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Constraint on the warped space from B̄→Xsγ
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Abstract: We analyze the theoretical prediction on the branching ratio of B̄→Xsγ to order Λ2
EW/Λ2

KK in extension of

the standard model with a warped extra dimension and the custodial symmetry SU(3)c×SU(2)L×SU(2)R×U(1)X×PLR,

where ΛKK denotes the energy scale of low-lying Kaluze-Klein excitations and ΛEW denotes the electroweak energy

scale. Contributions from the infinite series of Kaluze-Klein excitations are summed over through the residue theorem.

The numerical result indicates that the present experimental data constrain the parameter space of the concerned

model strongly.
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1 Introduction

The Standard Model (SM) prediction on the branch-
ing ratio of B̄→Xsγ at next to-next to-leading order [1]
(NNLO) reads

BR(B̄→Xsγ)=(3.15±0.23)×10−4, (1)

with the photon-energy cut-off Eγ>1.6 GeV. This result
certainly coincides with the current experimental obser-
vation [2],

BR(B̄→Xsγ)=(3.55±0.24±0.09)×10−4, (2)

with the same energy cut-off Eγ, and constrains strictly
the new physics beyond the SM.

An extension of the SM with a warped dimension [3–
5] provides a naturally geometrical solution to the hier-
archy problem regarding the huge difference between the
Planck scale and the electroweak one. The small mix-
ing between zero modes and heavy Kaluza-Klein (KK)
excitations can induce the observed fermion masses and
corresponding weak mixing angles [6, 7], and suppress
flavor-changing-neutral-current (FCNC) couplings [8, 9].

To accomodate light exciting KK modes with
O(1 TeV) masses, the authors of Refs. [10, 11] sug-
gested that the gauge group in the bulk be enlarged to
SU(3)c×SU(2)L×SU(2)R×U(1)X×PLR. Constraints on
this kind of model have been of particular interest in the
past few years [12–14]. Tree-level bounds were discussed
in Ref. [12], and bounds at loop-level from the flavor-
changing process B̄→Xsγ were examined in a naive di-
mension analysis in Ref. [13]. However, only the zero
mode or the low-lying KK excitations have been consid-
ered in their work. Although the CP -violating param-

eter εK gives the strongest favor bounds [15–17] in the
typical RS model, the experimental data on B̄→Xsγ pro-
vide more accurate constraints on the parameter space
of concerned model because the leading corrections to
the relevant effective Lagrangian originate from the one-
loop diagrams. Since the present experimental data all
indicate the energy scale of low-lying KK excitations
ΛKK � µEW ∼ v, we sum over the infinite series of KK
modes up to order v2/ΛKK through the residue theorem
technique presented in Ref. [18]. Here, µEW and v denote
the electroweak scale and the nonzero vacuum expecta-
tion value (VEV) of the Higgs, respectively.

With an appropriate choice of quark bulk masses,
one indeed obtains agreement with the electroweak preci-
sion data in the presence of light KK excitations [19–22].
Here, we analyze the corrections from the KK modes to
the branching ratio of B̄→Xsγ.

The discrete symmetry PLR interchanging the local
groups SU(2)L and SU(2)R implies that the five dimen-
sional gauge couplings satisfy g5L = g5R = g5, the local
gauge group SU(2)L×SU(2)R×U(1)X is broken to the
SM gauge group by the boundary conditions (BCs) on
the UV brane:

W 1,2,3
L,µ (++),Bµ(++),W 1,2

R,µ(−+),ZX,µ(−+),(µ=0,1,2,3),

W 1,2,3
L,5 (−−),B5(−−),W 1,2

R,5(+−),ZX,5(+−). (3)

Here, the first (second) sign is the BC on the UV
(IR) brane: (+) denotes a Neumann BC and (−) de-
notes a Dirichlet BC. In the matter field sector, the
SM quarks and leptons are embedded into the bidou-
blets, triplets and singlets of the local gauge symmetry
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SU(2)L×SU(2)R. In order to guarantee the explicit gauge
invariance of electromagnetic and strong interaction at
every step of the calculation, we choose the nonlinear Rξ

gauge-fixing terms [23] in the electroweak sector and the
background gauge-fixing terms [24] in the strong sector
respectively.

