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Analysis of the Y(4220) and Y(4390) as molecular states

with QCD sum rules *

Zhi-Gang Wang(��f)1)

Department of Physics, North China Electric Power University, Baoding 071003, China

Abstract: In this article, we assign the Y(4390) and Y(4220) to be the vector molecular states DD̄1(2420) and

D∗D̄∗
0(2400), respectively, and study their masses and pole residues in detail with the QCD sum rules. The present

calculations only favor assigning the Y(4390) to be the DD̄1(1
−−) molecular state.
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1 Introduction

In 2013, Yuan studied the cross sections of the pro-
cess e+e−→π+π−hc at center-of-mass energies 3.90–4.42
GeV measured by the BESIII and the CLEO-c exper-
iments, and observed evidence for two resonant struc-
tures, a narrow structure of mass (4216±18) MeV and
width (39±32) MeV, and a possible wide structure of
mass (4293±9) MeV and width (222±67) MeV [1].

In 2014, the BES collaboration searched for the pro-
duction of e+e− → ωχcJ with J = 0,1,2, based on data
samples collected with the BESIII detector at center-
of-mass energies from 4.21−4.42 GeV, and observed a
resonance in the ωχc0 cross section. The measured mass
and width of the resonance, Y(4230), are 4230±8±6MeV
and 38±12±2 MeV, respectively [2].

Recently, the BES collaboration measured the cross
sections of the process e+e−→π+π−hc at center-of-mass
energies 3.896−4.600GeV using data samples collected
with the BESIII detector, and observed two structures.
The Y(4220) has mass 4218.4±4.0±0.9 MeV and width
66.0±9.0±0.4 MeV, and the Y(4390) has mass 4391.6±6.3±
1.0 MeV and width 139.5±16.1±0.6 MeV [3]. The Y(4230)
and Y(4220) may be the same particle. The Y(4230) has
been assigned to be a vector-diquark-vector-antidiquark
type vector tetraquark state [4–6] or a conventional me-
son ψ(4S) [7]. The near thresholds are MD+D1(2420)− =
4293 MeV, MD0D1(2420)0 = 4285 MeV, MD∗+D∗

0
(2400)− =

4361 MeV, and MD∗0D∗

0
(2400)0 =4325 MeV [8]. It is also

possible to assign the Y(4220) and Y(4390) to be the
DD̄1(2420) or D∗D̄∗

0(2400) molecular states.

Eleven years ago, the BaBar collaboration observed
a broad resonance (Y(4260)) in the initial-state ra-
diation process e+e− → Y(4260) → J/ψπ+π− in the
invariant-mass spectrum of the J/ψπ+π− [9]. Later, the
BaBar collaboration measured the mass and width of
the Y(4260) in a more precise way [10]. The cross sec-
tion rises rapidly below the peak of the Y(4260) and
falls more slowly above the peak [8]. The BESIII exper-
iment may indicate that in fact the Y(4260) consists of
two peaks, a narrow peak around 4.22 GeV and a wider
peak around 4.39 GeV, accounting for the asymmetry.

In Refs. [11, 12], Zhang and Huang systematically
study the Qq̄Q̄′q type scalar, vector and axialvector
molecular states with the QCD sum rules by calculating
the operator product expansion up to the vacuum con-
densates of dimension 6. The predicted molecule masses
MD∗D̄∗

0
=4.26±0.07 GeV and MDD̄1

=4.34±0.07 GeV are
consistent with the Y(4220) and Y(4390), respectively.
However, the charge conjugations of the molecular states
are not distinguished and the higher dimensional vacuum
condensates are neglected. In Ref. [13], Lee, Morita and
Nielsen distinguish the charge conjugations of the inter-
polating currents, and calculate the operator product ex-
pansion up to the vacuum condensates of dimension 6,
partly including the vacuum condensates of dimension 8.
They obtain the mass of the DD̄1(2420) molecular state
with JPC = 1−+, MDD̄1

= 4.19±0.22 GeV, which differs
significantly from the prediction MDD̄1

=4.34±0.07 GeV.
In Refs. [11–13], some higher dimensional vacuum

condensates involving the gluon condensate, mixed con-
densate and four-quark condensate are neglected. The
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terms associated with 1
T2 , 1

T4 , 1
T6 in the QCD spectral

densities manifest themselves at small values of the Borel
parameter T 2, so we have to choose large values of T 2

to guarantee convergence of the operator product ex-
pansion. In the Borel windows, the higher dimensional
vacuum condensates play a less important role. The
higher dimensional vacuum condensates play an impor-
tant role in determining the Borel windows and therefore
the ground state masses and pole residues, so we should
take them into account consistently.

