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1 Introduction

Weyl (see p.53 of Ref. [1]) established a theorem on
the important structure for rotational invariants: Every
even invariant depending on n vectors r1, r2, ···, rn in
the three-dimensional space R3 is expressible in terms of
the n2 scalar products ra ·rb. Every odd invariant is a
sum of terms

[(ra×rb)·rc]I(r1,r2,··· ,rn), (1)

where ra, rb, rc are selected from r1, r2, ···, rn, and
I(r1, r2, ···, rn) is an even invariant. Due to the prop-
erty of the rotational group SO(3), the expression for
the invariant I(r1, r2, ···, rn) is not unique except for
n 6 3 because it depends upon the coupling orders of
n vectors ra. In their famous Encyclopedia of Mathe-
matics Vol. 9 on the Racah-Wigner algebra in quantum
theory [2], Biedenharn and Louck studied the most im-
portant case n=3 of the general theorem in some detail
(§6.17 of Ref. [2]), and defined the even invariant (see
(6.153) of Ref. [2]) as

Ij,k,`(r1,r2,r3)

=

√

(4π)3

(2j+1)(2k+1)(2`+1)

×
∑

µ,ν,ρ

(

j k `

µ ν ρ

)

Yj
µ(r1)Yk

ν (r2)Y`
ρ(r3)

=
∑

(α)

A(α)

∏

a6b

(ra·rb)
αab , (2)

where

(

j k `

µ ν ρ

)

is the Wigner 3-j symbol, ρ has to be

equal to −µ−ν owing to the property of the 3-j sym-
bol, Yj

µ(r) denotes the spherical harmonic polynomial,
and

∑

αab = (j +k+`)/2. The odd invariant Ij,k,` is
proportional to an even invariant multiplied by a factor
(r1×r2)·r3. However, Biedenharn and Louck pointed out
in their book (p.308 of [2]) that: “Unfortunately, the ex-
pression for the general coefficients (6.157) has not been
given in the literature, and one has had to work out these
invariant polynomials from the definition, Eq. (6.153)”,
where the coefficients (6.157) mean A(α).

From the definition, the calculation for Ij,k,` can be
simplified by a special rotation where r1 points to the
z-axis and r2 is in the xz plane with non-negative x-
component, so that the invariant Ij,k,` is expressed as a
product of two special functions (see Appendix A). In
1987 Fromm and Hill [3] pointed out this method from
the definition. In 2004, Harris [4] calculated the even in-
variants Ij,k,` with the result containing a coefficient Cj

to be determined (see (20) in Ref. [4]), and left the odd
invariants Ij,k,` uncalculated.

The purpose of this paper is to present an indepen-
dent calculation of the coefficients A(α) in (2) for both
even and odd rotational invariants Ij,k,` generally in a
compact form in terms of the internal variables using
group theoretical method. Before calculation, we will
sketch the reason why Ij,k,` have widespread applica-
tions in many branches of physics, such as in atomic
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physics [3, 5–7], in nuclear reaction [2], in condensed
matter physics [8], in cosmology [9], and in astronomy
and astrophysics [10–12].

After separating the center of mass motion there are
three Jacobi coordinate vectors rj in a four-body system.
The independent internal variables are denoted by [13]

η1=r2·r3, η2=r3·r1, η3=r1·r2,

ξ1=r1·r1, ξ2=r2·r2, ζ=(r1×r2)·r3, (3)

where ζ has odd parity and the remaining have even par-
ity. Due to the identity [13]

ζ2=ξ1ξ2ξ3−ξ1η
2
1−ξ2η

2
2−ξ3η

2
3+2η1η2η3, (4)

with ξ3 = r3 ·r3, the invariant ζ may be replaced by ξ3

in (2) for the even invariant Ij,k,`(r1, r2, r3). Thus, a
measurable physical quantity in a four-body system is
generally proportional to

T jk`
µνρ=

∫
(dξ)(dη)(dR)G(ξ,η)Y j

µ(r1)Yk
ν (r2)Y`

ρ(r3), (5)

where G(ξ,η) is a rotational invariant depending on the
internal variables, (dξ)(dη) is the integral element for the
six internal variables, and (dR) = sinβdαdβdγ/(8π

2) is
the integral element for the Euler angles. From group
theory [14], for a spatial rotation R,

PR

[

Yj
µ(r1)Yk

ν (r2)Y`
ρ(r3)

]

=
∑

µ′ν′ρ′

Yj
µ′(r1)Yk

ν′ (r2)Y`
ρ′(r3)

×Dj
µ′µ(R)Dk

ν′ν(R)D`
ρ′ρ(R),

∫
(dR)Dj

µ′µ(R)Dk
ν′ν(R)D`

ρ′ρ(R)

=

(

j k `

µ′ ν′ ρ′

)(

j k `

µ ν ρ

)

.