The profiles of gauge boson zero modes are flat along
the fifth dimension before electroweak symmetry break-
ing, and the profiles of KK gauge bosons are given by

χG
(BCs)(y

G(n)

(BCs),t)=
t

NG
(BCs)

(
J1(y

G(n)

(BCs)t)+bG(n)

(BCs)Y1(y
G(n)

(BCs)t)
)
.

(4)

where t = εexp(σ(φ)), J1(x) and Y1(x) are the Bessel
functions of the first and second kind, and explicit ex-
pressions for bG(n)

(BCs), NG
(BCs) can be found in Ref. [18].

Furthermore, the eigenvalues yG(n)

(BCs) (n=1, 2, ···) are de-
termined by the relevant BCs. Correspondingly, the con-
crete expressions of the shape functions fL,c

(BCs)(y
c(n)

(BCs),t),

fR,c

(BCs)(y
c(n)

(BCs),t) for fermion KK excitations in a warped
extra dimension are also given in Ref. [18].

To obtain approximately the mixing between the zero
modes of charged 2/3, −1/3 quarks and corresponding
KK excitations, we write the infinite dimensional column
vectors for quarks in the chirality basis as [25]

ΨL(2/3) =
(
qi(0)
uL

(++),··· ,qi(n)
uL

(++),U i(n)
L (+−),Ũ i(n)

L (+−),χi(n)
dL

(−+),ui(n)
L (−−),···

)T

,

ΨR(2/3) =
(
ui(0)

R (++),··· ,qi(n)
uR

(−−),U i(n)
R (−+),Ũ i(n)

R (−+),χi(n)
dR

(+−),ui(n)
R (++),···

)T

,

ΨL(−1/3) =
(
qi(0)
dL

(++),··· ,qi(n)
dL

(++),Di(n)
L (+−),di(n)

L (−−),···
)T

,

ΨR(−1/3) =
(
di(0)

R (++),··· ,qi(n)
dR

(−−),Di(n)
R (−+),di(n)

R (++),···
)T

, (5)

where i=1, 2, 3 is the index of generation, n=1, 2, ···,
∞ is the index of KK exciting modes, the signs in paren-
theses denote the BCs satisfied by corresponding fields
on UV and IR branes, respectively. In the chirality basis
Eq. (5), the mass matrices of charged 2/3, −1/3 quarks
are given in Ref. [18].

We then write the mass eigenstates respectively as

Uα,L =
[
U†

LΨL(2/3)
]
α
,

Uα,R =
[
U†

RΨR(2/3)
]
α
,

Dα,L =
[
D†

LΨL(−1/3)
]
α
,

Dα,R =
[
D†

RΨR(−1/3)
]
α
. (6)

Here, the charged 2/3 quarks U1, U2, U3 are identified as
up-type quarks u, c, t, and the charged −1/3 quarks D1,
D2, D3 are identified as the down-type quarks d,s, b in
the SM, respectively.

In the gauge sector, we can similarly express interac-
tion eigenstates of charged and neutral electroweak gauge
bosons in linear combination of the mass eigenstates as

W (0)±
L = (ZW)

0,0
W±+

∞∑

α=1

(ZW)
0,α

W±
Hα

,

W (n)±
L = (ZW)

2n−1,0
W±+

∞∑

α=1

(ZW)
2n−1,α

W±
Hα

,

W (n)±
R = (ZW)

2n,0
W±+

∞∑

α=1

(ZW)
2n,α

W±
Hα

,

Z(0) = (ZZ)
0,0

Z+

∞∑

α=1

(ZZ)
0,α

ZHα
,

Z(n) = (ZZ)
2n−1,0

Z+

∞∑

α=1

(ZZ)
2n−1,α

ZHα
,

Z(n)
X = (ZZ)

2n,0
Z+

∞∑

α=1

(ZZ)
2n,α

ZHα
, (7)

in which ZW, ZZ respectively denote the mixing ma-
trices for charged as well as neutral electroweak gauge
bosons, and Z, W± are identified as the corresponding
gauge bosons in the SM. For infinite dimensional column
vectors, we have no means of obtaining the mixing ma-
trices UL,R, DL,R exactly.

