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Abstract: We present a new model of quantum phase transitions in matrix product systems of one-dimensional

spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed

system has three different quantum phases and by adjusting the control parameters we are able to realize any

phase, any two phases equal coexistence and the three phases equal coexistence. At every critical point the physical

quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation

and N -spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of

quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance

to the preparation and control of one-dimensional spin lattice models with stable coherence and N -spin maximal

entanglement.
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1 Introduction

The study of quantum many-body systems is always
a much more intensive research subject in the fields
of condensed matter and quantum information due to
the inherent richness and complexity of a large num-
ber of interacting particles as well as the potential ap-
plication prospect in solid-state quantum computing,
among which quantum phase transitions (QPTs) occupy
a distinguished position. These transitions, taking place
at zero temperature, are driven by fluctuations due to
the Heisenberg uncertainty principle even in the ground
states (GSs) [1]. The fundamental starting point of
studying quantum many-body systems in the fields of
condensed matter is the system Hamiltonian and then to
study the properties of its GS. At one time we encoun-
tered a bottle-neck due to the seldomness of the ground-
state analytic solution of the Hamiltonian. New blood
was brought into the study of quantum many-body sys-
tems through the addition of some knowledge of quan-
tum information and the quantum information approach
which deals primarily with the quantum ground state,
and the corresponding parent Hamiltonian may be con-
structed such that the state is exactly the GS bypassing
the aforementioned difficulty.

However, related articles [2, 3] showed that for one-

dimensional spin lattice models, every many-body state,
in particular, every GS of a finite many-body system
dictated and characterized by a local Hamiltonian can
be represented as a matrix product state (MPS). The
power of this representation stems from the fact that
in many cases a low-dimensional MPS already yields a
very good approximation of the state [4], such as the
Greenberger-Horne-Zeilinger (GHZ) state of the form
|Ψ〉 = |1···1〉+ |0···0〉 with A1 = |0〉〈0| and A2 = |1〉〈1|
[5], the cluster state which is the unique ground state
of the three-body interactions

∑

i
σz

i σx
i+1σ

z
i+2 and repre-

sented by the matrices
{

A1=

[

0 0

1 1

]

, A2=

[

1 −1

0 0

]}

[5], and the exact matrix product ground state of the
Affleck-Kennedy-Lieb-Tasaki model specified by {Ai}=
{σz,

√
2σ+, −

√
2σ−} [5]. MPSs are therefore undoubt-

edly a new powerful and convenient playground for
studying one-dimensional spin lattice model theory, espe-
cially for quantum phase transitions, by use of the quan-
tum information approach [2, 6–11].

Here it is stressed that the transition point is defined
as any discontinuity in an observable quantity in a wider
sense than usual [9–11]. In this paper we present a new
model of quantum phase transitions in matrix product
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systems of one-dimensional spin-1 chains and study the
phases coexistence phenomenon. We find that in the
thermodynamic limit the specified system has three dif-
ferent quantum phases and by adjusting the control pa-
rameters we are able to realize any phase, any two phases
equal coexistence and the three phases equal coexistence.
At every critical point the physical quantities including
the entanglement are not discontinuous and the matrix
product system has long-range correlation and N -spin
maximal entanglement.

2 Model and method

Let us begin with the one-dimensional translation in-
variant MPS:

|Ψ〉= 1√
N

d
∑

i1,···,iN =1

Tr(Ai1 ···AiN )|i1,··· ,iN〉, (1)

where d is the dimension of Hilbert space of one site
in the spin chain, and a set of D×D matrices {Ai,
i = 1,··· ,d} parameterize the N -spin state with the di-
mension D6dN/2 [3]. E=

∑d

i=1
Āi⊗Ai contained in the

normalization factor N =TrEN , is the so-called transfer
matrix and the symbol bar denotes complex conjugation.

