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Evolving Hořava cosmological horizons
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Abstract: Several sets of radially propagating null congruence generators are exploited in order to form 3-dimensional

marginally trapped surfaces, referred to as black hole and cosmological apparent horizons in a Hořava universe. Based

on this method, we deal with the characteristics of the 2-dimensional space-like spheres of symmetry and the pecu-

liarities of having trapping horizons. Moreover, we apply this method in standard expanding and contracting FLRW

cosmological models of a Hořava universe to investigate the conditions under which the extra parameters of the

theory may lead to trapped/anti-trapped surfaces both in the future and in the past. We also include the cases of

negative time, referred to as the finite past, and discuss the formation of anti-trapped surfaces inside the cosmological

apparent horizons.
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1 Introduction

When it comes to those “small” theories of quan-
tum gravity which emerge from super strings, the 4-
dimensional Hořava theory, proposing a quantum field
model including the UV completion of the Einstein the-
ory and its relevance to anisotropies between space and
time, becomes of great significance. Indeed, Hořava grav-
ity deals with the differences between the concepts of
space and time which rise from quantum theory, and
makes these anisotropies appear at high energy levels.
The Hořava gravity which was introduced in Ref. [1]
includes the theoretical aspects of critical phenomena,
analogous to those in condensed matter physics. This
theory leads back to Einstein’s general relativity in in-
frared limits. However, the original formulation has had
some shortcomings, like predicting extremely different
results for slightly perturbed spherical geometries from
those of complete spherical symmetry. Ever since it was
revealed to the public in 2009, the theory has received
great attention and has been followed by a tremendous
number of works by other scientists. It has been shown
that the theory suffers from some problems and incon-
sistencies. For example it exhibits strong couplings, ex-
plaining why solutions to general relativity are not re-
covered in this model [2].

One important version of Hořava gravity (which we
consider in this paper) is the projectable one, where the
lapse is assumed to be only a function of time. This
version has also some problems, like the existence of an

unstable scalar degree of freedom, which once again leads

to strong couplings. However it has been shown that this

version can be regarded as a useful tool in developing the

theory, because it greatly reduces the number of terms in
the action [3] and therefore, illuminates the way of look-
ing deeply on the variations of Hořava gravity. It is worth

mentioning the arguments raised by some scientists, that
projectable versions may become useless in infrared lim-
its, because in those limits quantum corrections become
controllable [4]. In terms of consistency, the covariance
breaking of the original Hořava model has been exam-
ined to argue that the resultant scalar degree of freedom

may constitute an extra mode which has been proved to
perform as the strong coupling [5].

To overcome these problems, an extended model of
Hořava gravity was proposed in Ref. [6], where using

a regular quadratic action, the renormalizability of the

scalar mode is recovered. Moreover, studying the Hamil-
tonian formulation of f(R)-Hořava theories, Klusoň pro-
posed them as some “healthy” extensions of Hořava
gravity [7, 8]. Furthermore, it has been shown that by
imposing a local U(1) gauge symmetry, one can eliminate
the mentioned scalar mode and retain the general covari-
ance and hence, another healthy version of the theory
[9]. This method was also applied to the f(R)-Hořava

theories to obtain their covariant extension [10]. The
quest for healthy variations is continued. For example,
it has been proved that the degrees of freedom will reduce
to those of general relativity, if a Lagrange multiplier is
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imposed on the Hořava action [11].
In order to alter the projectability condition, the

holographic implications of Hořava gravity and its du-
ality to quantum field theory with anisotropic Lifshitz
scaling have been discussed in Ref. [12]. There, the au-
thors introduce some classes of quantum field theories,
based on the “unhealthy reduction” of non-projectable
Hořava gravity. Furthermore and in Ref. [13], such non-
projectable classes were shown to be capable of becom-
ing free of unwanted extra scalar modes. This therefore
provides us a healthy extension of the non-projectable
Hořava gravity, whose renormalizability has been ad-
dressed in Ref. [14].

Despite the fact that the abilities and weaknesses

of Hořava gravity have been under debate, the origi-
nal projectable theory has proved to be of great inter-
est, especially when it was endowed with some black

hole solutions. This therefore led to rigorous discussions

on the concept of Hořava black holes. These solutions
by Park [15], Kehagias and Sfetsos [16], and Lu, Mei

and Pope [17], and for example the solution classes in-
troduced in Ref. [18], constitute the black hole space-

times and makes it possible to go further in studying
the horizon thermodynamics (actually the dynamics of
apparent horizons in a Friedmann-Lamâıtre-Robertson-
Walker (FLRW) universe and its relation to thermody-
namics has been investigated in Refs. [19, 20] and for
example the relevant thermodynamics of the topological
black-holes introduced in Ref. [21], have been discussed
in Refs. [22, 23]) and the energy-momentum conditions
of such black holes (Refs. [24, 25]). Such static space-
times have even been considered in characterizing the
behaviour of time-like objects while orbiting a Hořava

black hole (e.g. Refs. [26–28]).

However, when we are asked about the most signifi-
cant feature of black holes, we definitely bring up the con-
cept of singularities and the cosmic censorship [29, 30].