2 Constraint on the warped extra di-

mension from B̄→Xsγ

The effective Hamilton for B̄ → Xsγ at scales µb =
O(mb) is presented in Ref. [26], in which the most inter-
esting magnetic dipole moment operators are

Q7γ=
e

16π2
mbsασµνPRbαFµν ,

Q8G=
gs

16π2
mbsαT a

αβσµνPRbβGa
µν ,

(8)

and tilde operators Q̃7γ, Q̃8G are obtained from Q7γ,Q8G

after interchanging the right-handed projector PR =
(1+γ5)/2 with the left-handed PL = (1−γ5)/2. Here
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α, β=1, 2, 3 denote the color indices of quarks, Fµν and
Ga

µν (a=1,··· ,8) are the electromagnetic and strong field
strength tensors, respectively.

The magnetic penguin operators Q7γ , Q8G, Q̃7γ , Q̃8G

are induced by virtual heavy freedoms through one loop

diagrams at electroweak scale, and the relevant Feynman
diagrams are drawn in Fig. 1.

We present the corrections from Fig. 1(a) to the Wil-
son coefficients at the electroweak scale µEW to order
υ2/Λ2

KK as:

C(a)
7γ (µEW) = (1−∆GF)CSM(a)

7γ (µ
EW

)+

3∑

i=1

(
Υ(a)

i,1

)

sb
xW±F (a)

1,γ (xui
,xW±)

+
2m4

W

µ2
EWΛ2

KKe2

3∑

i=1

mui

mb

(
V (0)

CKM

)†

si

(
∆R

W±

)
ib

F (a)
2,γ (xui

,xW±)+O

(
υ2

Λ2
KK

)
,

C(a)
8G (µEW) = (1−∆GF)CSM(a)

8G (µEW)+

3∑

i=1

(
Υ(a)

i,1

)

sb
xW±F (a)

1,g (xui
,xW±)

+
2m4

W

µ2
EWΛ2

KKe2

3∑

i=1

mui

mb

(
V (0)

CKM

)†

si

(
∆R

W±

)
ib

F (a)
2,g (xui

,xW±)+O

(
υ2

Λ2
KK

)
,

C̃(a)
7γ (µEW) =

2m4
W

µ2
EWΛ2

KKe2

3∑

i=1

mui

mb

(
∆R

W±

)†

si

(
V (0)

CKM

)

ib
F (a)

2,γ (xui
,xW±)+O

(
υ2

Λ2
KK

)
,

C̃(a)
8G (µEW) =

2m4
W

µ2
EWΛ2

KKe2

3∑

i=1

mui

mb

(
∆R

W±

)†

si

(
V (0)

CKM

)

ib
F (a)

2,g (xui
,xW±)+O

(
υ2

Λ2
KK

)
, (9)

with xi=m2
i /µ2

EW and

CSM(a)
7γ (µEW) = xW±

3∑

i=1

(
V (0)

CKM

)†

si
(V (0)

CKM)ib

(
F (a)

1,γ (xui
,xW±)+

23

36

)
,

CSM(a)
8G (µEW) = xW±

3∑

i=1

(
V (0)

CKM

)†

si

(
V (0)

CKM

)

ib

(
F (a)

1,g (xui
,xW±)+

1

3

)
, (10)

Fig. 1. The Feynman diagrams for b → sγ and
b→sg in the warped extra dimension with custo-
dial symmetry, where the photon and gluon can
be attached in all possible ways.

representing the SM corrections from Fig. 1(a). The form
factors are explicitly given by

F (a)
1,γ (x,y)=

[
−

1

36

∂3
%

3,1

∂y3
−

1

4

∂2
%

2,1

∂y2
−

1

3

∂%
1,1

∂y

]
(x,y),

F (a)
2,γ (x,y)=

[
1

3

∂2
%

2,1

∂y2
+

4

3

∂%
1,1

∂y

]
(x,y),

F (a)
1,g (x,y)=

[
1

12

∂3
%

3,1

∂y3
−

1

2

∂%1,1

∂y

]
(x,y),

F (a)
2,g (x,y)=

[
−

∂2
%

2,1

∂y2
+2

∂%
1,1

∂y

]
(x,y).