Thus, the rotational variables are separated

T jk`
µνρ =

√

(2j+1)(2k+1)(2`+1)

(4π)3

×
(

j k `

µ ν ρ

)∫
(dξ)(dη)G(ξ,η)Ij,k,`(r1,r2,r3).

(6)

It is therefore desirable to re-express Ij,k,`(r1,r2,r3) in
terms of a polynomial of the internal variables ξi and
ηi. Finding such a polynomial may not be an easy task,
particularly for higher arbitrary values of {j,k,`}.

The plan of this paper is as follows. The general prop-
erties of these invariants are listed in Section 2. The
coefficients A(α) for even and odd invariants are calcu-
lated in Section 3 and Section 4, respectively. The con-
clusions are given in Section 5. In the Appendix the

invariants Ij,k,` are calculated from their definition and
are expressed as the products of two special functions.

2 General properties of the invariants

For any given three non-negative integers j, k, and `,
satisfying the “triangle rule”:

|j−k|6`6j+k, (7)

the rotational invariant Ij,k,`(r1, r2, r3) constructed from
the products of three spherical harmonic polynomials is
defined in (2). The invariant Ij,k,`(r1, r2, r3) has the
following properties.

a) Ij,k,`(r1, r2, r3) is a homogeneous polynomial of
orders j, k, and ` with respect to the coordinate vectors
r1, r2, and r3, respectively.

b) The parity of Ij,k,`(r1, r2, r3) is (−1)j+k+`.
c) Due to the symmetry of the Wigner 3-j symbol

(−1)j+k+`

(

j k `

µ ν ρ

)

=

(

k j `

ν µ ρ

)

=

(

j ` k

µ ρ ν

)

=

(

j k `

−µ −ν −ρ

)

,

we have

(−1)j+k+`Ij,k,`(r1,r2,r3) = Ik,j,`(r2,r1,r3)

= Ij,`,k(r1,r3,r2). (8)

Thus, we need only consider Ij,k,` with j 6 k 6 `. For
the sake of convenience, we write an even invariant
as Ij,k,j+k−2n and an odd invariant as Ij+1,k+1,j+k−2n+1

where 062n6j6k.
d) Ij,k,j+k−2n is real and Ij+1,k+1,j+k−2n+1 is pure

imaginary because
[

∑

µνρ

(

j k `

µ ν ρ

)

Yj
µ(r1)Yk

ν (r2)Y`
ρ(r3)

]∗

=
∑

µνρ

(

j k `

µ ν ρ

)

Yj
−µ(r1)Yk

−ν(r2)Y`
−ρ(r3).

e) Ij,k,`(r1,r2,r3) satisfies the three Laplace’s equa-
tions with respect to r1, r2, and r3, respectively,

∆1Ij,k,`=∆2Ij,k,`=∆3Ij,k,`=0. (9)

f) From group theory on SO(3) [14], the decompo-
sition of the direct product of three irreducible repre-
sentations of SO(3), Dj(R)×Dk(R)×D`(R), where j,
k, and ` satisfy the triangle rule (7), contains one and
only one identity representation D0(R). Thus, a homo-
geneous polynomial of orders j, k, and ` with respect to
the coordinate vectors r1, r2, and r3, respectively, which
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satisfies the Laplace’s Eq. (9), does exist and is unique
up to a constant factor.

From the explicit formula for the spherical harmonic
polynomial [14], we have

Yk
±1(r) = ∓

√

k(k+1)(2k+1)

16π

{

(x±iy)zk−1+···
}

,

Yk
0 (r) =

√

(2k+1)

4π

{

zk+···
}

, (10)

where x, y, and z are the three components of r. Among
all spherical harmonic polynomials Yk

ν (r) with k given,
the term zk appears only in Yk

0 (r) and the terms xzk−1

and yzk−1 appear only in Yk
±1(r). Therefore, zj

1z
k
2zj+k−2n

3

is contained only once in the homogeneous polynomial
Ij,k,j+k−2n(r1,r2,r3), at Yj

0 (r1)Yk
0 (r2)Yj+k−2n

0 (r3), with
the coefficient

(

j k j+k−2n

0 0 0

)

. (11)

Thus the even invariant defined in (2) can be rewritten
more explicitly in the form

Ij,k,j+k−2n(r1,r2,r3)

=

(

j k j+k−2n

0 0 0

)

×P−1
j,k,j+k−2n

[j/2]
∑

a=0

j−2a
∑

b=0

[(k−b)/2]
∑

c=max{0,n−a−b}

Aabc

×ξa
1 ξc

2ξ
a+b+c−n
3 ηk−2c−b

1 ηj−2a−b
2 ηb

3,

Pj,k,j+k−2n =
∑

a

∑

b

∑

c

Aabc, (12)

where [m] denotes the largest integer equal to or
less than the non-negative real number m. Simi-
larly, x1y2z

j
1z

k
2 zj+k−2n

3 is contained only twice in the
homogeneous polynomial Ij+1,k+1,j+k−2n+1(r1,r2,r3), at
Yj+1

±1 (r1)Yk+1
∓1 (r2)Yj+k−2n+1

0 (r3), with the coefficient

i

2

√

(j+2)!(k+2)!

j!k!