This means that there will be regions beyond the “hole’s”

event horizon which are causally disconnected from any
observer outside the event horizon. Therefore what is
of crucial importance in studying a hole is its horizons.
Mathematically, in a 4-dimensional spacetime, an event
horizon is a 3-dimensional closure of a surface, on which
a congruence of ingoing and outgoing null flows will con-
verge. In this regard, the event horizon is itself generated
by the null congruences. On the other hand, the full
perception of event horizons relies on complete knowl-
edge about future null infinity, which is impossible to
achieve. Hence, to talk about the physical phenomena
of holes, one should talk about other types of horizons
that the hole may possess; such as apparent horizons. In-
deed, apparent horizons are those geometric features of
holes on which their thermodynamics is studied. Appar-
ent horizons are 3-dimensional hypersurfaces which are

foliated by marginally trapped surfaces for null congru-
ence. Therefore, since apparent horizons are not neces-
sarily separating two causally disconnected regions, they
are more accessible and are of great proficiency in grav-
itational treatments of holes. Such horizons may even
evolve for a cosmological hole which is indeed a hole on
a cosmological background. In that case, the spacetime
splits up itself into hole horizons and cosmological hori-
zons. Therefore it is important to note that a cosmolog-
ical horizon can evolve in time. In this regard, time-
dependent hole horizons are analogous to an expand-
ing or contracting FLRW cosmological horizon, whereas
time-independent static Schwarzschild horizons are anal-
ogous to de Sitter static cosmological horizons. Hence,
the concept of evolving cosmological and hole horizons
is an interesting topic of research in studying possible
black holes which evolve on a cosmological background,
in every peculiar theory of gravitation and their corre-
sponding cosmological models.

In the case of a Hořava universe, which lies within
the scope of this paper, there have been some efforts to
build cosmological black/white holes upon scalar field
constituents of the theory and time-like flows of the cos-
mic fluid. For example in Ref. [31], the authors compare
the black hole solutions in the infrared limit of Hořava
gravity which has been defined on a time-like æther,
to those known Schwarzschild-like black holes. Also in
Ref. [32], it has been shown that the usual McVittie cos-
mological black hole is also a Hořava black hole, in the
special case of the Lorentz violating parameter to be 1/3.
The Hořava theory has also proved to generate univer-
sal horizons, emerged from scalar couplings in the theory
(see Ref. [33]).

In this paper, we investigate the possibilities of the
formation of trapped/anti-trapped surfaces inside cos-
mological apparent horizons, and their corresponding
conditions imposed on the specific parameters which ap-
pear in the equations of motion and spacetime geome-
tries. In particular, we justify the following inferences:

• Null congruence generators on static Hořava black
hole spacetimes confirm that each of them possess
only one event horizon, separating time-like and
space-like regions; they correspond only to the for-
mation of one type of trapping horizon in the fu-
ture.

• On a FLRW cosmological background, we realize
both time-like and space-like apparent horizons re-
siding respectively inside and outside event hori-
zons. The existence of space-like apparent hori-
zons in FLRW spacetime is claimed to be a conse-
quence of the existence of exotic matter. Actually,
in de Sitter spacetime (vacuum universe with con-
stant Hubble parameter) one can expect space-like
apparent horizons. However we show that for a
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Hořava universe this is the case even for a variable
Hubble parameter. Indeed in a vacuum Hořava
universe on a FLRW background, space-like ap-
parent horizons can form and evolve.

• These apparent horizons evolve in time, but make
a remarkable difference in their respectable rele-
vance between the field equation constants and the
spatial curvature of space.

• Expanding and contracting Hořava universes will
actually distinguish between the types of trap-
ping horizon. Moreover, their relations to the
evolution in the finite past indicates formations
of trapped/anti-trapped surfaces within negative
time.

The paper is organized as follows: In Section 2, we
briefly highlight important traits of Hořava gravity and
its proposed black hole solutions. In Section 3, we intro-
duce our method of treating null congruence expansion
on Kehagias-Sfetsos (KS) and Lu-Mei-Pope (LMP) static
black holes and characterize the space-like surfaces to fo-
liate 3-dimensional trapping horizons. In Section 4 the
LMP cosmological solution in a vacuum Hořava universe
is employed in order to inspect the evolution of time-like
and space-like apparent horizons. We discuss the cate-
gories according to which these temporal evolutions are
characterized. We conclude in Section 5. Note that we
choose the geometric units such that c = G = 1.

2 Hořava theory and its static black hole

spacetimes

Here we recap some important basics of Hořava grav-
ity. A very good review can be found in Ref. [34]. Hořava
gravity is characterized by the 4-dimensional Arnowitt-
Deser-Misner (ADM) formulation of general relativity
and therefore by the 4-dimensional metric [35]

ds2 =−N(t)2dt2 +gij(t,~x)
(

dxi +N i(t,~x) dt
)

×
(

dxj +N j(t,~x) dt
)

, (1)

with N(t), N i(t,~x) and gij(t,~x) being the lapse, shift and
3-dimensional induced metric respectively. The lapse de-
pends solely on the time, because of the projectability
condition. The Hořava theory introduces a class of 3+1-
dimensional modifications to general relativity. Accord-
ingly, the UV completion action of the Einstein-Hilbert
action would be

I =
1

κ2

∫

N(t) dt

∫

√

g(t,~x)

(

Kij(t,~x)Kij(t,~x)

−λK(t,~x)2
)

d3~x, (2)

in which the extrinsic curvature Kij is defined in terms of
differentiations of the 3-dimensional metric with respect
to the time coordinate,

Kij(t,~x) =
1

2N(t)
(ġij(t,~x)−∇iNj(t,~x)−∇jNi(t,~x)) .

