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Combining upper limits with a Bayesian approach *
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Abstract: We discuss how to determine and combine upper limits based on observed events and estimated back-

grounds with a Bayesian method, when insignificant signals are observed in independent measurements. In addition

to some general features deduced from the analytical formulae, systematic numerical results are obtained by a C++

program (CULBA) for low-count experiments, which can be used as a reference to combine two upper limits.
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1 Introduction

How to combine independent results to extract the
most information appropriately is a crucial problem for
experimentalists. Some statistical methods have been
proposed [1], and the Bayesian method is a promising
one [2]. Its basic idea is simple; the probability density
function (PDF), f(µ|x), of a truth parameter µ deduced
from an observational parameter x is read as [3]:

f(µ|x)=
f(x|µ)f0(µ)∫
f(x|µ)f0(µ)dµ

, (1)

in which f0(µ), named the prior, is the degree of belief
attributed to µ before observation, and f(µ|x), called
the posterior, corresponding to the prior, is the updated
likelihood that µ will produce the observed effect x.

The Bayesian method has the advantage of combining
results since it provides a natural means to include ad-
ditional knowledge by adding nuisance parameters, com-
pared with other statistics methods [4]. However, an
obvious weakness of this method is that its posterior de-
pends on the choice of the prior. Even for a uninfor-
mative prior, there are different proposals such as uni-
form prior, Haldane prior [5], Jeffreys prior [6], reference
prior [7] and so on [8]. How to select an appropriate
prior is a kind of art. This situation is even worse for
rare processes and small signals, although that has been
discussed somewhat in depth and methods based on the
spirit of the Bayesian method have been developed [9–
11]. Here experimentalists face a double risk of missing

a real signal or ruining physics sensitivity. In this paper,
we show that, analytically and numerically, by using the
first experiment result as the prior for the second one
to combine two upper limits will improve this situation
significantly. We then partially solve this problem.

2 Combining two probability density

functions

As a starting point, let us consider a counting mea-
surement on the number of events in a small signal. In
the signal region, x events are observed, that is a Poisson
random variable with average value λS+λB, where λS and
λB are the expected numbers of signal and background
events respectively. λS is the signal parameter that one
wants to infer, while λB is a nuisance parameter, which
could be estimated by background regions or theoretical
predictions. From the spirit of the Bayesian method, it
is natural to deduce the probability of λS signal [12]

f(λS|x,f0(λS,λB))

=

∫
e−(λS+λB)(λS+λB)xf0(λS,λB)dλB∫∫

e−(λS+λB)(λS+λB)xf0(λS,λB)dλSdλB

. (2)

Usually the priors of signal and background are in-
dependent, i.e. f0(λS,λB)=f0(λS)f0(λB). Suppose there
are two experiments examining the same physics signal
λS, with observation x1 and x2 respectively. As pointed
out by D’Agostini [12] (section 6.3), by applying Bayes’
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theorem a second time, i.e. using the posterior of the first
experiment as the prior for the second one, we obtain the
final posterior PDF for λS, by which the final result for
the λS of two experiments can be inferred. However,
in general λS is related to a parameter B, which is the
quantity to be measured, by an experimental factor h
via λS=hB. For example, in e+e− collision experiments,

if we want to measure a branching ratio B for a decay
R→f , then h=Lε, where L and ε are the accumulated
luminosity and the detection efficiency for R→f signal
events, respectively. Defining h1 and h2 are the experi-
mental factors of the two experiments respectively, and
replacing f0(λS) in Eq. (2) with f(λS|x1,f0(λS,λB1)), af-
ter some derivation we get

f(B|x2,f0(λS2,λB2
))=

∫∫
e−[(h1+h2)B+λB1

+λB2
](h1B+λB1

)x1(h2B+λB2
)x2f0(λS1)f0(λB1

)f0(λB2
)dλB1

dλB2∫∫∫
e−[(h1+h2)B+λB1

+λB2
](h1B+λB1

)x1(h2B+λB2
)x2f0(λS1)f0(λB1

)f0(λB2
)dλS1dλB1

dλB2

. (3)

Here f0(λS1) is only the prior of the first experiment, and it can be set to a uniform shape f0(λS1)=k (k is a constant)
to indicate there is totally no knowledge before this measurement. For simplicity we normalize this formula to the
number of the signal of the second experiment (renamed as λS):

f(λS|x2,f0(λS,λB2
))=

∫∫
e−[(g+1)λS+λB1

+λB2
](gλS+λB1

)x1(λS+λB2
)x2f0(λB1

)f0(λB2
)dλB1

dλB2∫∫∫
e−[(g+1)λS+λB1

+λB2
](gλS+λB1

)x1(λS+λB2
)x2f0(λB1

)f0(λB2
)dλSdλB1

dλB2

, (4)

where g≡h1/h2 is the normalization factor, that represents the ratio between the experimental factors of the two
experiments. g�1 or g�1 means one experiment is much more sensitive than the other one. Due to our study, in
this kind of situation, the final result will be dominated only by the more sensitive experiment. So what we really
care about is the situation with g≈1. We will set g=1 in the following derivation and calculation, and discuss g 6=1
later.