2.1 The concrete model

Here we present the MPS |Ψ〉 with

A1=







1 0 0

0 0 0

0 0 0






, A2=







0 0 0

0 γ1 0

0 0 0






, A3=







0 0 0

0 0 0

0 0 γ2






, (2)

where γ1, γ2>0. It is shown that the transfer matrix E

has nonzero eigenvalues {λa≡1, λb≡γ1
2, λc ≡γ2

2} and

then E = |λR
a 〉〈λL

a |+γ1
2|λR

b 〉〈λL
b |+γ2

2|λR
c 〉〈λL

c | where the
normalized right (left) eigenvector |λR(L)

i 〉(i=a,b,c) cor-
responding to the nonzero eigenvalue λi. Obviously for
0<γ1, γ2<1 the largest absolute eigenvalue is λmax=λa,
for γ1 > 1, γ2, λmax = λb and for γ2 > 1, γ1, λmax = λc,
which indicts that in the thermodynamic limit the pro-
posed system varying with the parameters γ1 and γ2 is
shown in Fig. 1. For 0<γ1, γ2<1; γ1>1, γ2 and γ2>1, γ1

the proposed system is respectively in the region of phase
|Ψa〉=|1···1〉, |Ψb〉=|0···0〉 and |Ψc〉=|−1···−1〉; hence the
specified system has three different two-phase transition
lines γ1 =1>γ2(ab), γ2 =1>γ1(ac) and γ2 = γ1 > 1(bc)
i.e., ij(i,j = a,b,c,i 6= j) where the two phases |Ψi〉 and
|Ψj〉 coexist equally, and the three-phase coexisting point
γ2 =γ1 =1 i.e., the point abc at which the three phases
coexist equally. In the following we will investigate in
detail the properties of the kind of MPS QPT by the
aforementioned quantum information approach.

2.2 The properties of the kind of MPS QPT

2.2.1 The properties of local physical observables

First we turn to the properties of local physical ob-
servables. For a local observable of l adjacent spins,
O(1,l)≡O

[1]
i1
···O[l]

il
the expectation is expressed as

〈Ψ |O(1,l)|Ψ〉= Tr(EO(1,l)EN−l)

Tr(EN )
, (3)

where E
O(1,l) =EOi1

EOi2
···EOil

and

EOk
≡

∑

i,i′

〈i|Ok|i′〉Āi⊗Ai′ ,

taking the thermodynamic limit N →∞, which reduces
to

〈O(1,l)〉=



























































































































〈O(1,l)〉a=
〈λL

a |EO(1,l) |λR
a 〉

(λa)l
γ1,γ2<1,

〈O(1,l)〉b=
〈λL

b |EO(1,l) |λR
b 〉

(λb)l
γ1>γ2,1,

〈O(1,l)〉c=
〈λL

c |EO(1,l) |λR
c 〉

(λc)l
γ2>,γ1,1,

〈O(1,l)〉ab=
1

2
(〈O(1,l)〉a+〈O(1,l)〉b) γ1=1>γ2,

〈O(1,l)〉ac=
1

2
(〈O(1,l)〉a+〈O(1,l)〉c) γ2=1>γ1,

〈O(1,l)〉bc=
1

2
(〈O(1,l)〉b+〈O(1,l)〉c) γ1=γ2>1,

〈O(1,l)〉abc=
1

3
(〈O(1,l)〉a+〈O(1,l)〉b+〈O(1,l)〉c) γ1=γ2=1.

(4)
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Fig. 1. The MPS |Ψ〉 as a function of the dimen-
sionless parameters γ1 and γ2 in the thermody-
namic limit. For 0 < γ1, γ2 < 1; γ1 > 1,γ2 and
γ2 >1, γ1 the proposed system is respectively in
the region of phase |Ψa〉 = |1···1〉, |Ψb〉 = |0···0〉
and |Ψc〉 = |−1···−1〉; hence, the specified sys-
tem has three different phase transition lines γ1=
1 > γ2(ab), γ2 = 1 > γ1(ac) and γ2 = γ1 > 1(bc)
i.e., ij(i,j = a,b,c,i 6=j) where the two phases |Ψi〉
and |Ψj〉 coexist equally, and the three-phase point
γ2 =γ1 =1 i.e., the point abc at which the three
phases coexist equally.