(

j+1 k+1 j+k−2n+1

1 −1 0

)

. (13)

Thus the odd invariant defined in (2) can be rewritten
more explicitly in the form

Ij+1,k+1,j+k−2n+1(r1,r2,r3)

=
iζ

2

√

(j+2)!(k+2)!

j!k!

×
(

j+1 k+1 j+k−2n+1

1 −1 0

)

×Q−1
j,k,j+k−2n

[j/2]
∑

a=0

j−2a
∑

b=0

[(k−b)/2]
∑

c=max{0,n−a−b}

Babc

×ξa
1 ξc

2ξ
a+b+c−n
3 ηk−2c−b

1 ηj−2a−b
2 ηb

3,

Qj,k,j+k−2n =
∑

a

∑

b

∑

c

Babc. (14)

3 Even invariants

The coefficients Aabc in (12) are determined from the
conditions (9), leading directly to the following recursive
relations:

2a(2j−2a+1)Aabc

+(j−2a−b+2)(j−2a−b+1)A(a−1)bc

+(b+2)(b+1)A(a−1)(b+2)(c−1)

+2(b+1)(j−2a−b+1)A(a−1)(b+1)c=0, (15)

2c(2k−2c+1)Aabc

+(k−2c−b+2)(k−2c−b+1)Aab(c−1)

+(b+2)(b+1)A(a−1)(b+2)(c−1)

+2(b+1)(k−2c−b+1)Aa(b+1)(c−1)=0, (16)

2(a+b+c−n)(2k+2j−2a−2b−2c−2n+1)Aabc

+(k−2c−b+2)(k−2c−b+1)Aab(c−1)

+(j−2a−b+2)(j−2a−b+1)A(a−1)bc

+2(k−2c−b+1)(j−2a−b+1)Aa(b−1)c=0. (17)

Due to the property f) in Sec. 2, the solutions for Aabc

exist uniquely up to a common numerical factor, which
can be determined for convenience by

A00n =
(k−n)!(2j−1)!!

(k−2n)!(2j−2n−1)!!

×
λ
∏

m=1

2m(2j+2k−4n−2m+1), (18)

λ=[(j+k)/2]−n. (19)

Because of the normalization factor Pj,k,j+k−2n, the
choice for A00n does not matter to the final result of
Ij,k,j+k−2n. The coefficients Aabc can be calculated one
by one by mathematical induction from the recursive re-
lations (15–17), where the calculation path is critical.
The key point is that at each step of calculation using
one of (15–17), only one unknown coefficient is solved
from the three remaining known coefficients.
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In fact, the mathematical inductions are over-
lapped in the calculations of Aa(n−a+b)c and especially
of A(n+a)bc. Let us consider Aa(n−a+b)c for example.
One calculates Aa(n−a)c by usual mathematical induc-
tion through the calculations of Aa(n−a)1, Aa(n−a)2, and
Aa(n−a)d with 0 6 d 6 c−1 by (17). Then, one uses the
similar method to calculate Aa(n−a+1)c, Aa(n−a+2)c and so
on. The difficulty occurs when one calculates Aa(n−a+b)c

by (17) where Aa(n−a+d)c with 06d6 b−1 are assumed
to be known. One finds that there are two coefficients
Aa(n−a+b)c and Aa(n−a+b)(c−1) in (17) to be determined.
One has to calculate Aa(n−a+b)0, Aa(n−a+b)1, Aa(n−a+b)2,
and Aa(n−a+b)d with 06d6c−1. This indicates that the
overlapped mathematical inductions occur in calculating
Aa(n−a+b)c, where Aa(n−a+b)c is calculated by (17), under
two assumptions that both Aa(n−a+d)c with 06d6 b−1
and Aa(n−a+b)d with 06d6c−1 are known.

First, we calculate A0b(n−b) from (16), and Aab(n−a−b)

from (15) by mathematical induction:

Aab(n−a−b) = Ga,b

(j−n)!(k−n)!

(j−2a−b)!(k−2n+2a+b)!

×
λ
∏

m=1

2m(2j+2k−4n−2m+1), (20)

where 06a6n, 06b6n−a, and

Ga,b =

a
∑

r=max{0,2a+b−n}

(−1)a+b+rn!

2a−rr!(a−r)!b!

× (j−2a−b+r)!(k−2n+2a+b)!

(n−2a−b+r)!(j−n)!(k−2n+2a+b−r)!

