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Temperature dependence of quarks and gluon vacuum condensate

in the Dyson-Schwinger Equations at finite temperature *
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Abstract: Based on the Dyson-Schwinger Equations (DSEs), the two-quark vacuum condensate, the four-quark

vacuum condensate, and the quark gluon mixed vacuum condensate in the non-perturbative QCD vacuum state

are investigated by solving the DSEs with rainbow truncation at zero- and finite- temperature, respectively. These

condensates are important input parameters in QCD sum rule with zero and finite temperature, and in studying

hadron physics, as well as predicting the quark mean squared momentum m2
0- also called quark virtuality in the

QCD vacuum state. The present calculated results show that these physical quantities are almost independent of the

temperature below the critical point temperature Tc =131 MeV, and above Tc the chiral symmetry is restored. For

comparison we calculate the temperature dependence of the “in-hadron condensate” for pion. At the same time, we

also calculate the ratio of the quark gluon mixed vacuum condensate to the two-quark vacuum condensate by using

these condensates, and the unknown quark mean squared momentum in the QCD vacuum state has been obtained.

The results show that the ratio m2
0(T ) is almost flat in the temperature region from 0 to Tc, although there are

drastic changes of the quark vacuum condensate and the quark gluon mixed vacuum condensate at the region. Our

predicted ratio comes out to be m2
0(T )=2.41 GeV2 at the Chiral limit, which is consistent with other theory model

predictions, and strongly indicates the significance that the quark gluon mixed vacuum condensate has played in the

virtuality calculations.
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1 Introduction

With the development of heavy-ion collision experi-
ments, more attention has been turned to exploring the
hot and dense QCD matter. The hot and dense mat-
ter can be studied via various approaches, such as: Lat-
tice QCD, QCD sum rules, chiral perturbation theory as
well as the Dyson-Schwinger Equations (DSEs) at finite
temperature. Due to the asymptotic freedom feature of
QCD, the QCD matter will take place as a phase tran-
sition from the hadronic phase, with quarks and gluons
being bound states inside the hadron, to the quark gluon
plasma phase where the bound clusters of quarks and
gluons have been de-confined at sufficient high temper-
ature and /or density. Studying the Chiral condensates
at zero- and finite temperature is of crucial importance
for nuclear and hadronic physics research, and even for

cosmological studies.
There are a lot of studies and published references

about the researches. Among these works the impor-
tant input ingredients are QCD vacuum condensates.
The vacuum of non-perturbative QCD is densely pop-
ulated by long-wave fluctuations of quark and gluon
fields. The order parameters of this complicated state
are described by various vacuum condensates 〈0|:q̄q :|0〉,
〈0 |: Ga

µνGa
µν :| 0〉, 〈0 |: q̄

[

igsG
a
µνσµν

λa

2

]

q :| 0〉, ···, which

are the vacuum matrix elements of various singlet com-
binations of quark and gluon fields. In QCD sum rules,
various condensates are input parameters so that they
play an important role to reproduce various hadronic
properties phenomenologically in the operator product
expansion calculations (OPE) [1–3]. Contrary to the im-
portant quark condensate 〈0|:q̄q :|0〉 and gluon conden-

Received 28 March 2014, Revised 20 August 2014

∗ Supported by National Natural Science Foundation of China (11365002), Guangxi Natural Science Foundation for Young Researchers
(2013GXNSFBB053007, 2011GXNSFA018140), Guangxi Education Department (2013ZD049), Guangxi Grant for Excellent Researchers
(2011-54), and Guangxi University of Science and Technology Foundation for PhDs (11Z16)

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded
by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy
of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