(3)
The Lorentz violating parameter λ is a constant, but
can have alternative values in different approaches. Note
that in general relativity λ = 1. Furthermore in Eq. (2),
K = Ki

i and the dot in Eq. (3) stands for differentia-
tion with respect to t. The extrinsic curvature consti-
tutes the kinetic term of the action. One remarkable
issue is that Kij is covariant under diffeomorphisms that
include gauge symmetries to preserve foliations. Accord-
ingly, the coupling constant λ means that both terms in
the parenthesis in Eq. (2) are separately invariant under
the mentioned diffeomorphisms. Based on this coupling
constant, the generalized De Witt metric can be written
as [1]

Gijkl =
1

2

(

gikgjl +gilgjk
)

−λ gijgkl, (4)

which can be used to rewrite the 3+1-dimensional UV
completion action as

IUV =
κ2

8κ4
w

∫

N dt
√

g

(

Rij − 1

2
Rgij +Λwgij

)

Gijkl

(

Rkl− 1

2
Rgkl +Λwgkl

)

d3~x, (5)

where the subscript w refers to some 3-dimensional ac-
tion in which the theory is “detailed balanced”. In the
case of having Euclidean isotropic symmetry, the action
w is of the form of Einstein-Hilbert action

w =
1

κ2
w

∫ √
g (R−2Λw) d3~x. (6)

Note that in Eq. (5), Rij is the 3-dimensional Ricci ten-
sor (R = Ri

i), and Gijkl is the inverse of the De Witt
metric in Eq. (4).

Now for the case of λ 6= 1/3, one can consider a static
spherically symmetric solution to the potential in Eq. (5)
of the form

ds2 = f(r) dt2 +f(r)−1dr2 +r2dΩ2
(2), (7)

where Ω(2) constitutes the 2-sphere of symmetry. Based
on this, the KS asymptotically flat black hole solution
for λ = 1 and Λw = 0 is [16]

f(r) = 1+ωr2−
√

r (ω2r3 +4ωM), (8)

with M being a constant, ω = 16µ2/κ2, and µ is the mass
of dimensions [µ] = 1. Moreover, including the cosmolog-
ical constant Λw = 2Λ/3, then for the case of λ > 1/3 and
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together with Eq. (7), the LMP solution is obtained to
be [17]

f(r) = 1−Λwr2− α√
−Λw

√
r. (9)

This solution requires Λw < 0, however as we will see in
the following sections, the cosmological implementations
of the solution can be made for both cases of positive and
negative Λw. Note that the significance of the case of
λ = 1/3 and the Weyl symmetry of the resultant theory
have been highlighted by Hořava himself.

Now that we have mentioned the static black hole
spacetimes defined in a Hořava universe, in the next sec-
tion we use the method of constructing trapped horizons
by means of null congruence and discuss the relevant
conditions. From now on, all indices are 4-dimensional.

3 Null congruence expansion on static

Hořava black holes

In this section, we take KS and LMP black hole space-
times to retrieve the black hole apparent horizons and the
space-like 2-surfaces to foliate those horizons. To do this
we take two null congruences corresponding to outgoing
and ingoing trajectories. Letting gab be the background
spacetime metric, we can then generate these congru-
ences by the tangential vector fields l↑ and l↑, which
constitute a transverse 2-surface described by the 2-
metric [36]

hab = gab−
l↑a

l↓b
+ l↑b

l↓a

l↑
cl↓c

, (10)

in such a way that habl↑
b = 0; the congruence is orthog-

onal to the 2-surface described by hab. Also since the
congruences are supposed to be null, l↑

al↑a
= l↓

al↓a
= 0.

Accordingly, the congruence expansion for outgoing and
ingoing congruence on the so-called transverse surface
would be [36]

Θl = hab∇allb, (11)

Note that hab can also serve as the transverse projector,
to project every kinematical characteristic of the con-
gruence onto the transverse 2-surface (for full details see
Ref. [37]). In the following and by examining KS and
LMP Hořava black holes, we show how the transverse
expansion in Eq. (11) is related to apparent and trap-
ping horizons and the cosmic censorship of a black hole
singularity.

3.1 KS static black holes

The KS black hole spacetime in Eq. (8) becomes ir-
regular for f(r) = 0 and the radii

r± = M

(

1±
√

1− 1

2ωM 2

)

, (12)

for which, in order to avoid a naked singularity, we must
have 2ωM 2 > 1. Note that the true singularity is at r = 0,
where the scalar curvature diverges. Now to construct
an outgoing radially propagating null congruence gener-
ator, we write the light cone structure straight from the
general spherical metric in Eq. (7) as

ε =−f(r) (l↑
t)2 +f(r)−1(l↑

r)2, (13)

from which, according to the null condition ε = 0, we get

l↑
a = (1,f(r),0,0) . (14)

Also for l↑ and l↑ to be normalized to −2, the ingoing
null congruence generator becomes

l↓
a =

(

1

f(r)
,−1,0,0

)