(11)

Here, the function %
m,n

(x,y) is defined through

%
m,n

(x,y)=
xm lnnx−ym lnny

x−y
. (12)
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Adopting the 3×3 matrices U (0)
L,R, D(0)

L,R denoting the ro-
tation from chirality eigenstates to quark mass eigen-
states in the absence of mixing between zero modes and
corresponding KK excitations, we define the Cabibbo-
Kobayashi-Maskawa (CKM) matrix as

(VCKM)tb=(V (0)
CKM)tb+

υ2

Λ2
KK

(∆(2)
KK)tb+O

(
υ3

Λ3
KK

)
(13)

with V (0)
CKM =U (0)†

L D(0)
L being a unitary 3×3 matrix, and

the leading order correction ∆(2)
KK together with other

higher order corrections from heavy KK excitations
break down the unitary property of VCKM [22]. ∆GF

denotes the corrections from exciting KK modes to
the Fermi constant GF extracted from the muon decay

µ−→e−νµνe [27], the effective couplings ∆R
W± ,

(
Υ(a)

i,j

)

sb

(i,j=1, 2, 3) can be found in Ref. [18].
For the Feynman diagram Fig. 1(b), we approach the

corrections to the Wilson coefficients at the electroweak
scale µEW to order υ2/Λ2

KK as:

C(b)
7γ (µEW) = (1−∆GF)CSM(b)

7γ (µEW)+

3∑

i=1

{(
Υ(b)

i,1

)

sb
xW±F (b)

1,γ (xui
,xW±)+

(
Υ(b)

i,2

)

sb
xW±F (b)

2,γ (xui
,xW±)

}

+
2m2

Ws2
w

9Λ2
KKe2

3∑

i,j,k=1

(
D(0)

L

)†

si
[f

L,ci
B

(++)(0,1)]
{
Y u

ik[Σ
R,ck

S
(∓∓)(1,1)]Y u†

kj +2Y d
ik[Σ

R,ck
T

(±∓)
(1,1)]Y d†

kj

}

×[f
L,c

j
B

(++)(0,1)]
(
D(0)

L

)

jb
+O

(
υ2

Λ2
KK

)
,

C(b)
8G (µEW) = (1−∆GF)CSM(b)

8G (µEW)+

3∑

i=1

{(
Υ(b)

i,1

)

sb
xW±F (b)

1,g (xui
,xW±)+

(
Υ(b)

i,2

)

sb
xW±F (b)

2,g (xui
,xW±)

}

+
m2

Ws2
w

12Λ2
KKe2

3∑

i,j,k=1

(
D(0)

L

)†

si
[f

L,ci
B

(++)(0,1)]
{
Y u

ik[ΣR,ck
S

(∓∓)
(1,1)]Y u†

kj +2Y d
ik[Σ

R,ck
T

(±∓)(1,1)]Y d†
kj

}

×[f
L,c

j
B

(++)(0,1)]
(
D(0)

L

)

jb
+O

(
υ2

Λ2
KK

)
,

C̃(b)
7γ (µEW) =

3∑

i=1

(
Υ(b)

i,3

)

sb
xui

F (b)
2,γ (xui

,xW±)+
2m2

Ws2
w

9Λ2
KKe2

3∑

i,j,k=1

(
D(0)

R

)†

si
[f

R,ci
T

(++)(0,1)]

×Y d
ik[Σ

L,ck
B

(±±)(1,1)]Y d†
kj [f

R,c
j
T

(++)(0,1)]
(
D(0)

R

)

jb
+O

(
υ2

Λ2
KK

)
,

C̃(b)
8G (µEW) =

3∑

i=1

(
Υ(b)

i,3

)

sb
xui

F (b)
2,g (xui

,xW±)+
m2

Ws2
w

12Λ2
KKe2

3∑

i,j,k=1

(
D(0)