033101-1



Chinese Physics C Vol. 39, No. 3 (2015) 033101

sate 〈0 |:Ga
µνGa

µν :|0〉, the quark gluon mixed condensate

〈0 |: q̄
[

igsG
a
µνσµν

λa

2

]

q :|0〉 characterizes the direct corre-

lation between quarks and gluons, and together with the
nonzero two-quark condensate 〈0 |: q̄q :|0〉, it is responsi-
ble for the spontaneous breakdown of chiral symmetry.
In our previous works, we have studied the various non-
perturbative quantities at zero temperature by use of the
DSEs in the “rainbow” truncation, i.e. the quark con-
densate, the quark gluon mixed condensate, susceptibil-
ity, and so on [4]. Comparing our theoretical results with
others, such as, QCD sum rules [5], Lattice QCD [6], we
find our calculations are in a good agreement with theirs.
Now, we want to extend the zero temperature calcula-
tions of DSEs to nonzero temperature DSEs calculation.
There have been many works on the application of DSEs
at finite temperature; for a recent work please see [7].
As is known to all, solving DSEs at finite temperature
is quite difficult, but using separable model interactions
greatly simplifies the calculations [8, 9]. In the present
work, we study the DSEs at finite temperature by use of
the separable model interactions. The main interest of
this work focuses on the consideration of nonzero tem-
perature, which allows us to study the QCD phase dia-
gram along the axis of zero chemical potential, including
deconfinement and the chiral symmetry restoration.

2 DSEs at zero and finite temperature

2.1 DSEs at zero temperature

To study quark and gluon vacuum condensates, we
need to know the quark propagators, which determine
various quark condensates and the quark gluon mixed
condensates under the OPE constraints. The quark
propagator in configuration space is given as the mean
value of the time-ordered product formed by the quark
and antiquark fields

Sf(x)=〈0|Tqf(x)q̄f(0)|0〉. (1)

For the physical vacuum, the quark propagator can be di-
vided into a perturbative SPT

f (x) and a non-perturbative
part SNPT

f (x). One can write [10, 11]

Sf(x)=SPT
f (x)+SNPT

f (x). (2)

In momentum space, SNPT
f (p) is related to the quark self-

energy, so the quark propagator of DSEs can be written

S−1
f (p) = iγ·p+mf+

4

3
g2
s

∫
d4k

(2π)4
γµSf(k)

×Γ ν(k,p)Gµν(p−k). (3)

In Eq. (3), gs is the strong coupling constant of QCD with
the usual αs(Q) by the relationship of αs(Q)=g2

s (Q)/4π.
The Gµν(p−k) denotes the fully dressed gluon propaga-
tor which is an unknown factor, and mf is the current

quark mass with the subscript f to stand for the quark
flavor. In the Feymann gauge, the simplest separable
Ansatz has the following form [8, 9]

g2
s Gµν(p−k)→δµνG(p2,k2,p·k), (4)

G(p2,k2,p·k)=D0F0(p
2)F0(k

2)+D1F1(p
2)F1(k

2)(p·k),

(5)

where D0 and D1 are two strength parameters, and F0

and F1 are corresponding form factors.
As it is impossible to solve the complete set of DSEs,

one has to truncate this infinite tower in a physically ac-
ceptable way to reduce them to something that is soluble.
To do it, we use a bare vertex γν to replace the full one
Γ ν(k,p) in Eq. (3). This procedure is called a “Rainbow”
truncation of DSEs. Thus, Eq. (3) then becomes

S−1
f (p)=iγ·p+mf+

4

3
g2
s

∫
d4k

(2π)4
γµSf(k)γν(k,p)Gµν(p−k).

(6)
An important observation is that the general form of

the inverse quark propagator S−1
f (p) can be rewritten in

Euclidean space [12] as

S−1
f (p)=iγ·pAf(p

2)+Bf(p
2), (7)

with Af(p
2) and Bf(p

2) are scalar functions of the p2.
With “Rainbow” truncation, we can obtain the cou-

pling integral equations for quark amplitudes Af(p
2) and

Bf(p
2) and these coupling equations take the form in the

Feymann gauge

[Af(p
2)−1]p2=

8

3

∫
d4q

(2π)4
G(p−q)

Af(q
2)

q2A2
f (q

2)+B2
f (q

2)
p·q, (8)