In this article, we assign the Y(4390) and Y(4220)
to be the vector molecular states DD̄1(2420) and
D∗D̄∗

0(2400) respectively, distinguish the charge conju-
gations, and construct the color singlet-singlet type cur-
rents to interpolate them. We calculate the contributions
of the vacuum condensates up to dimension-10 in the
operator product expansion in a consistent way, and use
the energy scale formula to determine the energy scales
of the QCD spectral densities [14, 15], which differs sig-
nificantly from the routines taken in Refs. [11–13]. We
then study the masses and pole residues in detail with
the QCD sum rules.

The article is arranged as follows. We derive the QCD
sum rules for the masses and pole residues of the vector
molecular states in Section 2. In Section 3, we present
the numerical results and discussions. Section 4 is re-
served for our conclusion.

2 QCD sum rules for the vector molecu-
lar states

In the isospin limit, the quark structures of the molec-
ular states DD̄1(2420) and D∗D̄∗

0(2400) can be symboli-
cally written as

ūdc̄c,
ūu−d̄d√

2
c̄c, d̄uc̄c,

ūu+d̄d√
2

c̄c. (1)

The isospin triplet ūdc̄c,
ūu−d̄d√

2
c̄c, d̄uc̄c and the isospin

singlet
ūu+d̄d√

2
c̄c have degenerate masses. In this arti-

cle, we take the isospin limit and study the masses of the
charged partners of the Y(4220) and Y(4390) for sim-
plicity.

In the following, we write down the two-point corre-
lation functions Πµν(p) in the QCD sum rules,

Πµν(p) = i

∫
d4xeip·x〈0|T

{
Jµ(x)J†

ν (0)
}
|0〉, (2)

where Jµ(x)=J1
µ(x),J2

µ(x),J3
µ(x),J4

µ(x),

J1
µ(x) =

1√
2
{ū(x)iγ5c(x)c̄(x)γµγ5d(x)

−ū(x)γµγ5c(x)c̄(x)iγ5d(x)},

J2
µ(x) =

1√
2
{ū(x)iγ5c(x)c̄(x)γµγ5d(x)

+ū(x)γµγ5c(x)c̄(x)iγ5d(x)},

J3
µ(x) =

1√
2
{ū(x)c(x)c̄(x)γµd(x)+ū(x)γµc(x)c̄(x)d(x)} ,

J4
µ(x) =

1√
2
{ū(x)c(x)c̄(x)γµd(x)−ū(x)γµc(x)c̄(x)d(x)} ,

(3)

Under charge conjugation transform Ĉ, the currents
Jµ(x) have the properties,

ĈJ1/3
µ (x)Ĉ−1 = −J1/3

µ (x)|u↔d ,

ĈJ2/4
µ (x)Ĉ−1 = +J2/4

µ (x)|u↔d . (4)

The charge conjugations of the molecular states
Y(4220) and Y(4390) are unknown. If the decays take
place through

Y(4220/4390) → ρhc→hcπ
+π− , (5)

the charge conjugation is positive; on the other hand, if
the decays take place through

Y(4220/4390) → Z±
c (4025)π∓→hcπ

+π− , (6)

the charge conjugation is negative, where we assume
that there is a relative S-wave between the intermedi-
ate mesons ρhc or Z±

c (4025)π∓. The decay

Y(4230) → ωχc0 , (7)

has been observed [2]. If the Y(4220) and Y(4230) are
the same particle, the Y(4220) may have the quantum
numbers JPC =1−−.

On the phenomenological side, we insert a complete
set of intermediate hadronic states with the same quan-
tum numbers as the current operators Jµ(x) into the
correlation functions Πµν(p) to obtain the hadronic rep-
resentation [16–18]. After isolating the ground state con-
tributions of the vector molecular states, we get the fol-
lowing results:

Πµν(p) =
λ2

Y

M 2
Y −p2

(
−gµν+

pµpν

p2

)
+··· , (8)

where the pole residues λY are defined by
〈0|Jµ(0)|Y (p)〉 = λY εµ, and the εµ are the polarization
vectors of the vector molecular states.