To illustrate Eq. (4) further, we assume we know the background very well then simplify f0(λB)=δ(λB−mB) (δ
is the Dirac delta function and mB is the expected background). Then Eq. (4) can be rewritten as:

f(λS|x2,f0(λS,λB2))=
e−(2λS+mB1+mB2)(λS+mB1)

x1(λS+mB2)
x2∫

e−(2λS+mB1+mB2)(λS+mB1)x1(λS+mB2)x2dλS

∝e−(2λS+mB1+mB2)(λS+mB1)
x1(λS+mB2)

x2 . (5)

From Eq. (5), it is easy to see in this simplified case
that the posterior of the combined results of two mea-
surements is just proportional to the product of the pos-
terior of each one. We can then infer that a prior dis-
tribution with a more pronounced peak at λS = 0 will
produce a more stringent posterior if combined with the
same secondary experiment. This means that a more
accurate measurement will play a dominant role in the
combined result. Furthermore, from Eq. (3) or (5) it is
obvious that if we switch the sequence of any two ex-
periments, i.e. change the prior candidate for the other,
the final result does not change. This feature is natural
and intuitive, and is advantageous compared with the
Serialization method [13], whose results depend on the
sequence of the combined experiments.

3 Numerical illustration

Now let us consider a more practical situation, in
which the estimated backgrounds are assumed to satisfy
a Gaussian distribution whose mean value mB is the same
as that in the previous δ function while its standard de-
viation σB depends on the uncertainty of the estimation

method. Eq. (4) will be transformed into a more complex
function, so we composed a program, named CULBA,
based on C++ and ROOT’s [14] built-in functions to im-
plement the integration in Eq. (2) and later calculations
as well as plotting. To simplify plots and discussion,
we set g = 1 during the numerical illustration, without
losing the general features of the results as discussed in
Section 2. Here we choose the numerical method instead
of analytical expressions such as that used in Ref. [15],
because the numerical method will make our program
more flexible to handle more types of priors in case the
exact formulae are missing or very complex. To illustrate
the functions of this program and its basic idea, we sup-
pose there are three independent measurements, I, II and
III, and list the data sets of the numbers of observed (x)
and backgrounds (λB) in the signal region respectively in
Table 1. When the observed number of events x is not
significantly larger than the expected backgrounds, just
the upper limits of these measurements are determined.
Figure 1 shows the posterior and their cumulative distri-
butions with the uniform prior of the three data sets; the
upper limits are determined at 90% credible level (C.L.).
As we mentioned before, we can use one result as an in-
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put prior to calculate the posterior of the other one, as
shown with Eq. (4); we refer to this as a “transfer prior”.

Upper limit results of each single measurement and
the combined ones obtained by our method are listed
in Tables 1 and 2, respectively. From these, two fur-
ther intuitive features of the upper limit combination
based on the Bayesian method are deduced: 1) a more
stringent final result is expected when the results of two
measurements are combined, especially if these two mea-
surements are at the same precision level; 2) if one mea-
surement is much more precise than the other, then the
final combined result depends dominantly on the more
precise one. For comparison we use an “experimentally
practical” method, which is widely applied in high en-
ergy physics analyses such as Refs. [16, 17], to calculate
upper limits and combine any two results. All the results
based on the these methods are listed in Tables 1 and 2
for comparison, and it turns out the “experimental prac-
tical” method provides similar results to ours for both
single and combined upper limits.

Further than this simple illustration, a systematic
study with different combinations of general conditions
of experiments are implemented by using CULBA. For

Table 1. The three data sets and upper limits (UL)
at 90% credible level based on Bayesian method
with uniform prior (uni). For comparison, the
“experimentally practical” method (exp) is also
applied to calculate the upper limits at 90% cred-
ible level.

Mea. I (x/λB/σB) II (x/λB/σB) III(x/λB/σB)

16/16/4 9/9/3 1/4/2

UL(uni) 10.38 8.05 3.09

UL(exp) 10.56 8.24 2.99

Fig. 1. (color online) PDF and cumulative distri-
bution functions of sets I, II and III, where the
uniform prior is applied. The dotted, dashed and
solid lines correspond to sets I, II and III respec-
tively. The input values of these sets are shown
in Table 1.