. (15)

The outgoing and ingoing congruences expand according
to Eq. (11), giving

Θ↑ =
2f

r
, (16a)

Θ↓ =−2

r
. (16b)

The black hole apparent horizons are foliated by
marginally trapped 2-surfaces of outgoing congruence,
on which Θ↑ = 0 and Θ↓ < 0, of which the latter is auto-
matically satisfied. Accordingly both radii r± give the lo-
cation of apparent horizons. Therefore the configuration
of the apparent horizons depends strictly on the choice
of foliation. Indeed the apparent horizons constitute the
closure of the 3-dimensional hypersurfaces

Φ±(r) = r−r± = 0. (17)

Note also that these apparent horizons are future hori-
zons since Θ↓ < 0 implies convergence of ingoing congru-
ence in the future (the observer is outside the horizon).
The normal vectors to the horizon hypersurfaces are tools
which can determine their characteristics. To work this
out for the apparent horizons at r±, let us define N± to
be the normal vectors to Φ±. We have

N±a = ∂aΦ± = (0,1,0,0). (18)

Using Eq. (7), it is straightforward to infer N+
aN+a =

N−
aN−a

= f(r). Peculiar to the case of KS black holes,
the metric potential f(r) has been plotted in Fig. 1.
First of all, since f(r±) = 0, it is obvious that N±|r=r±

is null and hence, both KS apparent horizons are null
hypersurfaces. On the other hand, f(r)|r<r− > 0 and
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f(r)|r>r+
> 0, whereas f(r)|r−<r<r+

< 0. This means
that the normal vectors are space-like inside r− and out-
side r+; those regions are time-like. Furthermore, since
the normal vectors are time-like in the region between
r− and r+, that region is space-like. We can use these
notions to argue that only one of the apparent horizons
is also an event horizon. Essentially, since event hori-
zons separate two causally disconnected regions, an event
horizon must be null. As we showed above, this condi-
tion is automatically satisfied for rAH = r±. Moreover,
an event horizon must separate a time-like region from
a space-like one. According to what we have mentioned
above, r+ is an event horizon and every congruence en-
tering it has to converge on the inner horizon. However
inside r− we encounter a time-like region and the con-
gruence can avoid falling on the singularity, therefore r−

cannot be regarded as an event horizon (this is clearly in
contrast with what is stated by the authors of Ref. [16]).
There is another way of looking at this by means of con-
gruence expansion. According to Eq. (16a), Θ↑ is neg-
ative in r− < r < r+, while it is positive in r < r− and
r > r+. This means that for the latter cases we have
Θ↑Θ↓ < 0, indicating un-trapped 2-surfaces. These foli-
ating 2-surfaces of the apparent horizons become trapped
between them, where Θ↑ < 0 and Θ↓ < 0; the black
hole region. Note that if we adopted a Killing vector
Ka = (1,0,0,0) of the spherically symmetric spacetime,
then we could have pursued the same argument, based on
the condition KaK

a =−f(r). Accordingly, both appar-
ent horizons are also Killing horizons where KaKa = 0.
In this case, where K is time-like (outside r+ and inside
r−) we encounter time-like regions and when it is space-
like (inside the black hole region, r− < r < r+) we end up
with a space-like region.

3.1.1 Trapping horizons

Trapped surfaces are the most indigenous traits of
black holes. These surfaces are encompassed by 3-
dimensional hypersurfaces known as trapping horizons.
Now for a black hole apparent horizon to be also a trap-
ping horizon, we should also take into account the con-
dition L↓Θ↑ < 0, where L↓ denotes the Lie derivative in
the direction of ingoing congruence. A hypersurface with
such a condition is a future marginally outer trapped
horizon (FMOTH) [36]. Note that such a horizon be-
comes inner if L↓Θ↑ > 0. For the general spacetime in
Eq. (7) and the expansions in Eq. (16), we have

L↓Θ↑ =
2

r2
(f −rf ′) . (19)

For the special case of KS black holes and according to
Fig. 1, the above quantity is negative on r+ and positive
on r−. This means that the event horizon is a FMOTH
whereas the inner apparent horizon is a FMITH. Inside
FMOTH (or the event horizon) we expect to encounter

trapped surfaces, as we discussed above.

Fig. 1. The radial behaviour of KS metric poten-
tial, for ω = 2. The unit value along the r axis is
M .

3.2 LMP static black holes

The true singularity of LMP black holes defined in
Eq. (9) occurs at

rsing =
1

4

(

25α2

−4Λ3
w

) 1
3

, (20)

implying Λw < 0. The radial behaviour of the LMP met-
ric potential has been plotted in Fig. 2.

Fig. 2. The radial behaviour of LMP metric poten-
tial for α =20. The unit value along the r axis is
−Λw.

According to the figure, f(r) has only one non-
negative solution r0, indicating the irregularity of the
spacetime. Hence Eq. (16a) implies the possession of
only one apparent horizon for LMP Hořava black holes.
On the other hand, from Eq. (19) we infer that L↓Θ↑ < 0
holds in the whole case, and therefore Φ(r) = r−r0 = 0 is
constructing a FMOTH. Moreover since Na = (0,1,0,0),
the normal to the horizon is time-like outside r0 and
space-like inside it. Therefore r = r0 is also an event
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horizon. This is in accordance with Θ↑Θ↓ < 0 for
r > r0 (un-trapped surface), and Θ↑ < 0 and Θ↓ < 0
for r < r0 (trapped surface). The above notes show that
in static spherically symmetric spacetimes, regardless of
their number, all apparent horizons are fixed and if avail-
able, only one of them behaves as an event horizon.