In the following, we perform Fierz re-arrangement
for the currents Jµ both in color space and Dirac-spinor
space to obtain the results:
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J1
µ =

1

2
√

2

{
1

3
iūγµdc̄c−

1

3
iūdc̄γµc−

1

3
ūγβγ5dc̄σµβγ5c+

1

3
ūσµβγ5dc̄γ

βγ5c

+
1

2
iūγµλ

adc̄λac−1

2
iūλadc̄γµλ

ac−1

2
ūγβγ5λ

adc̄σµβγ5λ
ac+

1

2
ūσµβγ5λ

adc̄γβγ5λ
ac

}
,

J2
µ =

1

2
√

2

{
1

3
ūσµβdc̄γ

βc+
1

3
ūγβdc̄σµβc−

1

3
ūiγ5dc̄γµγ5c−

1

3
ūγµγ5dc̄iγ5c

+
1

2
ūσµβλ

adc̄γβλac+
1

2
ūγβλadc̄σµβλ

ac−1

2
ūiγ5λ

adc̄γµγ5λ
ac−1

2
ūγµγ5λ

adc̄iγ5λ
ac

}
,

J3
µ =

1

2
√

2

{
−1

3
ūγµdc̄c−

1

3
ūdc̄γµc−

1

3
iūγβγ5dc̄σµβγ5c−

1

3
iūσµβγ5dc̄γ

βγ5c

−1

2
ūγµλ

adc̄λac−1

2
ūλadc̄γµλ

ac−1

2
iūγβγ5λ

adc̄σµβγ5λ
ac−1

2
iūσµβγ5λ

adc̄γβγ5λ
ac

}
,

J4
µ =

1

2
√

2

{
−1

3
iūσµβdc̄γ

βc+
1

3
iūγβdc̄σµβc+

1

3
iūiγ5dc̄γµγ5c−

1

3
iūγµγ5dc̄iγ5c

−1

2
iūσµβλ

adc̄γβλac+
1

2
iūγβλadc̄σµβλ

ac+
1

2
iūiγ5λ

adc̄γµγ5λ
ac−1

2
iūγµγ5λ

adc̄iγ5λ
ac

}
. (9)

The components ūΓdc̄Γ′c and ūΓλadc̄Γ′λac po-
tentially couple to a series of charmonium-light-
meson pairs or charmonium-like molecular states or
charmonium-like molecule-like states, where Γ,Γ′ =
1,γµ,γµγ5, iγ5,σµβ ,σµβγ5. For example, the current J1

µ

potentially couples to the meson pairs through its com-
ponents,

ūγµdc̄c ∝ χc0ρ
− , ··· ,

ūdc̄γµc ∝ J/ψa−0 (980), ··· ,
ūγβγ5dc̄σµβγ5c ∝ J/ψa−1 (1260), J/ψπ−,

hca
−
1 (1260), hcπ

− , ··· ,
ūσµβγ5dc̄γ

βγ5c ∝ ηcρ
−,‘χc1ρ

−, ηch
−
1 (1170),

χc1h
−
1 (1170), ··· . (10)

We cannot distinguish those contributions to study them
exclusively, and assume that the currents ūΓdc̄Γ′c and
ūΓλadc̄Γ′λac couple to a particular resonance Y , which is
a special superposition of the scattering states, molecular
states and molecule-like states, and embodies the net ef-
fect. Some meson pairs (in other words, its components)
such as χc0ρ, J/ψa0(980), J/ψπ, ··· lie below the Y , so
the Y can decay to those meson pairs easily through the
fall-apart mechanism. Although the rearrangements in
color space and Dirac-spinor space are highly non-trivial,
the decays contribute a finite width to the Y .

In the following, we study the contributions of the
intermediate meson-loops to the correlation function
Πµν(p) for the current J1

µ(x) as an example. The cur-
rent J1

µ(x) has nonvanishing couplings with the scatter-
ing states J/ψa0(980), χc0ρ, etc.

Πµν(p) = − λ̂2
Y

p2−M̂ 2
Y −ΣJ/ψa0(980)(p)−Σχc0ρ(p)+···

×
(
gµν−

pµpν

p2

)
+··· , (11)

where λ̂Y and M̂Y are bare quantities to absorb the diver-
gences in the self-energies ΣJ/ψa0(980)(p), Σχc0ρ(p), etc.
The renormalized self-energies contribute a finite imagi-
nary part to modify the dispersion relation,

Πµν(p) = − λ2
Y

p2−M 2
Y +i

√
p2Γ (p2)

(
gµν−

pµpν

p2

)
+··· .(12)

The physical widths ΓY (4220) = 66.0±9.0±0.4 MeV and
MY (4390)=139.5±16.1±0.6 MeV [3] are not large, and the
finite width effects can be absorbed into the pole residues
λY . In previous works, we observed that the effects of
the finite widths, such as ΓX(4500) = 92±21+21

−20 MeV,
ΓX(4700) =120±31+42

−33 MeV, ΓZc(4200) =370+70
−70

+70
−132 MeV,

can be safely absorbed into the pole residues λX/Zc

[19, 20]. In this article, we take the zero width approx-
imation, and expect that the predicted masses are rea-
sonable.