R

)†

si
[f

R,ci
T

(++)(0,1)]

×Y d
ik[Σ

L,ck
B

(±±)(1,1)]Y d†
kj ×[f

R,c
j
T

(++)(0,1)]
(
D(0)

R

)

jb
+O

(
υ2

Λ2
KK

)
, (14)

where the SM corrections from Fig. 1(b) to the Wilson coefficients are written as

CSM(b)
7γ (µEW)=

3∑

i=1

(V (0)
CKM)†si(V

(0)
CKM)ibxui

(F (b)
1,γ +F (b)

2,γ )(xui
,xW±),

CSM(b)
8G (µEW)=

3∑

i=1

(V (0)
CKM)†si(V

(0)
CKM)ibxui

(F (b)
1,g +F (b)

2,g )(xui
,xW±),

(15)
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and the form factors are

F (b)
1,γ (x,y)=

[
−

1

72

∂3
%3,1

∂y3
−

1

24

∂2
%2,1

∂y2
+

1

6

∂%1,1

∂y

]
(x,y),

F (b)
2,γ (x,y)=

[
1

12

∂2
%2,1

∂y2
−

1

6

∂%1,1

∂y
−

1

3

∂%1,1

∂x

]
(x,y),

F (b)
1,g (x,y)=

[
1

24

∂3
%3,1

∂y3
−

1

4

∂2
%2,1

∂y2
+

1

4

∂%1,1

∂y

]
(x,y),

F (b)
2,g (x,y)=

[
−

1

4

∂2
%2,1

∂y2
+

1

2

∂%1,1

∂y
−

1

2

∂%1,1

∂x

]
(x,y).

(16)

Here, the concrete expressions for the effective couplings

∆R
G± ,

(
Υ

(b)
i,j

)

sb
(i,j=1, 2,3) and ΣG

(BCs)(t,t
′), ΣL,c

(BCs)(t,t
′),

ΣR,c
(BCs)(t,t

′) are given in Ref. [18]. Choosing µEW =mW,
one can easily find that the sum (Eq. (10) and Eq. (15))
recovers the theoretical predictions on the Wilson coef-
ficients of the dipole operators in the SM at electroweak
energy scale.

For the diagram Fig. 1(c), the corrections to the rel-
evant Wilson coefficients are analogously formulated to
order O(υ2/Λ2

KK) in Eq. (17).

C(c)
7γ (µEW) =

{
(3−2s2

W)2

162s2
W

[
2
(
δZd

L

)†
sb

+2
(
δZd

L

)
sb

+
υ2

2Λ2
KK

(
∆L

Z

)
sb

+
υ2

2Λ2
KK

(
∆L

Z

)†
sb

]
+

1

9

(
1−

2

3
s2
W

)

×
[(

δZd
L

)†
sb

+
(
δZd

L

)
sb

+
υ2

2Λ2
KK

(
∆L

Z

)†
sb

]}
+

32πs2
Wm2

W

27Λ2
KK(krε)2

3∑

i,j,k=1

{
mdk

mb

(
D(0)

L

)†

si

(
D(0)

L

)

ik

(
D(0)

R

)†

kj

(
D(0)

R

)

jb

×

∫1

ε

dt

∫1

ε

dt′
(

25−16s2
W

9c2
W

[
ΣG

(++)(t,t
′)
]
+

(3−2s2
W)(3−4s2

W)

s2
Wc2

W(1−2s2
W)

[
ΣG

(−+)(t,t
′)
])

[f
L,ci

B
(++)(0,t)]2[f

R,c
j
T

(++)(0,t′)]2
}

+O

(
υ2

Λ2
KK

)
,

C(c)
8G(µEW) = −3C(c)

7γ (µEW),

C̃(c)
7γ (µEW) =

{
2

81
s2
W

[
2
(
δZd

R

)†
sb

+2
(
δZd

R

)
sb

+
υ2

2Λ2
KK

(
∆R

Z

)
sb

+
υ2

2Λ2
KK

(
∆R

Z

)†
sb

]
+

1

9

(
1−

2

3
s2
W

)[(
δZd

R

)†
sb

+
(
δZd

R

)
sb

+
υ2

2Λ2
KK

(
∆R

Z

)†
sb

]}
+

32πs2
Wm2

W

9Λ2
KK(krε)2

3∑

i,j,k=1

{
mdk

mb

(
D(0)