× (2j−2a−1)!!(2k−2n+4a+2b−2r−1)!!

(2j−2n−1)!!(2k−2n−1)!!
. (21)

Evidently, Ga,b=0 if a<0, or b<0, or a+b>n. The func-
tion Ga,b will play an essential role for later calculations.

Second, we calculate Aab(n−a−b+c) from (17) by math-
ematical induction:

Aab(n−a−b+c)

=

c
∑

s=0

c
∑

r=s

Ga−c+r,b−s

× (−1)c2s(c!)(j−n)!(k−n)!

(c−r)!(r−s)!s!(j−2a−b)!(k−2n+2a+b−2c)!

×
λ
∏

m=c+1

2m(2j+2k−4n−2m+1), (22)

where 06a6n, 06b6n−a, and 06c6[(k+b)/2]+a−n. For
the case of c>b, terms with b<s6c, which may occur in
the sum over s in (22), vanish because Ga,b =0 if b<0.
For the case of c>a, terms with c−a>r>s, which may

occur in the sum over r in (22), vanish because Ga,b=0 if
a<0. Thus, the upper bound of summation over s in (22)
can be replaced equivalently by min{c,b}, and the lower
bound of summation over r in (22) becomes max{s,c−a}.
Similar cases occur in the following formulas.

Third, we calculate Aa(n−a+b)c from (17) by mathe-
matical induction:

Aa(n−a+b)c =

min{b+c,n−a+b}
∑

s=max{0,b−a}

min{s+c,b+c}
∑

r=max{s,b+c−a}

×Ga−b−c+r,n−a+b−s

(−1)b+c2s(b+c)!

(r−s)!s!(b+c−r)!

× (j−n)!(k−n)!

(j−n−a−b)!(k−n+a−b−2c)!

×
λ
∏

m=b+c+1

2m(2j+2k−4n−2m+1), (23)

where 06a6n, 06b6j−n−a, and 06c6[(k−n+a−b)/2].
For the case of b+c>a, terms with s6r<b+c−a, which may
occur in the sum over r in (23), vanish because Ga,b=0 if
a<0. When s>b, terms with b+c<r6s+c vanish due to
the existence of the factor (b+c−r)! at the denominator.
For the case of b>a, terms with 06s<b−a, which may
occur in the sum over s in (23), vanish because Ga,b =0
if b > n. Finally, for the case of c > n−a, terms with
n−a+b<s6b+c, which may occur in the sum over s in
(23), vanish because Ga,b=0 if b<0.

Finally, we calculate A(n+a)bc from (17) by mathe-
matical induction:

A(n+a)bc =
b
∑

s=max{0,b−n}

s+c
∑

r=max{s,b+c−n}

×Gn−b−c+r,b−s

(−1)a+b+c2s(a+b+c)!

(r−s)!s!(a+b+c−r)!

× (j−n)!(k−n)!

(j−2n−2a−b)!(k−2c−b)!

×
λ
∏

m=a+b+c+1

2m(2j+2k−4n−2m+1), (24)

where 06a6[j/2]−n, 06b6j−2n−2a, and 06c6[(k−b)/2].
For the case of b+ c > n, terms with s 6 r < b+ c−n,
which may occur in the sum over r in (24), vanish be-
cause Ga,b =0 if a<0. For the case of b>n, terms with
06s<b−n, which may occur in the sum over s in (24),
vanish because Ga,b=0 if b>n.

For Ij,k,j+k(r1,r2,r3) (the case n=0) we have G0,0=1
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and

Aabc =
(−1)a+b+c2b(a+b+c)!j!k!

a!b!c!(j−2a−b)!(k−2c−b)!

×
λ
∏

m=a+b+c+1

2m(2j+2k−2m+1). (25)

For Ij,k,j+k−2(r1,r2,r3) (the case n =1) we have G0,0 =
j(2j−1), G0,1=−(2j−1)(2k−1), G1,0=k(2k−1), and

A00(1+c) =
(−1)c(k−1)!(2j−1)

(k−2−2c)!

×
λ
∏

m=c+1

2m(2j+2k−2m−3),

A0(1+b)c = [2cj−(b+1)(2k−1)](2j−1)

× (−1)b+c2b(b+c)!(j−1)!(k−1)!

(c)!(b+1)!(j−1−b)!(k−1−b−2c)!

×
λ
∏

m=b+c+1

2m(2j+2k−2m−3).

A(1+a)bc = [2cj(2j−1)−b(2j−1)(2k−1)

+2(a+1)k(2k−1)]

× (−1)a+b+c2b−1(a+b+c)!(j−1)!(k−1)!

(a+1)!b!c!(j−2−2a−b)!(k−2c−b)!

×
λ
∏

m=a+b+c+1

2m(2j+2k−2m−3).

In the following we list some even invariants
Ij,k,j+k−2n for reference.