We carry out the operator product expansion in a
consistent way, and obtain the QCD spectral densities
through dispersion relation. We then take the quark-
hadron duality below the continuum thresholds s0 and
perform Borel transform with respect to the variable
P 2=−p2 to obtain the following QCD sum rules,

λ2
Y exp

(
−M

2
Y

T 2

)
=

∫ s0

4m2
c

dsρ(s)exp
(
− s

T 2

)
, (13)

where ρ(s)=ρ1(s),ρ2(s),ρ3(s),ρ4(s),

ρ1(s) = ρ(s,r)|r=1 ,

ρ2(s) = ρ(s,r)|r=−1 ,

ρ3(s) = ρ(s,r)|r=1,mc→−mc
,

ρ4(s) = ρ(s,r)|r=−1,mc→−mc
. (14)
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The explicit expressions of the QCD spectral densities
ρ(s,r) are given in the Appendix. In this article, we carry
out the operator product expansion for the vacuum con-
densates up to dimension-10 and assume vacuum satura-
tion for the higher dimension vacuum condensates. The

condensates 〈g3
sGGG〉,

〈
αsGG

π

〉2

,

〈
αsGG

π

〉
〈q̄gsσGq〉

have dimensions 6, 8, 9 respectively, but they are the vac-
uum expectations of the operators of the order O(α3/2

s ),
O(α2

s), O(α3/2
s ) respectively, and are discarded. We take

the truncations n 6 10 and k 6 1 in a consistent way,
and operators of orders O(αk

s ) with k>1 are discarded
[14, 15, 21–23]. Furthermore, the numerical values of the

condensates 〈g3
sGGG〉,

〈
αsGG

π

〉2

,

〈
αsGG

π

〉
〈q̄gsσGq〉

are very small, and can safely be neglected.

We derive Eq. (13) with respect to τ=
1

T 2
, and elim-

inate the pole residues λY to obtain the QCD sum rules
for the masses,

M 2
Y =

∫ s0

4m2
c

ds

(
− d

dτ

)
ρ(s)e−τs

∫ s0

4m2
c

dsρ(s)e−τs

. (15)

3 Numerical results and discussion

The vacuum condensates are taken to be the stan-
dard values 〈q̄q〉=−(0.24±0.01GeV)3, 〈q̄gsσGq〉=m2

0〈q̄q〉,
m2

0=(0.8±0.1) GeV2,

〈
αsGG

π

〉
=(0.33 GeV)4 at the en-

ergy scale µ=1GeV [16–18, 24]. The quark condensate
and mixed quark condensate evolve with the renormal-

ization group equation, 〈q̄q〉(µ)=〈q̄q〉(Q)

[
αs(Q)

αs(µ)

] 4
9

, and

〈q̄gsσGq〉(µ) = 〈q̄gsσGq〉(Q)

[
αs(Q)

αs(µ)

] 2
27

. In this article,

we take the MS mass mc(mc)=(1.275±0.025) GeV from
the Particle Data Group [8] and take into account the
energy-scale dependence of the MS mass,

mc(µ) = mc(mc)

[
αs(µ)

αs(mc)

] 12
25

,

αs(µ) =
1

b0t

[
1−b1

b20

logt

t
+
b21(log2 t−logt−1)+b0b2

b40t2

]
,

(16)

where

t=log
µ2

Λ2
, b0=

33−2nf

12π
, b1=

153−19nf

24π2
,

b2=
2857−5033

9
nf+

325

27
n2

f

128π3
,

and Λ=213 MeV, 296 MeV and 339 MeV for the number
of flavors nf =5, 4 and 3, respectively [8].