R

)†

si

(
D(0)

R

)

ik

(
D(0)

L

)†

kj

(
D(0)

L

)

jb

∫1

ε

dt

∫1

ε

dt′

×

∞∑

n=1

(
79−52s2

W

27c2
W

[
ΣG

(++)(t,t
′)
]
+

(3−2s2
W)(3−4s2

W)2

s2
Wc2

W(1−2s2
W)

[
ΣG

(−+)(t,t
′)
])

[f
R,ci

T
(++)(0,t)]2[f

L,c
j
B

(++)(0,t′)]2
}

+O

(
υ2

Λ2
KK

)
,

C̃(c)
8G (µEW) = −3C̃(c)

7γ (µEW). (17)

The δZd
L,R are corrections from KK exciting modes to a 3×3 mixing matrix of left- or right-handed charged −1/3

zero mode quarks. It is defined through Zd
L,R =1+δZd

L,R with Zd
L,R denoting the mixing matrices [18]. Here, ∆L,R

Z

represent the corrections from exciting KK modes to couplings of neutral gauge bosons and quarks similar to ∆W± .
The corrections from KK exciting modes of a gluon to the Wilson coefficients of the dipole moment operators at

the electroweak energy scale are given by

C(d)
7γ (µEW) = −

256πs2
Wm2

Wg2
s

9Λ2
KK(krε)2e2

3∑

i,j,k=1

{
mdk

mb

(
D(0)

L

)†

si

(
D(0)

L

)

ik

(
D(0)

R

)†

kj

(
D(0)

R

)

jb

×

∫1

ε

dt

∫1

ε

dt′
[
ΣG

(++)(t,t
′)
]
[f

L,ci
B

(++)(0,t)]2[f
R,c

j
T

(++)(0,t′)]2
}

+O

(
υ2

Λ2
KK

)
,
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C(d)
8G (µEW) =

256πs2
Wm2

Wg2
s

3Λ2
KK(krε)2e2

3∑

i,j,k=1

{
mdk

mb

(
D(0)

L

)†

si

(
D(0)

L

)

ik

(
D(0)

R

)†

kj

(
D(0)

R

)

jb

×

∫1

ε

dt

∫1

ε

dt′
[
ΣG

(++)(t,t
′)
]
[f

L,ci
B

(++)(0,t)]2[f
R,c

j
T

(++)(0,t′)]2
}

+O

(
υ2

Λ2
KK

)
,

C̃(d)
7γ (µ

EW
) = −

256πs2
Wm2

Wg2
s

9Λ2
KK(krε)2e2

3∑

i,j,k=1

{
mdk

mb

(
D(0)

R

)†

si

(
D(0)

R

)

ik

(
D(0)

L

)†

kj

(
D(0)

L

)

jb

×

∫1

ε

dt

∫1

ε

dt′
[
ΣG

(++)(t,t
′)
]
[f

R,ci
T

(++)(0,t)]2[f
L,c

j
B

(++)(0,t′)]2
}

+O

(
υ2

Λ2
KK

)
,

C̃(d)
8G (µ

EW
) =

256πs2
Wm2

Wg2
s

3Λ2
KK(krε)2e2

3∑

i,j,k=1

{
mdk

mb

(
D(0)

R

)†

si

(
D(0)

R

)

ik

(
D(0)

L

)†

kj

(
D(0)

L

)

jb

×

∫1

ε

dt

∫1

ε

dt′
[
ΣG

(++)(t,t
′)
]
[f

R,ci
T

(++)(0,t)]2[f
L,c

j
B

(++)(0,t′)]2
}

+O

(
υ2

Λ2
KK

)
. (18)

As the coupling among the neutral Higgs/Goldstone,
the standard charged −1/3 quark and the corresponding
KK excitation of a charged −1/3 quark is proportional
to quark mass (ms or mb), the corresponding corrections
to the Wilson coefficients of dipole moment operators
from Fig. 1(e) contain an additional suppression factor
mbms/m2