Fig. 2. (color online) Upper limits at 90% C.L. with x
II =0 and x

II =1. In each plot, 10×10×10=1000 different
combined conditions are considered, where the observation x

I and expected background λ
I
B of experiment I, and

the expected background λ
II
B of experiment II are varied from 0 to 9 respectively. The upper limit of a single

experiment is also provided for comparison.
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two experiments I and II, we vary their observations x
and expected backgrounds λB from 0 to 9 with a step
1 respectively, while the uncertainty of the background
is taken as 1 when λB = 0 or

√
λB when λB > 1 for

simplicity. Experiment I uses the uniform prior, then
its posterior PDF is used as the prior input to Experi-
ment II. The combined upper limits at 90% C.L. for the

(10×10)2 =10000 different combinations are calculated,
and they are shown in Figs. 2–6 classified by the obser-
vation xII of experiment II. In each plot, the y-axis is the
upper limit at 90% C.L. and the x-axis is the experimen-
tal condition type, i.e. 10xI+λI

B. The upper limits for
each single experiment I are also drawn in these plots for
comparison.

Fig. 3. (color online) Upper limits at 90% C.L. with x
II=2 and x

II=3.

Fig. 4. (color online) Upper limits at 90% C.L. with x
II=4 and x

II=5.

Fig. 5. (color online) Upper limits at 90% C.L. with x
II=6 and x

II=7.
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Fig. 6. (color online) Upper limits at 90% C.L. with x
II=8 and x

II=9.

Table 2. The three data sets and combined upper
limits (UL) at 90% credible level based on the
Bayesian method with transfer prior (trans) are
presented. For comparison, the “experimentally
practical” method (exp) is also applied to calcu-
late the upper limits at 90% credible level.

Mea. I (x/λB/σB) II (x/λB/σB) III(x/λB/σB)
16/16/4 9/9/3 1/4/2

Com. I+II II+III III+I
UL(tra) 6.28 2.77 2.88
UL(exp) 6.98 2.89 2.96

Fig. 7. (color online) Comparison of the upper lim-
its of single experiments I (represented by red
solid circles) and their combinations with experi-
ment II (represented by grey stars) after grouping.
The results are normalized to the average of each
group.

4 Discussion

From the numerical results, all four expected features

mentioned in Section 2, i.e. “switchable”, “transitive”,
“improvable”, and “dominant”, are observed. But we
should notice that sometimes the combined upper limit
will be larger than the result from a single measurement.
That happens only if the observation is large and back-
ground is small, for example x=5 while λB=0. This sit-
uation just indicates a significant signal is observed and
an upper limit claim is not proper anymore. A Bayesian
method is available to deal with these conditions and is
able to provide combined mean values instead of upper
limits, but that is out of the scope of this paper so is
not discussed here. We also notice not only the rela-
tive but the absolute numbers of signal and backgrounds
are meaningful, because they will lead to different PDF
shapes then different combination results. Another inter-
esting topic is the dependence of likelihood shapes, i.e.
when some individual experiments with different obser-
vations and backgrounds give similar upper limits, will
their combinations with another experiment give similar
results too? To study this, we divided the experiments
I into different groups with respect to their single up-
per limits by requiring the difference between any two
experiments to be less than 5% inside each group. For
instance, assuming there are seven experimental condi-
tions with upper limits of 1.00, 1.02, 2.01, 2.05, 4.23,
4.37, and 4.44 respectively, we divide them into three
groups (1.00, 1.02), (2.01, 2.05), (4.23, 4.37, 4.44) by re-
quiring the difference between any two experiments in
one group to be less than 5%. Then within each group,
we combined experiments I with experiments II to ob-
tain the combined upper limits. After that, all the single
and combined upper limits are normalized to the aver-
age of the group they belong to respectively. The results
are shown in Fig. 7 for comparison, where the results
from all groups are included. Figure 7 shows that when
the difference of individual experiments is limited to 5%,
mostly the difference of combined results are within 10%
while the largest difference reaches 25%. That means in
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a situation where only the upper limits are known but
without the detailed information for the signal and back-
ground, we can still use this method to get a reasonable
combined upper limit with a larger uncertainty. This
conclusion is also suitable for the situation with the nor-
malization factor g 6=1 but g≈1. Here, the upper limit of
the first experiment should be normalized to the second
one by considering the experimental factors such as lumi-
nosities and efficiencies, then an approximate combined
result can be obtained with this method.

All the relevant numerical results can be used as a
reference to combine two experimental results appropri-
ately. They are saved to a plain text file and uploaded
to the arxiv server as “other formats” [18].

Notice that we only discussed combining two mea-
surements in this article, but with the Bayesian method
it is simple and easy to expand to any number of mea-
surements with a combination chain, where each result
in the previous step will be used as an input prior for the
next step.
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