I0,0,0 = 1, I0,1,1=
−1√

3
η1,

I0,2,2 =
1√
5

{

1

2
[3η2

1−ξ2ξ3]

}

,

I0,3,3 =
−1√

7

{

1

2
[5η3

1−3ξ2ξ3η1]

}

,

I0,4,4 =
1

3

{

1

8
[35η4

1−30ξ2ξ3η
2
1+3ξ2

2ξ
2
3 ]

}

,

I0,5,5 =
−1√
11

{

1

8
[63η5

1−70ξ2ξ3η
3
1+15ξ2

2ξ
2
3η1]

}

,

I0,6,6 =
1√
13

{

1

16
[231η6

1−315ξ2ξ3η
4
1

+105ξ2
2ξ

2
3η

2
1−5ξ3

2ξ
3
3 ]

}

,

I1,1,2 =

√

2

15

{

1

2
[3η1η2−ξ3η3]

}

,

I1,2,3 = −
√

3

35

{

1

2
[5η2

1η2−ξ2ξ3η2−2ξ3η1η3]

}

,

I1,3,4 =
2

3

√

1

7

{

1

8
[35η3

1η2−15ξ2ξ3η1η2−15ξ3η
2
1η3

+3ξ2ξ
2
3η3]

}

,

I1,4,5 = −1

3

√

5

11

{

1

8
[63η4

1η2−42ξ2ξ3η
2
1η2

+3ξ2
2ξ

2
3η2−28ξ3η

3
1η3+12ξ2ξ

2
3η1η3]

}

,

I1,5,6 =

√

6

143

{

1

16
[231η5

1η2−210ξ2ξ3η
3
1η2+35ξ2

2ξ
2
3η1η2

−105ξ3η
4
1η3+70ξ2ξ

2
3η

2
1η3−5ξ2

2ξ
3
3η3]

}

,

I2,2,2 = −
√

2

35

{

1

2
[−3ξ2η

2
2+9η1η2η3−3ξ3η

2
3

−3ξ1η
2
1+2ξ1ξ2ξ3]

}

,

I2,2,4 =

√

2

35

{

1

8
[35η2

1η
2
2−5ξ2ξ3η

2
2−20ξ3η1η2η3

+2ξ2
3η

2
3−5ξ1ξ3η

2
1+ξ1ξ2ξ

2
3 ]

}

,

I2,3,3 =
2√
105

{

1

8
[−30ξ2η1η

2
2+75η2

1η2η3−3ξ2ξ3η2η3

−30ξ3η1η
2
3−25ξ1η

3
1+21ξ1ξ2ξ3η1]

}

,

I2,3,5 = −
√

10

231

{

1

8
[63η3

1η
2
2−21ξ2ξ3η1η

2
2−42ξ3η

2
1η2η3

+6ξ2ξ
2
3η2η3+6ξ2

3η1η
2
3−7ξ1ξ3η

3
1+3ξ1ξ2ξ

2
3η1]

}

,

I2,4,4 =
−2

3

√

5

77

{

1

8
[−63ξ2η

2
1η

2
2+9ξ2

2ξ3η
2
2+147η3

1η2η3

−27ξ2ξ3η1η2η3−63ξ3η
2
1η

2
3+9ξ2ξ

2
3η

2
3−49ξ1η

4
1

+51ξ1ξ2ξ3η
2
1−6ξ1ξ

2
2ξ

2
3 ]

}

,
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I2,4,6 =

√

5

143

{

1

16
[231η4

1η
2
2−126ξ2ξ3η

2
1η

2
2+7ξ2

2ξ
2
3η

2
2

−168ξ3η
3
1η2η3+56ξ2ξ

2
3η1η2η3+28ξ2

3η
2
1η

2
3

−4ξ2ξ
3
3η

2
3−21ξ1ξ3η

4
1+14ξ1ξ2ξ

2
3η

2
1−ξ1ξ

2
2ξ

3
3 ]

}

,

I3,3,4 = −
√

2

77

{

1

8
[−70ξ2η1η

3
2+175η2

1η
2
2η3+5ξ2ξ3η

2
2η3

−100ξ3η1η2η
2
3+10ξ2

3η
3
3−70ξ1η

3
1η2

+60ξ1ξ2ξ3η1η2+5ξ1ξ3η
2
1η3−7ξ1ξ2ξ

2
3η3]

}

,

I3,3,6 =
10√
3003

{

1

16
[231η3

1η
3
2−63ξ2ξ3η1η

3
2−189ξ3η

2
1η

2
2η3

+21ξ2ξ
2
3η

2
2η3+42ξ2

3η1η2η
2
3−2ξ3

3η
3
3−63ξ1ξ3η

3
1η2

+21ξ1ξ2ξ
2
3η1η2+21ξ1ξ

2
3η

2
1η3−3ξ1ξ2ξ

3
3η3]

}

.