Bf(p
2)−mf=

16

3

∫
d4q

(2π)4
G(p−q)

Bf(q
2)

q2A2
f (q

2)+B2
f (q

2)
. (9)

2.2 DSEs at finite temperature

So far, we have only considered the quark propa-
gator at zero temperature. An extension to the finite
temperature from the zero temperature of DSEs is sys-
tematically accomplished by a transcription of the Eu-
clidean quark four momentum via p→pn=(ωn,~p), where
ωn =(2n+1)πT for Fermion are the discrete Matsubara
frequencies [13]. Therefore, a sum over the Matsubara
frequencies replaces the integral over the energy.

The fully dressed quark DSEs propagator at finite
temperature can now be written as

S−1
f (pn,T ) = i~γ·~pAf(p

2
n,T )+iγ4ωnCf(p

2
n,T )

+Bf(p
2
n,T ), (10)

where p2
n=ω2

n+~p2. Due to the breaking of O(4) symme-
try in the four momentum space, we have three quark
amplitudes Af , Bf and Cf . The solutions have the form
Af(p

2
n,T )=1+af(T )F1(p

2
n), Bf(p

2
n,T )=mf+bf(T )F0(p

2
n)
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and Cf(p
2
n,T )=1+cf(T )F1(p

2
n), are defined by the tem-

perature dependent coefficients af(T ), bf(T ) and cf(T ).
The explicit forms of af(T ), bf(T ) and cf(T ) are given by

af(T ) =
8D1

9
T

∑

n

∫
d3p

(2π)3
F1(p

2
n)~p2

×[1+af(T )F1(p
2
n)]d−1

f (p2
n,T ), (11)

cf(T ) =
8D1

3
T

∑

n

∫
d3p

(2π)3
F1(p

2
n)ω2

n

×[1+cf(T )F1(p
2
n)]d−1

f (p2
n,T ), (12)

bf(T ) =
16D0

3
T

∑

n

∫
d3p

(2π)3
F0(p

2
n)

×[mf+bf(T )F0(p
2
n)]d−1

f (p2
n,T ), (13)

where the denominator df(p
2
n,T ) of the af , bf and cf is

given by

d−1
f (p2

n,T )=~p2A2
f (p

2
n,T )+ω2

nC2
f (p2

n,T )+B2
f (p

2
n,T ). (14)

As we know, solving DSEs at finite temperature is
quite difficult, but using the separable model interac-
tions greatly simplifies the calculations. For simplicity,
we choose the following form for the separable interac-
tion form factor [14]:

F0(p
2) = exp(−p2/Λ2

0), (15)

F1(p
2) =

1+exp(−p2
0/Λ2

1)

1+exp((p2−p2
0)/Λ2

1)
, (16)

which is successfully used to describe the phenomenology
of the light pseudoscalar mesons. Substituting Eqs. (15,
16) into Eqs. (11–13) one can solve gap equations for a
given temperature T , and get the quark amplitudes Af ,
Bf and Cf . However, we need to control the appropriate
number of Matsubara modes in any calculation.

2.3 Formulae of various quark vacuum conden-

sates at zero temperature

At the lowest dimension, quark and gluon vacuum
condensates play an essential role in describing proper-
ties of nuclear matter and hadron physics. The nonlocal
quark vacuum condensate 〈0 |: q̄(x)q(0):|0〉 can be given
as [15]

〈0|:q̄(x)q(0):|0〉

= (−4Nc)

∫
d4p

(2π)4
Bf(p

2)eipx

p2A2
f (p

2)+B2
f (p

2)

= − 3

4π
2

∫
∞

0

p2dp2 Bf(p
2)

p2A2
f (p

2)+B2
f (p

2)

2J1(
√

p2x2)√
p2x2

, (17)

where Nc =3 is the number of colors. J1 in Eq. (17) is
the Bessel function. When x=0, the local quark vacuum

condensate is given by

〈0|:q̄(0)q(0):|0〉=−12

∫
d4p

(2π)4
Bf(p

2)

p2A2
f (p

2)+B2
f (p

2)
. (18)