Now that we have established our method of treat-
ment, it is time to look for situations where we can
deal with those horizons that can evolve in time. Such
conditions are accessible within cosmological solutions
of the gravitational theories. In what follows, we con-
sider the LMP cosmological solutions of the Hořava uni-
verse and discuss the evolving apparent and trapping
horizons.

4 Evolving horizons in a Hořava universe

As we saw in the previous section, when we con-
sider black hole spacetimes, the ingoing congruence ex-
periences a permanent convergence on the horizons in
such a way that it never encounters anti-trapped sur-
faces inside the “hole” region. One reason for this is
that the gravitational structure is observed from outside
the horizons. In other words, the observer will never
detect outgoing congruence with permanent divergence;
this property characterizes white hole regions and anti-
trapped surfaces. So to provide such conditions, one way
is to deal with observers inside the gravitational struc-
ture. This becomes possible when we consider an evolv-
ing (or fixed) cosmological system into which no ingo-
ing congruence can enter. To elaborate this in a Hořava
universe, in this section, we take the LMP cosmological
solution for a vacuum universe and based on the method
we introduced in Section 3, we look for the formation of
anti-trapped surfaces encompassed by evolving apparent
horizons.

For a FLRW perfect fluid cosmology described by the
comoving line element

ds2 =−dt2 +a(t)2
(

dr2

1−kr2
+r2dΩ2

(2)

)

, (21)

with a(t) and k the cosmic scale factor and the spatial
curvature of the spacetime respectively, the LMP cosmo-
logical solutions for a vacuum Hořava universe have been
calculated in Ref. [17] and are

H2 =
2

3λ−1

(

Λw

2
− k

a2
+

k2

2Λwa4

)

, (22a)

ä

a
=

2

3λ−1

(

Λw

2
− k2

2Λwa4

)

, (22b)

where H = ȧ/a. Accordingly, the explicit dependence of
the scale factor on the cosmic time have been determined
to be

a(t) =

(

k

Λw

+αe2
√

Λw
3λ−1

t

) 1
2

. (23)

The significance of the solution in Eq. (23) is that it can
be employed for either Λw > 0, which is consistent with
λ > 1/3, or Λw < 0 with λ < 1/3.

4.1 The event horizon

The same method of constructing the light cone
structure as we used in Eq. (13), can be applied to a
universe described by the line element (21). This way,
we can obtain two radial null vectors

l↑
b =

(

1,

√
1−kr2

a(t)
,0,0

)

, (24a)

l↓
b =

(

1,−
√

1−kr2

a(t)
,0,0

)

, (24b)

as generators of outgoing and ingoing congruences, which
are normalized to −2. According to the ingoing con-
gruence in Eq. (24b), we have l↓

1/l↓
0 = dr/dt =

−
√

1−kr2/a(t). So if we assume that a congruence of
ingoing rays which starts propagating at the Big Bang
time tB and comoving radial position r is being detected
at time t by an observer located at r = 0, then we have
∫ 0

r

dr′/
√

1−kr′2 = −
∫ t

tB

dt′/a(t′). Here, tB is a finite

time in the past. Now if we designate t = 0 as the present
time, then tB represents a finite negative value. So the
time parameter t covers a range of negative (past) and
positive (future) values. Furthermore, defining the co-

moving hyperspherical coordinate χ =

∫ r

0

dr′/
√

1−kr′2,

the furthermost radial position from which light is re-
ceived by a comoving observer at any specific time tf

during the final evolution of universe, is given by

χEH(t) =

∫ tf

t

dt′

a(t′)
. (25)

This is indeed the definition of a cosmological event hori-
zon [38]. Note that in the case of t < 0, the value of tf

can be both positive or negative (but of a greater value
than t). This is because tf is meant to be located in the
future of t.

Now for a closed universe (k > 0), tf would be a pos-
itive and fixed value like tmax, which is the time during
which the universe has experienced its maximum expan-
sion and then has started a re-collapse era. Using Eq. (23)
the comoving even horizon of a closed Hořava universe
becomes

095101-6



Chinese Physics C Vol. 40, No. 9 (2016) 095101

χEH(t)=

√

3λ−1

k

{

arctanh

[

√

Λw

k
a(t)

]

−arctanh

[

√

Λw

k
a(tmax)

]

}

. (26)

This necessitates that for a closed universe it is always
Λw > 0 and hence, λ > 1/3. The same procedure for
an open (k < 0) Hořava universe (requiring tf → +∞)
results in

χEH(t) =

√

3λ−1

k

{

π

2
+arctanh

[

√

Λw

k
a(t)

] }

, (27)

implying that for an open Hořava universe we have
Λw < 0 and λ < 1/3. And last but not least, for a flat
universe (k = 0), since we can still consider the case of an
infinite expansion within an infinite time in the future,
Eq. (25) yields

χEH(t) =
1

a(t)

√

3λ−1

Λw

. (28)

This includes both cases of Λw > 0 with λ > 1/3, and
Λw < 0 with λ < 1/3. Moreover, defining a physical
(areal) hyperspherical coordinate χ̄ = a(t) χ and us-
ing it rather than the comoving one, Eq. (28) provides
χ̄EH = 1/H , which is the de Sitter (or Hubble) horizon.