4 Odd invariants

Substituting (14) into Laplace’s equations (9), we ob-
tain the recursive relations for the coefficients Babc

2a(2j−2a+3)Babc

+(j−2a−b+2)(j−2a−b+1)B(a−1)bc

+(b+2)(b+1)B(a−1)(b+2)(c−1)

+2(b+1)(j−2a−b+1)B(a−1)(b+1)c=0, (26)

2c(2k−2c+3)Babc

+(k−2c−b+2)(k−2c−b+1)Bab(c−1)

+(b+2)(b+1)B(a−1)(b+2)(c−1)

+2(b+1)(k−2c−b+1)Ba(b+1)(c−1)=0, (27)

2(a+b+c−n)(2k+2j−2a−2b−2c−2n+3)Babc

+(k−2c−b+2)(k−2c−b+1)Bab(c−1)

+(j−2a−b+2)(j−2a−b+1)B(a−1)bc

+2(k−2c−b+1)(j−2a−b+1)Ba(b−1)c=0. (28)

The only difference between the two sets of equations
(15–17) and (26–28) is that “+1” in the first term of
each equation of the first set is replaced by “+3” in that
of the second set. Thus, through the same procedure we
have calculated the coefficients Babc listed below, which

are very similar to the coefficients Aabc.

B00n =
(k−n)!(2j+1)!!

(k−2n)!(2j−2n+1)!!

×
λ
∏

m=1

2m(2j+2k−4n−2m+3). (29)

Bab(n−a−b) = Fa,b

(j−n)!(k−n)!

(j−2a−b)!(k−2n+2a+b)!

×
λ
∏

m=1

2m(2j+2k−4n−2m+3), (30)

where 06a6n, 06b6n−a, and

Fa,b =

a
∑

r=max{0,2a+b−n}

(−1)a+b+rn!

2a−rr!(a−r)!b!

× (j−2a−b+r)!(k−2n+2a+b)!

(n−2a−b+r)!(j−n)!(k−2n+2a+b−r)!

× (2j−2a+1)!!(2k−2n+4a+2b−2r+1)!!

(2j−2n+1)!!(2k−2n+1)!!
. (31)

Evidently, Fa,b=0 if a<0, or b<0, or a+b>n.

Bab(n−a−b+c)

=

min{c,b}
∑

s=0

c
∑

r=max{s,c−a}

Fa−c+r,b−s

× (−1)c2s(c!)(j−n)!(k−n)!

(c−r)!(r−s)!s!(j−2a−b)!(k−2n+2a+b−2c)!

×
λ
∏

m=c+1

2m(2j+2k−4n−2m+3), (32)

where 06a6n, 06b6n−a, and 06c6[(k+b)/2]+a−n.

Ba(n−a+b)c

=

min{b+c,n−a+b}
∑

s=max{0,b−a}

min{s+c,b+c}
∑

r=max{s,b+c−a}

Fa−b−c+r,n−a+b−s

(−1)b+c2s(b+c)!

(r−s)!s!(b+c−r)!

× (j−n)!(k−n)!

(j−n−a−b)!(k−n+a−b−2c)!

×
λ
∏

m=b+c+1

2m(2j+2k−4n−2m+3), (33)
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where 06a6n, 06b6j−n−a, and 06c6[(k−n+a−b)/2].

B(n+a)bc =
b
∑

s=max{0,b−n}

s+c
∑

r=max{s,b+c−n}

Fn−b−c+r,b−s

(−1)a+b+c2s(a+b+c)!

(r−s)!s!(a+b+c−r)!

× (j−n)!(k−n)!

(j−2n−2a−b)!(k−2c−b)!

×
λ
∏

m=a+b+c+1

2m(2j+2k−4n−2m+3), (34)

where 06a6[j/2]−n, 06b6j−2n−2a, and 06c6[(k−b)/2].
In the following we list some odd invariants.

I1,1,1 =
iζ√
6
,

I1,2,2 = −iζ

√

3

10
η1,

I1,3,3 = iζ

√

3

7

{

1

4
[5η2

1−ξ2ξ3]

}

,

I1,4,4 = −iζ

√
5

3

{

1

4
[7η3

1−3ξ2ξ3η1]

}

,

I1,5,5 = iζ

√

15

22

{

1

8
[21η4

1−14ξ2ξ3η
2
1+ξ2

2ξ
2
3 ]

}

,

I1,6,6 = −iζ

√

21

26

{

1

8
[33η5

1−30ξ2ξ3η
3
1+5ξ2

2ξ
2
3η1]

}

,

I1,7,7 = iζ

√

14

15

{

1

64
[429η6

1−495ξ2ξ3η
4
1

+135ξ2
2ξ

2
3η

2
1−5ξ3

2ξ
3
3 ]

}

,

I2,2,3 = iζ3

√

2

35

{

1

4
[5η1η2−ξ3η3]