The hidden charm (or hidden bottom) four-quark
systems QqQ̄q̄′ could be described by a double-well po-
tential in the heavy quark limit. The heavy quark Q
serves as one static well potential and combines with
the light antiquark q̄′ to form a heavy meson-like state
or correlation (not a physical meson) in color singlet.
The heavy antiquark Q̄ serves as the other static well
potential and combines with the light quark state q to
form another heavy meson-like state or correlation (not
a physical meson) in the color singlet. The two meson-
like states (not two physical mesons) combine together to
form a physical molecular state. Then the double heavy
molecular state Y is characterized by the effective heavy
quark mass MQ and the virtuality V =

√
M 2

Y −(2MQ)2

[14, 15]. It is natural to choose the energy scales of the
QCD spectral densities as µ=V , which works well in the
QCD sum rules for the molecular states. In Ref. [14],
we obtained the optimal value Mc=1.84 GeV. Recently,
we re-checked the numerical calculations and corrected
a small error involving the mixed condensates. After
the small error was corrected, the Borel windows are
modified slightly and the predictions are also improved
slightly, but the conclusions survive. In this article, we
choose the updated value Mc=1.85 GeV.

In the scenario of molecular states, we study the color
singlet-singlet type and octet-octet type scalar, axial-
vector and tensor hadronic molecular states with the
QCD sum rules in a systematic way [14, 15], and ten-
tatively assign the X(3872), Zc(3900/3885), Y(4140),
Zc(4020/4025) and Zb(10610/10650) to be the molecular
states:

X(3872) =
1√
2

(
DD

∗−D∗D
)

(with 1++),

Zc(3900/3885) =
1√
2

(
DD

∗
+D∗D

)
(with 1+−),

Zc(4020/4025) = D∗D
∗
(with 1+− or 2++),

Y (4140) = D∗
sD

∗

s (with 0++),

Zb(10610) =
1√
2

(
BB

∗
+B∗B

)
(with 1+−),

Zb(10650) = B∗B
∗
(with 1+−). (17)

Now we search for the Borel parameters T 2 and con-
tinuum threshold parameters s0 to satisfy the following
four criteria:

• Pole dominance on the phenomenological side;
• Convergence of the operator product expansion;
• Appearance of the Borel platforms;
• Satisfaction of the energy scale formula.
The resulting Borel parameters, continuum thresh-

old parameters, pole contributions and energy scales are
shown explicitly in Table 1. From the Table, we can
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see that the central values of the pole contributions are
larger than 50%, so the pole dominance condition can be

satisfied. In the Borel windows, the contributions from
the vacuum condensates Di of dimension i are

DD̄1(1
−−) : D0=(94−95)%, D3=0%, D4�1%, D5=(20−24)%,

D6=−(12−17)%, D7=−(1−2)%,−D8<1%, D10�1%,

DD̄1(1
−+) : D0=(122−127)%, D3=−(24−27)%, D4=−1%, D5=(24−29)%,

D6=−(19−27)%, D7=−(2−3)%, D8≤1%, D10�1%,

D∗D̄∗
0(1

−−) : D0=(118−122)%, D3=0%, D4�1%, D5=−(13−16)%,

D6=−(5−7)%, D7<1%,−D8<1%, D10�1%,

D∗D̄∗
0(1

−+) : D0=(111−116)%, D3=(19−22)%, D4=−1%, D5=−(18−22)%,

D6=−(13−18)%, D7=(1−2)%, D8<1%, D10�1%, (18)

where i= 0, 3, 4, 5, 6, 7, 8, 10. The operator product
expansion well convergent. In the QCD sum rules for
the hidden charm tetraquark states and molecular states,
the operator product expansion converges slowly, and we
have to increase the Borel parameters to large values.
Larger Borel parameters lead to smaller pole contribu-
tions on the hadron side. So in the QCD sum rules for the
hidden charm tetraquark states and molecular states, the
Borel windows are rather small, T 2

max−T 2
min≈0.4 GeV2,

while the lower bounds of the pole contributions are
about (40− 45)%. From Table 1, the threshold pa-
rameters and the predicted masses satisfy the relation√
s0=MY +(0.4∼0.6) GeV. Naively, we expect that the

energy gap between the ground state and the first radial
excited state is about 0.4∼0.6 GeV, so the present pre-
dictions are reasonable. Although the lower bounds of
the pole contributions are less than 50%, the contamina-
tions of the radial excited states and continuum states
are expected to be excluded by the continuum threshold
parameter s0.

