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Study on the mechanism of open-flavor strong decays
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Abstract: Open-flavor strong decays are studied based on the interaction of a potential quark model. The

decay process is related to the s-channel contribution of the same scalar confinement and one-gluon-exchange

(OGE) interaction in the quark model. After we adopt the prescription of massive gluons in a time-like region

from the lattice calculation, the approximation of four-fermion interaction is applied. The numerical calculation

is performed to the meson decays in u, d and s light flavor sectors. The analysis of the D/S ratios of b1 →ωπ

and a1 →ρπ shows that the scalar interaction should be dominant in the open-flavor decays.
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1 Introduction

Although QCD is considered a correct theory for

strong interactions, knowledge of the hadron struc-

ture in the low energy region is restricted due to

color confinement. The potential quark model is

widely used to identify conventional hadron states in

hadron physics. In contrast to its impressive suc-

cess in hadron spectra, especially when heavy quarks

are involved, its interpretation of hadron strong de-

cays is unsatisfactory. Although there exist some

phenomenological models for the strong decays, the

relationship between these models and the potential

quark model is somewhat obscure.

One of the most popular models for open-flavor

strong decays is 3P0 model developed in the 1970s [1,

2]. This model has successfully demonstrated its uni-

versal practical utility when applied to a great num-

ber of particular decay channels [3–7]. Later the flux-

tube-breaking model was proposed and 3P0 model

could be regarded as a limiting case of this improved

model [8].

As early as 1978, Eichten et al. [9] developed

the Cornell model by incorporating the possibility of

creation of a light-quark pair into the quark model

Hamiltonian. However, in their model they consid-

ered the quark interaction the time-component part

of the vector interaction and assumed that the in-

teraction of the quark pair creation was the same

as the instantaneous interaction between two con-

stituent quarks. In recent years an extended model

including the scalar confining and vector OGE inter-

actions was studied by E. S. Ackleh et al. [10].

The instantaneous interaction in the above mod-

els always assumes Breit approximation when deal-

ing with a gluon’s momentum. For the potentials

in quark model, the energy of the exchanged gluon

is negligible compared with the the masses of con-

stituent quarks. Therefore the transferred gluon mo-

mentum is space-like. Nevertheless, it is in all proba-

bility time-like if considering the creation of anquark-

antiquark pair by gluons. Besides, based on a re-

cent study in lattice field theory [11, 12], gluons

are supposed to act as massive vector bosons in the

non-perturbative region with masses evaluated about

600–1000 MeV. A non-vanishing gluon mass is also

needed in the phenomenological calculation of diffrac-

tive scattering [13] and radiative decays of the J/ψ

and Υ [14].

In this paper, an alternative study of open-flavor

strong decays is made and examined by experimental

decay widths. Following Ref. [10], the quark pair-

creation interaction consists of a scalar confining in-

teraction and an OGE part. We will distinguish the
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Breit approximation of the gluon’s propagator in the

time-like region from that in the space-like region.

In the time-like non-perturbative region, the massive

gluon prescription is adopted according to Refs. [11,

12]. In this way, the decay interaction will be further

simplified to the form of four-fermion interaction.

2 The decay model

To describe the creation of a light-quark pair in

the quark model, a plausible approach is to consider

the field quantization of the quark potential. In the

Cornell model, the quark potential is replaced by an

instantaneous interaction [9]

HI =
1

2

∫
d3xd3y : ρa(x)

3

4
V (x−y)ρa(y) : . (1)

where

ρa(x) =
∑

flavors

ψ†(x)Taψ(x), (2)

is the quark color-charge-density operator. Here ψ(x)

denotes the quark field with flavor and color indices

suppressed, and Ta stands for the Gell-Mann ma-

trices for SU(3) generators. Since the confinement

should be the Lorentz scalar, in Ref. [10] the instan-

taneous interaction is replaced by the combination

of the scalar confinement interaction and the vector

OGE interaction.

We will start from the covariant nonlocal current-

current action of the quark interaction [15]:

A=−1

2

∫
d4xd4yψ̄(x)γµTaψ(x)G(x−y)ψ̄(y)γµTaψ(y)

−1

2

∫
d4xd4yψ̄(x)Taψ(x)S(x−y)ψ̄(y)Taψ(y). (3)

The vector kernel G(x − y) corresponds to the

gluon propagator in coordinate space which gener-

ates the OGE Coulomb potential −αs

r
in the quark

model. In the momentum space

G(q2) =−4παs

q2
. (4)

On the other hand, the scalar kernel S(x−y) should

generate the linear confining potential
3

4
br. Thus in

the momentum space

S(q2) =−6πb

q4
. (5)

The relevant coupling constants αs and b are the po-

tential parameters in the potential quark model.

The lattice calculation shows that the behavior

of the gluon propagator is quite different in the non-

perturbative region. In Refs. [11, 12], the transverse

propagator is assumed to be:

D(q2) =
Z(q2)

q2−M 2(q2)
, (6)

where M(q2) is the running gluon mass. Then the

kernels G and S are modified to

G(q2) = − 4παs

q2−M 2(q2)
, (7)

S(q2) = − 6πb

[q2−M 2(q2)]2
. (8)

The lattice simulations suggest M(0)=600–

1000 MeV which means that the gluon gets a non-

vanishing mass Mg in the non-perturbative region

q � ΛQCD. If the q2 term in the gluon’s propagator

is neglected in the quark-antiquark pair-creation pro-

cess, then the decay interaction is simplified to the

four-fermion interaction. The interaction Hamilto-

nian density for pair-creation turns to be:

