in the GBE model, the mix-
ing of the configurations in the GBE model is much
weaker than that in the OGE model. For instance, for
the Λc states, the mixing coefficient between the config-
urations |Λc(b)〉1 and |Λc(b)〉2 is about 0.26, but in the

OGE model it is about 0.71. According to our calcula-
tion results in matrix (28), the diagonal matrix elements
and nondiagonal matrix elements have the same results
when the spin is 1/2 in the OGE model. So the mix-
ing coefficients between the configurations with spin 1/2
should be the same and the mixing is stronger than in
the GBE model,as shown in Table 5. The absolute values
of the nondiagonal matrix elements in the OGE model
are larger than those in the GBE model.

For the bottom baryon states, the fine structure cor-
rection matrices are analogous to the expressions in (21)
and (22); we just need change the c quark, D and Ds

mesons to b quark, B and Bs mesons, respectively. The
expressions for the mass splittings between the negative
parity bottom baryon states with L = 1 and the corre-
sponding states of L = 0 are similar to Eqs. (24), (25)
and (26). We will not give the explicit expressions for
these mass splittings here. The numerical results for the
bottom baryon configurations with L = 1 are listed in
matrices (29) and (30), which are obtained in the same
way as for the charmed baryons in the GBE and OGE
models. We also consider the bottom baryon configu-
ration mixing, and the masses and corresponding coef-
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ficients for the mixing are listed in Table 6. There are
two differences, however, between bottom baryon states
and charmed baryon states. The first is that the larger
constituent mass of the b quark leads to the increase of
the mass difference correction in Eq. (6), and the second
is that the hyperfine interaction contributions from the
GBE interaction Eq. (10) and the OGE interaction Eq.
(12) to the cases of the bottom baryon states should be
less important than those for the charmed baryon states

in these two models. This is because the parameters as
listed in Table 3 for bottom baryon states are smaller
than for charmed baryon states.

Intriguingly, from Table 6, we can also see the spins
of the lowest energy states in the GBE model for Σb, Ξb

and Ωb are S = 3/2. The same phenomenon has been
found for charmed baryon states. This is the most spe-
cial aspect of the GBE model compared with the OGE
model.

Table 5. Energies and coefficients for mixing between the configurations with S=1/2 and S=3/2 for the charmed
baryon states with L=1 in the GBE and OGE models.

GBE |Λc〉1 |Λc〉2 |Λc〉3 |Σc〉1 |Σc〉2 |Σc〉3 |Ξc〉1 |Ξc〉2 |Ξc〉3

2595.8 0.965 0.261 0 2748.7 0.965 -0.261 0 2735.3 0.999 0.022 0

2670.7 -0.261 0.965 0 2823.6 0.261 0.965 0 2803.0 -0.022 0.999 0

2789.2 0 0 1 2708.4 0 0 1 2893.9 0 0 1

|Ξ′
c〉1 |Ξ′

c〉2 |Ξ′
c〉3 |Ωc〉1 |Ωc〉2 |Ωc〉3

2856.5 0.999 0.045 0 2964.9 0.992 0.125 0

2924.4 -0.045 0.999 0 3037.9 0.125 0.992 0

2831.5 0 0 1 2962.8 0 0 1

OGE |Λc〉1 |Λc〉2 |Λc〉3 |Σc〉1 |Σc〉2 |Σc〉3 |Ξc〉1 |Ξc〉2 |Ξc〉3

2461.2 0.707 -0.707 0 2437.3 0.707 -0.707 0 2619.5 0.707 -0.707 0

2537.2 0.707 0.707 0 2589.5 0.707 0.707 0 2660.7 0.707 0.707 0

2650.3 0 0 1 2643.8 0 0 1 2896.7 0 0 1

|Ξ′
c〉1 |Ξ′

c〉2 |Ξ′
c〉3 |Ωc〉1 |Ωc〉2 |Ωc〉3

2629.8 0.707 -0.707 0 2784.9 0.707 -0.707 0

2712.2 0.707 0.707 0 2831.8 0.707 0.707 0

2839.8 0 0 1 2962.8 0 0 1

EGBE
Λb

=









5915.5 −18.8 0

−18.8 5935.7 0

0 0 6090.7









, EGBE
Σb

=









6051.5 −23.8 0

−23.8 6071.7 0

0 0 5974.6









,

EGBE
Ξb

=









6042.9 −6.8 0

−6.8 6063.2 0

0 0 6079.1









, EGBE
Ξ′

b
=









6149.2 −13.6 0

−13.6 6169.5 0

0 0 6093.6









, EGBE
Ωb

=









6249.0 −2.1 0

−2.1 6269.4 0

0 0 6207.6









. (29)

EOGE
Λc

=









5843.4 45.5 0

45.5 5843.4 0

0 0 5966.6









, EOGE
Σc

=









5855.4 90.9 0

90.9 5855.4 0

0 0 5954.4









,

EOGE
Ξc

=









5984.9 28.5 0

28.5 5984.9 0

0 0 6080.1









, EOGE
Ξ′

c
=









6010.8 −57.1 0

−57.1 6010.8 0

0 0 6096.4









, EOGE
Ωc

=









6121.5 40.4 0

40.4 6121.5 0

0 0 6226.9









. (30)
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Table 6. Energies and coefficients for mixing between the configurations with S=
1

2
and S=3/2 for bottom baryon

states with L=1.