W besides the global suppression factor v2/Λ2
KK,

and can be ignored safely [18].
With the elements of the evolution matrices presented

in Ref. [28], the branching ratio of B̄→Xsγ at hadron
scale is written as

Br(B̄→Xsγ)=R
(
|C7γ(µb)|

2+|C̃7γ(µb)|
2+N(Eγ)

)
, (19)

where the overall factor R = 2.47×10−3, and the non-
perturbative contribution N(Eγ)=(3.6±0.6)×10−3 [28].
In our numerical analysis, we choose the hadron scale
µb=2.5 GeV, and include the SM contribution at NNLO
level C7γ(µb)=−0.3523 [1]. Meanwhile we approach the
corrections from the KK excitations in the leading-order
approximation.

To apply the warped Froggatt-Nielsen mecha-
nism [29], we adopt the ansatz for the hierarchical struc-
tures of the profiles of zero modes on the IR brane pre-
sented in Refs. [18, 27]. Without losing generality, we
choose the Yukawa couplings Y u

ij = 0.01 (i 6= j, i,j =1,
2, 3), Y d

21 = Y d
31 = Y d

32 = 0.01 and ΛKK = 1 TeV. Fixing
the bulk masses ci

B, ci
S, ci

T, we derive the other elements
of Yukawa couplings numerically through the warped
Froggatt-Nielsen mechanism.

Because the branching ratio of B̄→Xsγ is quite in-
sensitive to the bulk masses ci

S (i = 1, 2, 3), we choose
c1
S = −0.75, c2

S = −0.55, c3
S = −0.35 in our numerical

analysis. In addition, we also assume c3
B 6 c2

B 6 c1
B and

c3
T > c2

T > c1
T to guarantee the profiles of zero modes on

the IR brane to satisfy the hierarchical structures.
In Fig. 2(a), we present the constraint on the c1

B−c1
T

plane from the experimental data when c3
B = c2

B−0.1 =
c1
B−0.2, and c3

T =c2
T+0.1=c1

T+0.2. The solid line repre-
sents the theoretical prediction on the branching ratio of
B̄→Xsγ by fitting the central value of the present exper-
imental data BR(B̄→Xsγ)=3.55×10−4, the gray region
represents the difference between the theoretical predic-
tion and the central value of experimental data lying in
one standard derivation, the gray slashed region repre-
sents the difference lying in two standard derivations,
the gray meshed region represents the difference lying in
three standard derivations, respectively. In Fig. 2(b), we
plot the dependence of the branching ratio of B̄→Xsγ

on the bulk masses c1
B, c1

T. Besides the global suppres-
sion factor υ2/Λ2

KK, the dominating corrections from
KK excitations to the branching ratio of B̄ → Xsγ de-
pend on the bulk masses ci

B (i = 1, 2, 3) in terms of

[f
L,ci

B
(++)(0,t)][f

L,c
j
B

(++)(0,t)]. Because of this reason, the con-
tributions from new physics to the branching ratio of
B̄→Xsγ decrease quickly as c1

B>1, and can be neglected
safely compared with the contributions from the SM to
the branching ratio of B̄→Xsγ. Actually, the function
[fL,c

(++)(0,1)] tends to zero steeply as c>0.5.
In Fig. 3(a), we present similarly the constraint on

the c1
B−c1

T plane from the experimental data as c3
B/c2

B=
c2
B/c1

B = (2/3)sgn(c1B), c3
T/c2

T = c2
T/c1

T = (2/3)−sgn(c1T). In
Fig. 3(b), we plot the dependence of the branching ra-
tio of B̄→Xsγ on the bulk masses c1

B, c1
T. Because the

function [fL,c

(++)(0,1)] drops to zero steeply as c > 1, the
contributions from new physics to the branching ratio of
B̄→Xsγ decrease quickly as c1

B>1, and can be neglected
safely compared with the contributions from the SM to
the branching ratio of B̄→Xsγ.
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Fig. 2. As c3
B=c2

B−0.1=c1
B−0.2, and c3

T=c2
T+0.1=c1

T+0.2, (a) the constraint on c1
B-c1

T plane from B̄→Xsγ; (b) the
dependence of the branching ratio of B̄→Xsγ on the bulk masses c1

B, c1
T.