Another important physical quantity is the four-
quark vacuum condensate. The factorization hypothe-
sis for the four-quark condensate is well-known from the
works of Shifman, Vainshtein, and Zakharov [1], and has
been extensively used in QCD sum rules through the op-
erator product expansion approach. According to [16–
18], we have the nonlocal four-quark vacuum condensate

〈0|:q̄(x)γµ

λa
C

2
q(0)q̄(x)γµ

λa
C

2
q(0):|0〉

〈0|:q̄(x)γµ

λa
C

2
q(0)q̄(x)γµ

λa
C

2
q(0):|0〉

= −
∫

d4p

(2π)4

∫
d4q

(2π)4
eix.(p−q)

[

43 Bf(p
2)

p2A2
f (p

2)+B2
f (p

2)

× Bf(q
2)

q2A2
f (q

2)+B2
f (q

2)
+32

Af(p
2)

p2A2
f (p

2)+B2
f (p

2)

× Af(q
2)

q2A2
f (q

2)+B2
f (q

2)
p·q

]

. (19)

Then, the local (x=0) four-quark vacuum condensate is
similarly given by

〈0|:q̄(0)γµ

λa
C

2
q(0)q̄(0)γµ

λa
C

2
q(0):|0〉

= −43

∫
d4p

(2π)4

[

Bf(p
2)

p2A2
f (p

2)+B2
f (p

2)

]2

= −4

9
〈0|:q̄(0)q(0):|0〉2, (20)

which is consistent with the vacuum saturation assump-
tion of [1].

Besides the quark vacuum condensate, the quark
gluon mixed vacuum condensate is another important
chiral order parameter of the QCD vacuum state, which
plays an important role in the application of QCD sum
rules. In the framework of the global color symmetry
model, the local quark gluon mixed vacuum condensates
are given by [16, 19]

〈0|:q̄(0)[gsσG(0)]q(0):|0〉

= − Nc

16π
2

{

12

∫
dp2 p4Bf(p

2)(2−Af(p
2))

p2A2
f (p

2)+B2
f (p

2)

+
27

4

∫
dp2p2Bf(p

2)
[2Af(p

2)(Af(p
2)−1)]p2+B2

f (p
2)

p2A2
f (p

2)+B2
f (p

2)

}

.

(21)

033101-3



Chinese Physics C Vol. 39, No. 3 (2015) 033101

2.4 Formulae of various quark vacuum conden-

sates at finite temperature

It is a common belief that the quark vacuum conden-
sate depends on the temperature T . In the case of finite
temperature, one usually takes the same expression as
the discussions above to study the temperature depen-
dence of the quark vacuum condensate [9]. For local
quark vacuum condensates we naturally have

〈0|:q̄(0)q(0):|0〉T

= −4NcT

∞
∑

n=−∞

∫
d3p

(2π)3

× Bf(p
2
n,T )

~p2A2
f (p

2
n,T )+ω2

nC2
f (p2

n,T )+B2
f (p

2
n,T )

. (22)

It is still a matter of debate for the four-quark con-
densate when T 6=0. It was shown in [20], that factoriza-
tion hypothesis implies that the four-quark condensate
becomes dependent on the QCD renormalization scale.
In addition, theoretical arguments from the chiral per-
turbation theory also do not support this approximation
at the next to next leading order, except in the chiral
limit [21, 22]. For simplicity, we take the form

〈0|:q̄(0)γµ

λa
C

2
q(0)q̄(0)γµ

λa
C

2
q(0):|0〉T

= −4

9
〈0|:q̄(0)q(0):|0〉2T , (23)

as to the quark gluon mixed vacuum condensate in T 6=0
region, we have

〈0|:q̄(0)[gsσG(0)]q(0):|0〉T = −36T

∞
∑

n=−∞

∫
d3p

(2π)3
Bf(p

2
n,T )[(2−Af(p

2
n,T ))p2+(2−Cf(p

2
n,T ))ω2

n]

p2A2
f (p

2
n,T )+C2

f (p2
n,T )ω2

n+B2
f (p

2
n,T )