It is straightforward to show that χEH constitutes a
null hypersurface. For example, for the case of flat uni-
verse, we can introduce Φ(t,χ) = χ− χEH = 0 and its
normal vector

Na = ∂aΦ(t,χ)|χEH
=

(

√

3λ−1

Λw

ȧ

a
,1,0,0

)

, (29)

according to which, NaN
a = 0.

4.2 Null congruence in Hořava cosmology: the

apparent horizons

In what follows, we take into account a closed uni-
verse which in the standard FLRW cosmology is given
by k > 0. So to retain the conformity with the cosmo-
logical LMP solutions, we adopt the case of Λw > 0 and
λ > 1/3. However we let the parameter α change freely
from negative values to positive ones. This assumption
is crucial to the temporal foliations of the horizon hyper-
surfaces and the concept of negative time.

Having these, Eqs. (10) and (11) yield

Θ↑ =
2

ar

(

ȧr+
√

1−kr2

)

, (30a)

Θ↓ =
2

ar

(

ȧr−
√

1−kr2

)

. (30b)

In a cosmological treatment, we use marginally trapped
surfaces for ingoing congruences to foliate cosmological
apparent horizons. These are 2-spheres of symmetry
characterized by Θ↓ = 0 and Θ↑ > 0 [36]. In this sense,
Eq. (30b) describes the cosmological apparent horizon on
a sphere of the radius

rAH(t) =
1

a(t)

1
√

H2 + k

a(t)2

. (31)

It is important to check that unlike event horizons, ap-
parent horizons have not to be null hypersurfaces. In
connection with Eq. (31), the normal to the apparent
horizon hypersurface Φ(t,r) = ar−1/

√

H2 +k/a2 = 0 on
the apparent horizon location is

Na =

(

HrAH

ä

a2
, a,0,0

)

. (32)

To talk more strictly about the real physical separation
between cosmic objects, it is of benefit to work with
the physical (areal) coordinate r̄ = a(t) r, providing
r̄AH = 1/

√

H2 +k/a2. Together with Eq. (32) and af-
ter manipulations, we get

NaN
a = H2

[

r̄2
AH

−
(

ä

a

)2

r̄6
AH

]

. (33)

In a Hořava universe provided by Eq. (22) and together
with Eq. (31), we obtain

NaN
a =

4(3λ−1) H2

(

Λw +3(λ−1)
k

a2
+

k2

Λwa4

)3

[(

Λw

2
+

3

2
(λ−1)

k

a2

+
k2

2Λwa4

)2

−
(

Λw

2
− k2

2Λwa4

)2 ]

. (34)

To check the characteristics of Hořava cosmological ap-
parent horizons, we consider points of fixed time t0, on

which Λw = b
k

a2
with b to be a positive real number. This

way, we can talk about positivity (space-like case) or neg-
ativity (time-like case) of the normal vector N a as a vari-
able depending on both Λw and the cosmic time t. For
the special case of b = 1, we have NaNa = 0 implying a
null normal vector and a null apparent horizon. However,
this also corresponds to H = 0, which is relevant to the
case of a constant scale factor a0 =

√

k/Λw at t0 →−∞.
On the other hand at negative infinity, Eq. (26) results
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in rEH → +∞; the event horizon vanishes. So the event
horizon at negative infinity would have been the null ap-
parent horizon rAH(t0) = 1/

√
Λw = a0/

√
k. When the

apparent horizon is null, it becomes an event horizon it-
self. Note that the negative infinite time is assumed to
be the Big Bang time in steady state models.

To proceed further, we emphasize that letting Λw =
bk/a2, the term in the brackets in Eq. (34) has two solu-
tions λ1 = (3−2b)/3 and λ2 = 1−2/(3b). Now since H2

and r̄AH have to be positive, we can categorize NaN
a in

the following ways:

• NaN
a is positive: the apparent horizon is time-like

1. Λw >
k

a2
(b > 1)

(a) λ2 < λ < 1

(b) λ > 1

2. Λw <
k

a2
(0 < b < 1)

(a) λ1 < λ < 1

(b) λ > 1

• NaN
a is negative: the apparent horizon is space-

like

1. Λw >
k

a2
(b > 1)

(a)
1

3
< λ < λ2

2. Λw <
k

a2
(0 < b < 1)

(a)
1

3
< λ < λ1

To clarify the situation, the time-like and space-like
apparent horizons have to be plotted as they are evolving
in cosmic time. Note that the general case of Λw > k/a2

can be achieved for every α > 0 and for all finite negative
time and also for t0 within (0,+∞). This means that in
a closed Hořava universe, time-like and space-like appar-
ent horizons are available both in the future and in the
finite past. Moreover, the case of Λw < k/a2 corresponds
to α < 0 and also to

t0 6
ln
(

k

|α|Λw

)

√

Λw

3λ−1

.