We take into account all uncertainties of the input pa-
rameters, and obtain the values of the masses and pole
residues of the vector molecular states, which are shown
explicitly in Figs. 1–2 and Table 1. In Figs. 1–2, we
plot the masses and pole residues with variations of the
Borel parameters at much larger intervals than the Borel
windows shown in Table 1. From the figures, we can see
that there indeed appear platforms in the Borel windows.
Furthermore, from Table 1, we can see that the energy
scale formula is well satisfied. Now the four criteria of
the QCD sum rules are all satisfied, so we expect to make

reasonable predictions.
The prediction MDD̄1(1−−)=4.36±0.08 GeV is consis-

tent with the experimental data MY(4390)=4391.6±6.3±
1.0 MeV within uncertainties [3], while the predictions
MDD̄1(1−+)=4.60±0.08 GeV, MD∗D̄∗

0
(1−−)=4.78±0.07 GeV

and MD∗D̄∗

0
(1−+) =4.73±0.07 GeV are much larger than

the upper bounds of the experimental data, MY(4390) =
4218.4±4.0±0.9 MeV and MY(4390)=4391.6±6.3±1.0 MeV
[3]. Moreover, they are much larger than the near thresh-
olds MD+D1(2420)− =4293 MeV, MD0D1(2420)0 =4285 MeV,
MD∗+D∗

0
(2400)− =4361 MeV, MD∗0D∗

0
(2400)0 =4325 MeV [8].

The present predictions only favor assigning the Y(4390)
to be the DD̄1(1

−−) molecular state.
In Refs. [11, 12], Zhang and Huang do not distinguish

the charge conjugations and obtain the masses MD∗D̄∗

0
=

4.26±0.07 GeV and MDD̄1
=4.34±0.07 GeV. In Ref. [13],

Lee, Morita and Nielsen distinguish the charge conjuga-
tions and obtain the mass MDD̄1(1−+) =4.19±0.22 GeV.
In this article, we distinguish the charge conjugations of
the currents, calculate the contributions of the vacuum
condensates up to dimension-10 in the operator prod-
uct expansion in a consistent way, with the intervals of
the vacuum condensates much larger than the ones in
Refs. [11–13]. Moreover, we use the energy scale formula
to determine the energy scales of the QCD spectral den-
sities, which worked well in our previous works [14, 15].
We obtain the predictions MDD̄1(1−−) =4.36±0.08 GeV,
MDD̄1(1−+)=4.60±0.08 GeV, MD∗D̄∗

0
(1−−)=4.78±0.07 GeV

and MD∗D̄∗

0
(1−+) = 4.73±0.07 GeV, which differ signifi-

cantly from the results in Refs.[11–13], changing the con-
clusion.

Table 1. The Borel parameters, continuum threshold parameters, pole contributions, energy scales, masses and pole
residues of the vector molecular states.

T 2/GeV2 √
s0/GeV pole(%) µ/GeV MY /GeV λY (10−2/GeV5)

DD̄1 (1−−) 3.2–3.6 4.9±0.1 45–65 2.3 4.36±0.08 3.97±0.54

DD̄1 (1−+) 3.5–3.9 5.1±0.1 44–63 2.7 4.60±0.08 5.26±0.65

D∗D̄∗
0 (1−−) 4.0–4.4 5.3±0.1 44–61 3.0 4.78±0.07 7.56±0.84

D∗D̄∗
0 (1−+) 3.8–4.2 5.2±0.1 44–61 2.9 4.73±0.07 6.83±0.84
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In 2007, the Belle collaboration measured the cross
section for the process e+e− → π+π−ψ′, and observed
two structures Y(4360) and Y(4660) in the π+π−ψ′

mass spectrum, at (4361±9±9)MeV with a width of
(74±15±10)MeV, and (4664±11±5)MeV with a width
of (48±15±3) MeV, respectively [25]. The quantum
numbers of the Y(4360) and Y(4660) are JPC =1−− [8].
The Y(4390) and Y(4360) have analogous masses and
widths, so they may be the same particle, the DD̄1(1

−−)
molecular state. The main decay modes of the DD̄1(1

−−)
molecular state are DD∗π [26, 27], so it is important to
search for the decay modes DD∗π to diagnose the nature
of the Y(4260) and Y(4390).

4 Conclusion

In this article, we assign the Y(4390) and Y(4220)
to be the vector molecular states DD̄1(2420) and
D∗D̄∗

0(2400), respectively, distinguish the charge conju-
gations,and construct the color singlet-singlet type cur-
rents to interpolate them. We calculate the contribu-
tions of the vacuum condensates up to dimension-10 in
the operator product expansion in a consistent way, use
the energy scale formula to determine the energy scales
of the QCD spectral densities, and study the masses and
pole residues in detail with the QCD sum rules. The
present predictions only favor assigning the Y(4390) to
be the DD̄1(1

−−) molecular state.

Appendix A

The explicit expression for the QCD spectral density ρ(s,r) is:
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