}

,

I2,3,4 = −iζ

√

5

7

{

1

4
[7η2

1η2−ξ2ξ3η2−2ξ3η1η3]

}

,

I2,4,5 = iζ

√

10

11

{

1

8
[21η3

1η2−7ξ2ξ3η1η2−7ξ3η
2
1η3

+ξ2ξ
2
3η3]

}

,

I2,5,6 = −iζ3

√

35

286

{

1

8
[33η4

1η2−18ξ2ξ3η
2
1η2

+ξ2
2ξ

2
3η2−12ξ3η

3
1η3+4ξ2ξ

2
3η1η3]

}

,

I2,6,7 = iζ2

√

21

65

{

1

64
[429η5

1η2−330ξ2ξ3η
3
1η2

+45ξ2
2ξ

2
3η1η2−165ξ3η

4
1η3+90ξ2ξ

2
3η

2
1η3

−5ξ2
2ξ

3
3η3]

}

,

I3,3,3 = −iζ

√

6

7

{

1

12
[−5ξ2η

2
2+25η1η2η3−5ξ3η

2
3

−5ξ1η
2
1+2ξ1ξ2ξ3]

}

,

I3,3,5 = iζ5

√

3

77

{

1

24
[63η2

1η
2
2−7ξ2ξ3η

2
2−28ξ3η1η2η3

+2ξ2
3η

2
3−7ξ1ξ3η

2
1+ξ1ξ2ξ

2
3 ]

}

,

I3,4,4 = iζ3

√

10

77

{

1

72
[−70ξ2η1η

2
2+245η2

1η2η3

−15ξ2ξ3η2η3−70ξ3η1η
2
3−49ξ1η

3
1+31ξ1ξ2ξ3η1]

}

,

I3,4,6 = −iζ5

√

7

143

{

1

8
[33η3

1η
2
2−9ξ2ξ3η1η

2
2−18ξ3η

2
1η2η3

+2ξ2ξ
2
3η2η3+2ξ2

3η1η
2
3−3ξ1ξ3η

3
1+ξ1ξ2ξ

2
3η1]

}

,

I3,5,5 = −iζ

√

210

143

{

1

24
[−45ξ2η

2
1η

2
2+5ξ2

2ξ3η
2
2+135η3

1η2η3

−25ξ2ξ3η1η2η3−45ξ3η
2
1η

2
3+5ξ2ξ

2
3η

2
3−27ξ1η

4
1

+23ξ1ξ2ξ3η
2
1−2ξ1ξ

2
2ξ

2
3 ]

}

,

I3,5,7 = iζ

√

210

143

{

1

64
[429η4

1η
2
2−198ξ2ξ3η

2
1η

2
2+9ξ2

2ξ
2
3η

2
2

−264ξ3η
3
1η2η3+72ξ2ξ

2
3η1η2η3+36ξ2

3η
2
1η

2
3

−4ξ2ξ
3
3η

2
3−33ξ1ξ3η

4
1+18ξ1ξ2ξ

2
3η

2
1−ξ1ξ

2
2ξ

3
3 ]

}

,

I4,4,5 = −iζ
15√
143

{

1

72
[−126ξ2η1η

3
2+441η2

1η
2
2η3
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−7ξ2ξ3η
2
2η3−196ξ3η1η2η

2
3+14ξ2

3η
3
3−126ξ1η

3
1η2

+84ξ1ξ2ξ3η1η2−7ξ1ξ3η
2
1η3−5ξ1ξ2ξ

2
3η3]

}

,

I4,4,7 = iζ
14

3

√

10

143

{

1

64
[429η3

1η
3
2−99ξ2ξ3η1η

3
2

−297ξ3η
2
1η

2
2η3+27ξ2ξ

2
3η

2
2η3+54ξ2

3η1η2η
2
3

−2ξ3
3η

3
3−99ξ1ξ3η

3
1η2+27ξ1ξ2ξ

2
3η1η2

+27ξ1ξ
2
3η

2
1η3−3ξ1ξ2ξ

3
3η3]

}

.

5 Conclusions

The rotational invariants Ij,k,`(r1,r2,r3) constructed
by three spherical harmonic polynomials are the homo-
geneous polynomials of orders j, k, and ` with respect to

the three coordinate vectors r1, r2, and r3, respectively.
We have rewritten the definitions for the invariants given
by Biedenharn and Louck more explicitly, derived the re-
cursive relations for the coefficients Aabc and Babc using
the Laplace’s equations, defined two key functions Ga,b

and Fa,b in (21) and (31), and calculated analytically the
expressions for Aabc and Babc by mathematical induc-
tion, as given in (22–24) and (32–34). Therefore, we have
completely solved the problem raised by Biedenharn and
Louck (p.308 of Ref. [2]). The present method can in
principle be generalized to the rotational invariants con-
structed by four or more spherical harmonic polynomials
although the definition for the invariants depends on the
order of coupling.