For simplicity, let us study the properties of the operator
Jz. The physical quantity 〈Jz〉 is obtained as

〈Jz〉=
1−γ2

2N

1+γ1
2N+γ2

2N
. (5)

Under the thermodynamic limit it takes a discrete form,

〈Jz〉=































































1 0<γ1,γ2<1,

0 γ1>γ2,1,

−1 γ2>γ1,1

1

2
γ1=1>γ2,

0 γ2=1>γ1,

−1

2
γ2=γ1>1,

0 γ1=γ2=1,

(6)

which shows that only in the thermodynamic limit 〈Jz〉
turns out to be discontinuous, at the two-phase transi-
tion lines, γ1 = 1, γ2 < 1, γ2 = 1, γ1 < 1 and γ2 = γ1 > 1,
and at the three-phase coexisting point where γ1=1 and
γ2=1. It follows that the quantum phase transition can
take place only in the thermodynamic limit and is clearly
manifested by the singularity of the above physical quan-
tity.

2.2.2 The property of the correlation

The properties of the correlation at the three different
two-phase coexisting lines and the three-phase coexist-
ing point are discussed below. Firstly, the correlation

function of two local blocks is

Cn[O(1,l)]≡〈Ψ |O(1,l)O(n+1,n+l)|Ψ〉−〈Ψ |O(1,l)|Ψ〉2. (7)

In the thermodynamic limit, for large distances n�1 and
at the two-phase coexisting lines, this formula reduces to

C∞[O(1,l)]=
1

4
(〈O(1,l)〉pt

i −〈O(1,l)〉pt
j )2(i,j=a,b,c,i 6=j). (8)

At the three-phase coexisting point, the long-range cor-
relation is expressed as

C∞[O(1,l)] =
1

9
[(〈O(1,l)〉pt

a −〈O(1,l)〉pt
b )2+(〈O(1,l)〉pt

a

−〈O(1,l)〉pt
c )2+(〈O(1,l)〉pt

b −〈O(1,l)〉pt
c )2]. (9)

For the physical observable Jz, the long-range correlation
is

C∞[Jz)]=







































1

4
γ1=1>γ2,

1 γ2=1>γ1,

1

4
γ2=γ1>1,

2

3
γ1=γ2=1.

(10)

It follows that the proposed MPS |Ψ〉 has a long-range
correlation at the critical points.

2.2.3 The entanglement property

Now, let us study the entanglement property of the
MPS, the key quantity of quantum information theory
[12–15], in detail. About measures of entanglement there
are many kinds of methods, such as the quantification
characteristic function of quantum nonlocality [16], Bell
inequality [17, 18], quantum discord [19], averaged en-
tropy [20] and so on. Considering our system, we shall
adopt the von Neumann entropy which [21–28] accord-
ing to bipartition parameterization by the adjacent spin
number n of a Bn spin block is,

Sn=−Tr(ρn log2ρn), (11)

where ρn =TrB̄n
ρ is the reduced density matrix for the

Bn block of n adjacent spins. The n-spin entanglement
entropy Sn as a function of the parameters γ1 and γ2 is
obtained as

Sn=























































0 0<γ1,γ2<1,

0 γ1>γ2,1,

0 γ2>γ1,1

1 γ1=1>γ2,

1 γ2=1>γ1,

1 γ2=γ1>1,

log23 γ1=γ2=1,

(12)

which is independent of the adjacent spin number n.
Obviously no matter how the system is in any region
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of phase |Ψa〉, |Ψb〉 or |Ψc〉 the n-spin entanglement en-
tropy is zero; no matter how the system is in any line of
any two-phase coexisting, the n-spin entanglement en-
tropy takes the larger value of 1; while the system is
at the three-phase coexisting point, the n-spin entangle-
ment entropy takes the largest value of log23. It is worth
pointing out that whether the n-spin are consecutive or
not the n-spin entanglement entropy Sn is exactly the
same. It follows that at the critical points the MPS |Ψ〉
have a larger entanglement entropy due to its coherent
and collective properties.

2.2.4 The dynamics of the specified system

Here we undertake the study of the Hamiltonian of
the specified system. In general, the condition of the

k-spin reduced density matrix having null space is that
dk>D2. Here it only needs k>2. The MPS |Ψ〉 is the GS
of any Hamiltonian which is a sum of local positive oper-
ators supported in that null-space. Thinking along this
line we can always construct a local Hamiltonian such
that a given MPS is its GS. Without loss of generality
such a Hamiltonian is mathematically expressed as

H=
∑

i

ui(Pk), (13)

with Pk being the projector onto the null-space of ρk and
ui >0 its translation to site i. In terms of the proposed
system in the thermodynamic limit, the Hamiltonian is
described by

H=


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
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






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
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
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