|Λb〉1 |Λb〉2 |Λb〉3 |Σb〉1 |Σb〉2 |Σb〉3 |Ξb〉1 |Ξb〉2 |Ξb〉3

GBE 5899.7 0.834 0.552 0 6035.7 0.834 -0.552 0 6040.8 0.957 0.290 0

5951.5 0.552 0.834 0 6087.4 -0.552 0.834 0 6054.2 0.290 0.957 0

6090.7 0 0 1 5974.6 0 0 1 6079.1 0 0 1

|Ξ′
b
〉1 |Ξ′

b
〉2 |Ξ′

b
〉3 |Ωb〉1 |Ωb〉2 |Ωb〉3

6142.4 0.894 -0.447 0 6248.8 0.994 -0.103 0

6176.3 -0.447 0.894 0 6269.6 -0.103 0.994 0

6093.6 0 0 1 6207.6 0 0 1

|Λb〉1 |Λb〉2 |Λb〉3 |Σb〉1 |Σb〉2 |Σb〉3 |Ξb〉1 |Ξb〉2 |Ξb〉3

OGE 5797.9 0.707 -0.707 0 5764.5 0.707 -0.707 0 5956.4 0.707 -0.707 0

5888.8 0.707 0.707 0 5946.3 0.707 0.707 0 6013.5 0.707 0.707 0

5966.6 0 0 1 5954.4 0 0 1 6080.1 0 0 1

|Ξ′
b
〉1 |Ξ′

b
〉2 |Ξ′

b
〉3 |Ωb〉1 |Ωb〉2 |Ωb〉3

5953.7 0.707 -0.707 0 6081.1 0.707 -0.707 0

6067.9 0.707 0.707 0 6141.3 0.707 0.707 0

6096.4 0 0 1 6226.9 0 0 1

4 Conclusions

In this paper, we studied the difference between two
hyperfine interactions including the Goldstone boson ex-
change (GBE) and the one gluon exchange (OGE) hy-
perfine interaction models, by predicting the masses of
charmed and bottom baryons with L = 1 negative par-
ity. The results for the L = 1 negative parity charmed
and bottom baryon masses were obtained from the mass
splittings between these states and their corresponding
ground states, and the input parameters were deter-
mined by fitting the experimental baryon masses.

With these two models, we first expressed the fine
structure correction parts (δM) for the light, charmed
and bottom ground baryons as listed in Table 1 and Ta-
ble 2. Then, with the mass splittings between ground
baryon states, the parameters for these two kinds of
hyperfine interaction models were extracted and listed
in Table 3. We predicted the mass of Ω∗

b , the only
L = 0 baryon state which has not be observed, to be
6069.2 MeV. After that, the masses of the negative par-
ity charmed and bottom baryon configurations with L=1
were estimated from the splittings between their corre-
sponding charmed and bottom baryon states with L=0.
In our calculations, mixing between the configurations
with same spin quantum numbers was also taken into
account. Then the physical masses of the negative par-
ity charmed and bottom baryon states with L=1 were
predicted after diagonalizing the matrices (27), (28), (29)
and (30) and we gave the corresponding coefficients for
the mixing between these configurations in the two hy-
perfine interaction models.

From the latest “Review of Particle Physics” [8], the
splitting between Λc(2595)+ with JP = 1

2

−
and Λc(2625)+

with JP = 3
2

−
is 35.86 MeV, and that between Ξc(2790)+

with JP = 1
2

−
and Ξc(2815)+ with JP = 3

2

−
is 27.5 MeV.

For Λb(5912) and Λb(5920) with JP = 1
2

−
and JP = 3

2

−
, re-

spectively, MΛb(5912) = 5912.11 MeV, MΛb(5920) = 5919.81
MeV, and the mass difference between these two states
is small (< 8 MeV). This indicates that the spin-orbital
interaction has a smaller impact on the masses of the
charmed and bottom baryons with increase of the con-
stituent quark masses. So in our calculation we neglected
the contribution from the spin-orbital interaction.

It is very interesting that in the GBE model, there
exist three multiplets (Σc(b), Ξ′

c(b) and Ωc(b)), of which
the spins of their lowest energy states are 3/2. However,
in the OGE model there is no such phenomenon. There
are also no such phenomenon for singly heavy baryons
in QCD-motivated relativistic quark model [26] and hy-
percentral constituent quark model [27, 28], and for Ωc

states in chiral quark model [29] and nonrelativistic con-
stituent quark model [30]. This is the most obvious dif-
ference between the GBE and OGE models. According
to our analysis, we find the contributions from the di-
agonal matrix elements of fine structure corrections to
the energies of spin 1/2 states are larger than the con-
tributions to the energies of the S = 3/2 states only in
the GBE model, as listed in matrices (21) and (22). An-
other obvious feature is that the mixing in the case of
the bottom baryon states is stronger than that in the
charmed baryon states both in the GBE and OGE mod-
els, as listed in Tables 5 and 6. This is because the larger
constituent mass of the b quark reduces the hyperfine
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interaction contributions to bottom baryon states com-
pared with the charmed baryon states. We expect that
our results for these two different models in this work
can be tested at the LHC and other experiments in the
near future.

The predicted masses in this paper may be also useful
for the discovery of the unobserved charmed and bottom
baryon states and the JP assignment of these baryon

states when they are observed in the near future. It will
also allow us to compare these two different hyperfine
interaction models from their results and examine which
phenomenological model can better describe the spectra.
Therefore, more efforts should be given to study charmed
and bottom baryons both theoretically and experimen-
tally.
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