−81

4
T

∞
∑

n=−∞

∫
d3p

(2π)3

×2Bf(p
2
n,T )[Af(p

2
n,T )(Af(p

2
n,T )−1)p2+Cf(p

2
n,T )(Cf(p

2
n,T )−1)ω2

n]+B3
f (p

2
n,T )

p2A2
f (p

2
n,T )+C2

f (p2
n,T )ω2

n+B2
f (p

2
n,T )

. (24)

The finite temperature DSEs provide a valuable non-
perturbation tool for studying temperature dependent
field theories. Phenomena, such as deconfinement, dy-
namical chiral symmetry breaking, temperature depen-
dence of quark mass, and even cosmological investigation
which cannot be explained by perturbation treatments,
can be understood in terms of its solution of the DSEs
at zero and finite temperature. Eqs. (11–13).

For completeness we also study the “in-hadron con-
densate”. A rigorous definition of the “in-hadron con-
densate” was provided by [23–25]

−〈q̄q〉π

µ=−fπ〈0|:q̄(0)γ5q(0):|0〉=fπρπ, (25)

where ρπ has the form

iρπ=Z4tr

∫
d4q

(2π)4
γ5Sf(q+)Γπ(q;P )Sf(q−), (26)

where q± = q±P/2, Sf(q±) is the dressed quark propa-
gator. The trace evaluation is routine. Γπ(q;P ) is the
pion’s Bethe-Salpeter (BS) amplitude, with the separa-
ble interaction. The general form of finite temperature
dependence of the BS amplitude is [14]

Γπ(qn;Pm) = γ5(iEPS(P
2
m)+γ4ΩmF̃PS(P

2
m)

+ ~γ·~PFPS(P
2
m))F0(q

2
n), (27)

where the various symbols are given in [14, 25].

3 Calculations and theoretical predic-

tions

We first solve the quark’s DSEs at zero tempera-
ture under rainbow truncation and separated interac-
tion model for the gluon propagator with parameters

mud = 5.5 MeV, ms = 117 MeV, Λ0 =758 MeV, Λ1 =
961 MeV, p0 =600 MeV, D0Λ

2
0 =219, D1Λ

4
0 =40, which

are completely fixed by meson calculated phenomenolog-
ically from the model as given in [9]. The present calcu-
lating results of DSEs at zero temperature are displayed
in Fig. 1 and Fig. 2 as a basic test of current work.

Fig. 1. p2-dependence of quark self-energy ampli-
tudes Af(p

2), subscript f for the ud quark, the s
quark and the chiral limit cases.

In order to demonstrate the temperature dependence
of quark propagators, we use the Matsubara formula,
and we then solve quark’s DSEs at nonzero temperature
with the same gluon propagator and parameters. The
results are given in Fig. 3 and Fig. 4. From Fig. 3, we
can find that, for low temperature, the vector parts of
the quark propagator Af(0,T ) and Cf(0,T ) coincide with
each other, they are almost the same. However, for the

033101-4
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Fig. 2. p2-dependence of quark self-energy ampli-
tudes Bf (p

2), subscript f for the ud quark, the s
quark and the chiral limit cases.

Fig. 3. T -dependence of quark self-energy ampli-
tudes Af(0,T ), and Cf (0,T ), subscript f for the
ud quark, the s quark and the chiral limit cases.

Fig. 4. T -dependence of quark self-energy ampli-
tudes Bf (0,T ), subscript f for the ud quark, the s
quark and the chiral limit cases.

temperature higher than about T = 131 MeV, they be-
come dramatically different. The reason is that the O(4)
symmetry has been broken.