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




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



















Ha=

N
∑

i=1

I−1

4
(J2

izJ
2
(i+1)z+JizJ(i+1)z+J2

izJ(i+1)z+JizJ
2
(i+1)z) γ1,γ2<1,

Hb=

N
∑

i=1

J2
iz+J2

(i+1)z−
1

2
J2

izJ
2
(i+1)z γ1>γ2,1,

Hc=

N
∑

i=1

I−1

4
(J2

izJ
2
(i+1)z+JizJ(i+1)z−J2

izJ(i+1)z−JizJ
2
(i+1)z) γ2>1,γ1,

Hab=

N
∑

i=1

J2
iz+J2

(i+1)z−
1

4
(5J2

izJ
2
(i+1)z+JizJ(i+1)z+J2

izJ(i+1)z+JizJ
2
(i+1)z) γ1=1>γ2,

Hac=

N
∑

i=1

I−1

2
J2

izJ
2
(i+1)z−

1

2
JizJ(i+1)z γ2=1>γ1,

Hbc=

N
∑

i=1

J2
iz+J2

(i+1)z−
1

4
(5J2

izJ
2
(i+1)z+JizJ(i+1)z−J2

izJ(i+1)z−JizJ
2
(i+1)z) γ1=γ2>1,

Habc=
N

∑

i=1

J2
iz+J2

(i+1)z−
3

2
J2

izJ
2
(i+1)z−

1

2
JizJ(i+1)z γ1=γ1=1.

(14)

By construction the GS energy is always zero, i.e., it is
evidently analytic in γ and moreover |Ψ〉 is its unique
GS for either side of the critical point discussed in Refs.
[2, 9, 29]. The analyticity of the Hamiltonian ground
state energy and the uniqueness of its GS for either side
of the critical point immediately imply that a nonana-
lyticity in the physical quantities can only be caused by
a vanishing energy gap at the transition points.

2.2.5 The long-wavelength behavior of the specified sys-
tem

In order to have a comprehensive and deeper un-
derstanding of the kind of MPS QPT, we study be-
low the scaling property. Specifically, we resort to the
renormalization group approach to characterize the long-
wavelength behavior of the specified system. Similar
to the standard Kadanof Blocking scheme, the coarse-
graining procedure for matrix product states could be
achieved by merging the representative matrices of neigh-

boring sites as A→A(pq)≡ApAq and subsequently per-
forming a fine-grained transformation A →A′ to select
out new representatives [30]. The transfer matrix in ev-
ery step transforms as E → E ′ ≡ E2 and an iterative
process hence leads to a fixed point E∞≡Efp in which
only the vector(s) of the largest eigenvalue(s) can sur-
vive. In terms of the MPS |Ψ〉 under consideration, for
0<γ1,γ2<1, the normalized transfer operator of the fixed
point is Efp= |λR

a 〉〈λL
a |, and the corresponding represen-

tative matrices of the fixed point state |Ψa〉 are obtained
as

{Ai
a(fp)}=

















1 0 0

0 0 0

0 0 0






,







0 0 0

0 0 0

0 0 0






,







0 0 0

0 0 0

0 0 0

















, (15)

which represents all particles spin up. For γ1 > γ2,1,
the normalized transfer operator of the fixed point
is Efp=|λR

b 〉〈λL
b |, and the corresponding representative
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matrices of the fixed point state |Ψb〉 are obtained as

{Ai
b(fp)}=























0 0 0

0 0 0

0 0 0









,









0 0 0

0 1 0

0 0 0









,









0 0 0

0 0 0

0 0 0























, (16)

which represents that the spin of every particle is zero.
For γ2 > γ1,1, the normalized transfer operator of the
fixed point is Efp=|λR

c 〉〈λL
c |, and the corresponding rep-

resentative matrices of the fixed point state |Ψc〉 are ob-
tained as

{Ai
c(fp)}=























0 0 0

0 0 0

0 0 0









,









0 0 0

0 0 0

0 0 0









,









0 0 0

0 0 0

0 0 1























, (17)

which represents all particles spin down. For γ1=1>γ2,
the corresponding fixed point of the MPS |Ψ〉 is charac-
terized by the normalized E