Fig. 3. As c3
B/c2

B =c2
B/c1

B =(2/3)sgn(c1B), and c3
T/c2

T =c2
T/c1

T =(2/3)−sgn(c1T), (a) the constraint on c1
B-c1

T plane from
B̄→Xsγ; (b) the dependence of the branching ratio of B̄→Xsγ on the bulk masses c1

B, c1
T.

In Fig. 4, we present the branching ratio of B̄→Xsγ

varying with Y d
21 at different energy scales of low-lying

Kaluza-Klein excitations. The bulk masses are chosen as
ci
S = {−0.75, −0.55, −0.35}, ci

B = {0.65, 0.55, 0.45} and
ci
T = {−0.5, −0.4, −0.3}, and the imagined part of the

Yukawa entries are set to be zero for simplification. The
gray band in this figure denotes the experimental data
with 3σ deviation. The solid line represents the energy
scale of low-lying KK mode ΛKK=1 TeV, the dotted line
represents ΛKK = 1.5 TeV, the dash-dot line represents
ΛKK=2 TeV, the dashed line represents ΛKK=2.5 TeV,
and the dash-dot-dot line represents ΛKK=3 TeV. As the
branching ratio is suppressed by Λ−2

KK, the contributions
from new physics become smaller with ΛKK increasing.
If the other entries of Yukawa coupling are set to 0.01,
the result shows that the branching ratio of B̄ → Xsγ

increases when Y d
21 runs from 0.0001 to 0.25. From the

upper boundary of gray region, we can obtain the con-
straints on Y d

21. Branching ratio varying with other en-

tries can also be obtained similarly, i.e., Y d
31 and Y d

32, etc.

Fig. 4. (color online). Assuming the Yukawa en-
tries Y u

i,j =Y d
31=Y d

32=0.01, (i 6=j, i,j=1, 2, 3), we
give the branching ratio of B̄→Xsγ varying with
Y d

21 at ΛKK={1, 1.5, 2, 2.5, 3}.
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Fig. 5. (color online) The dependence of the
branching ratio of B̄ → Xsγ on the energy scale
of low-lying Kaluza-Klein excitations ΛKK with
different Yukawa entries.

As an important model parameter, the new physics
energy scale provides a suppression factor Λ−2

KK. We show
the branching ratio varying with ΛKK in Fig. 5 when all
the entries of Yukawa take the same value. Constraints
on ΛKK can be obtained from the experimental band
with 3σ deviation. The contributions from new physics
drop to zero at limit ΛKK →∞, then the branching ra-

tio decreases quickly to SM prediction. So the decou-
pling theorem is satisfied within the framework with a
warped extra dimension and custodial symmetry. The
five lines displayed in this figure denote different values
of Yukawa entries. The solid line shows the result when
Y u

i,j = Y d
m,n = 0.03, (i 6= j, m > n), the dotted line corre-

sponds to Y u
i,j =Y d

m,n =0.04, the dash-dot line gives the
result corresponding to Y u

i,j =Y d
m,n=0.05, the dashed line

corresponds to Y u
i,j = Y d

m,n = 0.06, and the dash-dot-dot
line corresponds to Y u

i,j =Y d
m,n=0.07.

3 Summary

In this work, we present the radiative correction to
the rare decay B̄ → Xsγ in the SM extension with the
warped extra dimension and the custodial symmetry.
Applying the effective field theory, we approximate the
radiative corrections to order υ2/Λ2

KK, and sum over all
the contributions originating from virtual KK excita-
tions. Under the limit ΛKK → ∞, we recover the SM
theoretical predictions on the Wilson coefficients of the
dipole operators presented in literature exactly. In ad-
dition, we also analyze the possible constraint on the
parameter space of new physics from experimental ob-
servation of the branching ratio of B̄→Xsγ.
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