Using the individual solutions of the quark’s DSEs
at zero- and finite temperature, Af , Bf and Cf we ob-
tain the properties of the QCD vacuum at zero- and
nonzero temperature and in the chiral limit. The quark
vacuum condensate 〈q̄q〉, the four-quark vacuum conden-
sate 〈q̄Γ qq̄Γ q〉 and the quark gluon mixed vacuum con-
densate 〈q̄[gσG]q〉 are important condensates of the low-
est dimension, which reflect the non-perturbative struc-
ture of the QCD vacuum state, and can be the chiral
order parameter of QCD. In Fig. 5, the temperature de-
pendence of the two-quark condensate, the four-quark
condensate and the quark gluon mixed condensate in
the chiral limit and in the separable model are plot-
ted respectively. We predicted the critical temperature
for the chiral symmetry restoration to be Tc=131 MeV.
These order parameters give the same critical temper-
ature and the same critical behavior. From Fig. 5, we
find these three condensates are almost independent of
the temperature below Tc, while a clear signal of chi-
ral symmetry restoration is shown at Tc. For compar-
ison we calculate the temperature dependence of the
“in-hadron condensate” for pion shown in Fig. 5, when
T = 0 we have 〈q̄q〉π

µ=1 GeV=(0.229 GeV)3, which is ap-
proximate to 〈q̄q〉ud

µ=1 GeV as expected. We also calcu-
late the ratio of the quark gluon mixed vacuum con-
densate to the two-quark vacuum condensate. The re-
sults are shown in Fig. 6. We can see from the figure,
although there are dramatic changes of the quark con-
densate and the quark gluon mixed condensate near Tc,
the ratio m2

0(T ) is almost flat when the temperature at

Fig. 5. T -dependence of the quark condensate, the
four-quark condensate and the mixed quark gluon
condensate in the chiral limit cases, T -dependence
of “in-hadron condensate” for pion is given for
comparison.

033101-5
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Fig. 6. T -dependence of the ratio of the mixed
quark gluon condensate to the quark condensate,

m2
0=

〈0|:q̄(0)gσ·G(0)q(0):|0〉T

〈q̄q〉T

, in the chiral limit

case.

the region from 0 to Tc. At the chiral limit, the ratio
m2

0(0) = 2.41 GeV2, which is larger in comparison with
the results from Lattice QCD which is about 1 GeV2

[26]. This fact shows the great significance that the quark
gluon mixed vacuum condensate has played in OPE cal-
culations.

4 Summary and concluding remarks

In summary, we study temperature dependence of
fully dressed quark propagator Sf(p

2,T ) in QCD by use

of the DSEs at zero- and finite- temperature under the
“rainbow” truncation, Γ ν =γν and the separated inter-
action model for the gluon propagator. We solve the
DSEs numerically and get quark propagator functions,
Af(p

2,T ), Bf(p
2,T ) and Cf(p

2,T ) in Eq. (10) at two cases
of T = 0 and T 6= 0, and then we obtained the tem-
perature dependence of the quark propagator Sf(p

2,T ).
The resulting quark propagator at the finite tempera-
ture has no Lehmann representation and hence there are
no quark production thresholds in any observable cal-
culations. The absence of such thresholds admits the
interpretation that Sf(p

2,T ) describes the propagator of
a confined quark. With the solutions of the quark’s DSEs
Af , Bf and Cf , the temperature dependence of the two-
quark vacuum condensate, the four-quark vacuum con-
densate, and the quark gluon mixed vacuum condensate
in the chiral limit are obtained. We find these conden-
sates have the same critical temperature Tc =131 MeV
for the chiral symmetry restoration and the same critical
behavior for QCD phase transition, which characterize
different aspects of the QCD vacuum. At the same time,
using calculation condensates we also obtain the quark
virtuality which is the ratio between the quark gluon
mixed vacuum condensate and the two-quark vacuum
condensate. The calculation result shows that the quark
virtuality is insensitive to temperature below the critical
point Tc=131 MeV. The quark virtuality is an unknown
physical quantum and has to be predicted theoretically
in an acceptable way.
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