This means that (if |α|Λw > 1) the case of Λw < k/a2

implies evolution within finite negative time.
The evolution of time-like and space-like horizons

have been plotted respectively in Fig. 3 and Fig. 4. Time-
like horizons (sometimes called time-like membranes)

lie inside the event horizon, therefore in the interval
r̄AH < r̄ < r̄EH we have Θ↓ > 0 and for r̄ < r̄AH,
it is Θ↓ < 0. In contrast, if the apparent horizon is
space-like (dynamical horizon), it is Θ↓ < 0 between
the two horizons, and it is Θ↓ > 0 beyond the apparent
horizon.

4.3 Trapping horizons in an expanding Hořava

universe

The apparent horizons can be regarded also as trap-
ping horizons if the foliating 2-spheres of symmetry sat-
isfy conditions on the Lie derivative L↑Θ↓ [36]. Accord-
ing to Eqs. (24a) and (30b) and on the apparent horizon
r̄AH = 1/

√

H2 +k/a2, this Lie derivative in a Hořava uni-
verse becomes

L↑Θ↓|r̄AH
=

2

3λ−1

(

2Λw +3(λ−1)
k

a2

)

. (35)

On the other hand on a cosmological apparent horizon
Θ↓ = 0 and Θ↑ > 0. Since on the apparent horizon
Eq. (30a) reduces to

Θ↑|r̄AH
= 4H, (36)

this latter condition is automatically satisfied in an ex-
panding universe, where H > 0. The two quantities in
Eqs. (35) and (36) are indeed those which characterize
the 2-spheres of symmetry to foliate the trapping hori-
zons. To deal with this, we consider the time-like and
space-like apparent horizons and delineate which sort of
trapping horizons they are implying.

Since in an expanding universe we have always
Θ↑|r̄AH

> 0, we will encounter past trapped surfaces.
Moreover, inside the apparent horizon Θ↓ > 0 and this
implies anti-trapped surfaces inside the apparent hori-
zons of an expanding universe; expanding universes be-
have like white holes, which are regions into which no
data can be sent. Outside the apparent horizon, Θ↓ < 0
and therefore there will be un-trapped surfaces.

The diagrams in Fig. 5 demonstrate the evolution
of Θ↑ together with L↑Θ↓ on the Hořava time-like and
space-like apparent horizons, in both the finite past and
the future. As we can see in the diagrams, for time-like
apparent horizons we always have L↑Θ↓ > 0, therefore
those foliating 2-spheres of symmetry are indeed past
marginally inner trapped horizons (PMITH) which can
form both within positive and negative times (the term
“inner” corresponds to the regions where the observer is
located, whereas “outer” refers to those regions where
no observer exists). However there is one occasion in the
case of space-like trapping horizons, where L↑Θ↓ > 0. In
such an interval, we will encounter past marginally outer
trapped horizons (PMOTH) within negative time. So in
this peculiar case, the anti-trapped surfaces can evolve
from being inside the apparent horizon, to outside of it.
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Fig. 3. The evolution of time-like r̄AH in the future (positive time) and in the past (negative time), in a closed

Hořava universe (k = 1) . At any fixed point t0 within these contours, Λw = b
k

a2
, with b > 0. The dependence on

the values of Λw in these cases corresponds to: (a) b = 2, λ =
11

12
and α = 1, (b) λ = 2 and α = 1, (c) b =

1

2
, λ =

11

12
and α =−1, (d) λ = 2 and α =−1. For both cases of α < 0, since |α|Λw > 1, the time interval lies within negative
values.

Fig. 4. The evolution of space-like r̄AH in the future (positive time) and in the past (negative time), in a closed

Hořava universe (k = 1). At any fixed point t0 within these contours, Λw = b
k

a2
, with b > 0. The dependence on

the values of Λw in these cases corresponds to: (a) b = 2, λ =
7

12
and α = 1, (b) b=

1

2
, λ =

7

12
and α =−1. For the

case of α < 0, since |α|Λw > 1, the time interval lies within negative values. Also according to the case of Λw >
k

a2
,

we can observe that space-like apparent horizons can form in both the past and in the future.
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However as we have mentioned before, all cosmological
trapping horizons of an expanding universe are indeed
horizons in the past, because Θ↑ > 0 is always true. To
avoid any confusion with the positivity and negativity of
time, the term “past” here means that at any fixed time

t0 which can be positive or negative, we can observe that
outgoing rays started diverging at a time smaller than
t0. This makes sense, because the generators l↑ and l↓

in Eq. (24) are both future directed vectors.

Fig. 5. The evolution of Θ↑ and L↑Θ↓ on time-like and space-like Hořava apparent horizons, in an expanding closed
universe. The diagrams in the cases (a), (b), (c) and (d) correspond exactly to the values of the time-like apparent
horizons in Fig. 3, whereas the cases (e) and (f) are plotted on space-like apparent horizons relevant to those in
Fig. 4. In the first five diagrams L↑Θ↓ > 0, corresponding to PMITH. However in the last case, we also have some
interval where L↑Θ↓ < 0, which implies PMOTH.