fp
ab = |λR

a 〉〈λL
a |+|λR

b 〉〈λL
b | and

the corresponding representative matrices of the fixed
point state |Ψab〉 are

{Ai
ab(fp)}=























1 0 0

0 0 0

0 0 0









,









0 0 0

0 1 0

0 0 0









,









0 0 0

0 0 0

0 0 0























, (18)

which represents the two phases |Ψa〉 and |Ψb〉 coexist-
ing equally and that the system has the N -spin maximal
entanglement. For γ2 = 1 > γ1, the corresponding fixed
point of the MPS |Ψ〉 is characterized by the normalized
Efp

ac=|λR
a 〉〈λL

a |+|λR
c 〉〈λL

c | and the corresponding represen-

tative matrices of the fixed point state |Ψac〉 are

{Ai
ac(fp)}=























1 0 0

0 0 0

0 0 0









,









0 0 0

0 0 0

0 0 0









,









0 0 0

0 0 0

0 0 1























, (19)

which represents the two phases |Ψa〉 and |Ψc〉 coexist-
ing equally and that the system has the N -spin maximal
entanglement. For γ2 = γ1 > 1, the corresponding fixed
point of the MPS |Ψ〉 is characterized by the normalized
Efp

bc=|λR
b 〉〈λL

b |+|λR
c 〉〈λL

c | and the corresponding represen-
tative matrices of the fixed point state |Ψbc〉 are

{Ai
bc(fp)}=























0 0 0

0 0 0

0 0 0









,









0 0 0

0 1 0

0 0 0









,









0 0 0

0 0 0

0 0 1























, (20)

which represents the two phases |Ψb〉 and |Ψc〉 coexist-
ing equally and that the system has the N -spin maximal
entanglement. For γ1 = γ2 = 1, the corresponding fixed
point of the MPS |Ψ〉 is characterized by the normalized
E

fp
abc=|λR

a 〉〈λL
a |+|λR

b 〉〈λL
b |+|λR

c 〉〈λL
c | and the corresponding

representative matrices of the fixed point state |Ψabc〉 are

{Ai
abc(fp)}=























1 0 0

0 0 0

0 0 0









,









0 0 0

0 1 0

0 0 0









,









0 0 0

0 0 0

0 0 1























, (21)

which represents the three phases coexisting equally
and that the system has the N -spin maximal entangle-
ment and stands distinctly for an isolated intermediate-
coupling phase transition point. That is to say the fixed
point state |Ψfix〉 of the specified system is described by

|Ψfp〉=



























































































































|Ψa〉=|1···1〉 γ1,γ2<1,

|Ψb〉=|0···0〉 γ1>γ2,1,

|Ψc〉=|−1···−1〉 γ2>γ1,1

|Ψab〉=
√

2

2
(|1···1〉+|0···0〉) γ1=1>γ2,

|Ψac〉=
√

2

2
(|1···1〉+|−1···−1〉) γ2=1>γ1,

|Ψbc〉=
√

2

2
(|0···0〉+|−1···−1〉) γ2=γ1>1,

|Ψabc〉=
√

3

3
(|1···1〉+|0···0〉+|−1···−1〉) γ1=γ2=1.

(22)
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The results reconfirm the above conclusions about the
kind of phase transition.

3 Conclusions

In conclusion, MPSs provide an effective tool for in-
vestigating novel types of quantum phase transitions.
Here we present a new kind of quantum phase transi-
tions in matrix product states of one-dimensional spin-1
chains and study the phases coexistence phenomenon.
We find that in the thermodynamic limit the specified
system has three different quantum phases, |Ψa〉=|1···1〉,
|Ψb〉 = |0···0〉 and |Ψc〉 = |−1···−1〉, and by adjusting
the control parameters we are able to realize any phase,
any two phases equal coexistence and the three phases

equal coexistence. At every critical point the physical
quantities including the entanglement are not discontin-
uous and the matrix product system has long-range cor-
relation and N -spin maximal entanglement. It is worth
pointing out that in this vein that we construct the ma-
trix product phase transition system of one-dimensional
spin-1 chains we can construct the corresponding phase
transition system of one-dimensional spin chains where
the spin number is greater than 1. We believe that
our work is helpful for having a comprehensive under-
standing of quantum phase transitions in matrix prod-
uct states of one-dimensional spin chains and of certain
directive significance to the preparation and control of
one-dimensional spin lattice models with stable coher-
ence and N -spin maximal entanglement.
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