MA Zhong-Qi would like to thank Professor Zhang

Fu-Chun for the warm hospitality during his visit at the

University of Hong Kong where part of this work was

completed.

Appendix A

Invariants calculated from their definitions

Choosing a special rotation such that r1 is along the z

axis and r2 is in the xz plane with x positive, we have

Yj
µ(r1) = Yj

µ(ξ
1/2
1 ,0,0)=

√

(2j+1)ξj
1

4π

δµ0,

Yk
ν (r2) = Yk

ν (ξ
1/2
2 ,θ12,0)

= (−1)(ν+|ν|)/2

[

(2k+1)ξk
2 (k−|ν|)!(k+|ν|)!

4π4|ν|(k!)2

]1/2

×(sinθ12)
|ν|

P
(|ν|,|ν|)
k−|ν| (cosθ12),

Y`
−ν(r3) = Y`

−ν(ξ
1/2
3 ,θ13,ϕ)

= (−1)(−ν+|ν|)/2

[

(2`+1)ξ`
3(`−|ν|)!(`+|ν|)!

4π4|ν|(`!)2

]1/2

×(sinθ13)
|ν|

P
(|ν|,|ν|)
`−|ν| (cosθ13)e

−iνϕ
,

where P
(α,β)
n is the Jacobi’s polynomial (see 8.960 in Ref. [15])

P
(α,β)
n (x) =

1

2n

n
∑

m=0

(

n+α

m

)(

n+β

n−m

)

×(x−1)n−m(x+1)m
,

and the angles satisfy

cosθab =

3
∑

c=1

εabcηc (ξaξb)
−1/2

,

cosϕ =
cosθ23−cosθ12cosθ13

sinθ12 sinθ13
,

ζ = (ξ1ξ2ξ3)
1/2 sinθ12 sinθ13 sinϕ.

Thus,

Ij,k,`(r1,r2,r3)

=

√

ξ
j
1ξ

k
2 ξ`

3

k!`!

k
∑

ν=−k

(−1)ν

(

j k `

0 ν −ν

)

×

√

(k−ν)!(k+ν)!(`−ν)!(`+ν)!

4|ν|
(sinθ12 sinθ13)

|ν|

×P
(|ν|,|ν|)
k−|ν| (cosθ12)P

(|ν|,|ν|)
`−|ν| (cosθ13)e

−iνϕ
. (A1)

From the identity

cos(νϕ)+isin(νϕ)

= eiνϕ=[cosϕ+isinϕ]ν

=
ν
∑

r=0

(

ν

r

)

(cosϕ)ν−r (isinϕ)r
,
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one obtains for ν>0

cosνϕ =

[ν/2]
∑

r=0

r
∑

s=0

(−1)r+s

(

ν

2r

)(

r

s

)

(cosϕ)ν−2r+2s
,

sinνϕ = sinϕ

[(ν−1)/2]
∑

r=0

r
∑

s=0

(−1)r+s

(

ν

2r+1

)

×

(

r

s

)

(cosϕ)ν−1−2r+2s
.

Substituting them into (A1), we obtain

Ij,k,`(r1,r2,r3)

=

√

ξ
j
1ξ

k
2 ξ`

3

k!`!

k
∑

ν=−k

(−1)ν

(

j k `

0 ν −ν

)

×

√

(k−ν)!(k+ν)!(`−ν)!(`+ν)!

4|ν|
P

(|ν|,|ν|)

k−|ν|
(cosθ12)

×P
(|ν|,|ν|)

`−|ν|
(cosθ13)

[|ν|/2]
∑

r=0

r
∑

s=0

(−1)r+s

(

|ν|

2r

)(

r

s

)

×(cosθ23−cosθ12cosθ13)
|ν|−2r+2s

×
[(

1−cos2θ12

)(

1−cos2θ13

)]r−s
, (A2)

for even j+k+`, and

Ij,k,`(r1,r2,r3)

= −iζ

√

ξ
j−1
1 ξk−1

2 ξ`−1
3

k!`!

k
∑

ν=−k

(−1)νsign(ν)

×

(

j k `

0 ν −ν

)

√

(k−ν)!(k+ν)!(`−ν)!(`+ν)!

4|ν|

×P
(|ν|,|ν|)
k−|ν| (cosθ12)P

(|ν|,|ν|)
`−|ν| (cosθ13)

×

[(|ν|−1)/2]
∑

r=0

r
∑

s=0

(−1)r+s

(

|ν|

2r+1

)(

r

s

)

×(cosθ23−cosθ12cosθ13)
|ν|−1−2r+2s

×
[(

1−cos2θ12

)(

1−cos2θ13

)]r−s
. (A3)

for odd j+k+`.
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