4.3.1 Contracting universe counterpart

The apparent horizons of a contracting universe are
given by Θ↑ = 0 and Θ↓ < 0. Such horizons are also
trapping horizons if L↓Θ↑ ≷ 0. According to Eq. (30a)
it is obvious that the apparent horizon is still on r̄AH =
1/
√

H2 +k/a2 and Θ↓|r̄AH
= 4H , however on the strict

understanding that H < 0. This therefore makes Θ↓ < 0
trivial. On the other hand it turns out that L↓Θ↑|r̄AH

in a contracting Hořava universe has the same value of
L↑Θ↓|r̄AH

in an expanding one, in Eq. (35). Hence, re-
garding the diagrams in Fig. 5, we can infer that all time-
like apparent horizons in a contracting Hořava universe
are future marginally inner trapped horizons (FMITH),
both for positive and negative cosmic time intervals.
For the case of space-like apparent horizons it is the
same, however in some interval in the case of Λw <k/a2

and within negative time, we can also encounter fu-
ture marginally outer trapped horizons (FMOTH) where
L↓Θ↑ < 0. Inside these horizons Θ↑ < 0, therefore
the 2-spheres of symmetry in a contracting universe are
trapped surfaces. They are indeed un-trapped outside,
where Θ↓ > 0. In this regard, contracting universes be-

have like black holes.

5 Summary and conclusions

The formation of null, time-like and space-like Hořava
apparent horizons in black hole and cosmological con-
texts constitutes the main objective of this paper. Such
horizons are generated by sets of ingoing and outgoing
congruences. This way we tuned up our method of treat-
ment in configuring 3-dimensional horizons, foliated by
2-dimensional marginally trapped surfaces. For spher-
ically symmetric static Hořava black holes, we investi-
gated KS and LMP solutions. Indeed such astrophysical
black holes are causally disconnected from their outer re-
gions by means of 3-dimensional hypersurfaces, on which
outgoing congruences cease to expand. We have shown
that KS black holes have two null apparent horizons,
however only the outer horizon is also an event horizon.
We emphasized the trapped 2-spheres of symmetry in-
side such an event horizon. Moreover, we indicated that
the outer apparent horizon is a FMOTH whereas the in-
ner one is a FMITH. The former corresponds to regions
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outside which no observer can stand and the latter indi-
cates a horizon inside which there is a time-like region.
In the case of LMP static black holes, we encountered
only one apparent horizon characterized as a FMOTH.

Turning to LMP cosmological solutions, we dealt
with a vacuum closed gravitational universe. There we
showed that the entire gravitational system is encom-
passed by distinct event and apparent horizons. Both
types of horizons evolve in time. However, we assigned
respective conditions on the Lorentz violating constant
and the cosmological term. Such conditions made it pos-
sible for the apparent horizons to be both time-like and
space-like. According to positivity and negativity of the
coupling constant, we inferred that both time-like and
space-like horizons could form and evolve in the finite
past and in the future. In our approach, the latter is
delineated by positive values of the cosmic time, and the
former by finite negative time.

We also discussed the circumstances for which the
Hořava apparent horizons were also trapping horizons.
We indicated that the time-like and space-like apparent
horizons of an expanding Hořava universe are PMITH,
and in some intervals within negative time, PMOTH. In-
deed inside these 3-dimensional horizons one would en-
counter anti-trapped 2-surfaces, implying white hole re-
gions. Once we turn to a contracting Hořava universe,
the trapping horizons become FMITH and within some
negative time interval, FMOTH. As a very peculiar case,
this latter one is exactly the same trapping horizon as we
had around a static spherically symmetric astrophysical
black hole. In general, however, contracting universes
would behave like black holes since their apparent hori-
zons consist of 3-dimensional hypersurfaces on which the
outgoing congruence cease to expand. However, the most

important remark is the capability of an empty Hořava
universe to generate space-like apparent horizons. In
the case of general relativity in an empty FLRW back-
ground with a positive cosmological constant Λ, we get
r̄AH = 1/

√

Λ/3= const., implying that the apparent hori-
zon of a vacuum FLRW universe is always null (for all
three cases of closed, flat and open universes). However
in general relativity, time-like and space-like apparent
horizons are only possible for a non-vacuum FLRW uni-
verse with T µν = diag(ρ,p,p,p). Indeed the former is
available for p > −ρ, and the latter for p < −ρ corre-
sponding to a phantom fluid consisting of an exotic mat-
ter. This kind of equation of state for the FLRW universe
is capable of creating space-like apparent horizons and
also corresponds to a super-acceleration. On the other
hand, we found that even an empty Hořava universe can
create space-like apparent horizons, if it has been config-
ured properly. Accordingly, an empty Hořava universe
with λ > λ1 in the past and/or λ > λ2 in both the past
and in the future, corresponds to a FLRW universe (in
general relativity) with p > −ρ with non-exotic matter.
Similarly, the same Hořava universe with 1/3 < λ < λ1

and/or 1/3 < λ < λ2 corresponds to FLRW with exotic
matter. It is worth recalling that null apparent horizons
in an empty Hořava universe were possible only in the
infinite past.

Furthermore, since each specifically configured
Hořava universe can envisage only one kind of apparent
horizon, one can infer that these horizons cannot occur
together. However as we discussed, they can all evolve
in time. This may be regarded as a significant feature
of the Hořava cosmological black/white holes which we
have discussed in this paper.
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Physical Journal C, 71: 1690 (2011)
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