HI(x) =Hs(x)+Hv(x), (9)

where Hs(x) and Hv(x) represent the scalar and vec-

tor interaction respectively:

Hs(x) =
3πb

M 4
g

ψ̄(x)Taψ(x)ψ̄(x)T aψ(x), (10)

Hv(x) = −2παs

M 2
g

ψ̄(x)γµTaψ(x)ψ̄(x)γµT aψ(x). (11)

From the interaction in Eqs. (10) and (11), we

can derive the formulae for decay rates within a non-

relativistic limit. As meson states are normalized to

2E in our work,

〈p|p′〉= 2Eδ3(p−p′), (12)

the differential decay width in the two-body decay

process A→B+C is expressed in terms of transition

amplitude as:

dΓ =
S|M|2
2EA

(2π)7δ4(PA−PB−PC)
d3PB

2EB

d3PC

2EC

, (13)

where S is the symmetric factor

S =
1

1+δ(B,C)
. (14)

The amplitude M is related to the decay interaction

through:

M= 〈BC|HI(0)|A〉=Mv +Ms, (15)

where Mv and Ms are the amplitudes from vector

and scalar interaction respectively.

For each interaction, the transition amplitude

comes from four diagrams. For the vector interac-

tion, its Feynman diagrams are shown in Fig. 1.
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Fig. 1. Contributions to vector interaction.

In Diagram (a) the qq̄ pair is created from gluons

emitted by the initial quark while in Diagram (b) the

qq̄ pair is created from gluons emitted by the initial

anti-quark. Diagrams (c) and (d) come from the in-

terchange of final particles B and C in Diagrams (a)

and (b) respectively.

The total decay width is expressed as

Γ =
16π7SPf

M 2
A

∑

LS

|MLS|2, (16)

where Pf = PB = −PC in the rest frame of initial

particle A and MLS are the partial wave amplitudes.

For further simplification, the space wave func-

tions of all meson states are taken to be the sim-

ple harmonic oscillator (SHO) wave functions with

a common oscillator parameter β. The partial wave

amplitudes MLS are presented in the appendix.

3 Results and Analysis

In the numerical calculation, the common oscilla-

tor parameter β= 400 MeV is adopted from Ref. [15].

All related masses of mesons are taken from Ref. [16].

Other parameters, like constituent quark masses, cou-

pling constants αs and b are also taken from Ref. [15].

They are mu =md = 220 MeV, ms = 419 MeV, αs =

0.60, and b= 0.18 GeV2 respectively.

The only one parameter which cannot be deter-

mined from the quark model is the effective gluon

mass Mg. In this work, this parameter is fixed in

a least square fit to the experimental decay widths.

We find that Mg = 668 MeV, which falls within the

range 600–1000 MeV estimated in the lattice calcula-

tion [11, 12].

The results of the decay widths are tabulated in

Table 1 together with the decay widths of 3P0 model

and the experimental data. In the table, Γ1 indi-

cates the decay rates of our calculation. As can been

seen, the widths of the decay processes characterized

by the creation of the ss̄ pair are rather small com-

pared with the experimental data. The reason is that

the creation of the ss̄ pair is suppressed in the four-

fermion interaction due to the heavier mass of the s

quark. Note that in the 3P0 model, the transition

operator is independent of the flavor mass in qq̄ pair

creation. This shows that the qq̄ pair creation has the

flavor SU(3) symmetry. In the third column Γ2 in Ta-

ble 1, the decay widths related to ss̄ pair creation are

recalculated with the flavor symmetry restored with

ms =mu = 220 MeV in the decay Hamiltonian. The

corresponding decay widths are enhanced, which im-

proves the fit to the experimental data.

Individual decay amplitudes from scalar and vec-

tor interactions are listed in Table 2. The scalar in-

teraction is dominant in most of the decay channels.

However in the channels 1D→ 1P+1S, 2S→ 1S+1S

and 2P → 1S + 1S the contribution from the vec-

tor interaction is important, while in the channel
3P0 →1 S0+

1S0 vector interaction becomes dominant,

as can be seen in the process f0(1370) → ππ whose

decay width may amount to 1000 MeV which is too

large compared with the experimental result of 200–
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500 MeV.

One of the important criteria for the strong de-

cay models is the D/S amplitude ratios in the decays

b1 →ωπ and a1 → ρπ. Experimentally, these ratios

are D1 = 0.277±0.027 and D2 =−0.062±0.02 respec-

tively [16]. In the current model, analytic expressions

for these ratios are:

D1 = −
√

2p2
f (15b+8m2

gα)

15bp2
f +8m2

gp
2
fα−72bβ2

, (17)

D2 =

√
2p2

f (5b+2αm2
g)

2b(5p2
f −24β2)+4αm2

g(p
2
f +8β2)

. (18)

According to the preceding values of the model

parameters, the ratios’ numerical results are: D1 =

0.566 and D2 = 0.731. It is apparent that D1 is about

two times larger than the experimental value while

the calculated value of D2 has a wrong sign. Since

the β value is dependent on the meson wave func-

tion, in Fig. 2 we show the dependence of the ratios

on β.

Table 1. The decay widths. The decay widths of 3P0 model are taken from Ref. [3]. The experimental data

are taken from Ref. [16]. Unit: MeV.

channel Γ1 Γ2 Γ3
3P0 Exp

ρ→ ππ 109.7 138 96 149

b1 →ωπ 57.7 160 176 142

a2 → ρπ 51.5 49.7 65 75.4

a2 →ηπ 15.4 19.5 15.5

a2 →KK̄ 1.64 9.03 2.26 11 5.24

a2 →η′π 1.20 1.52 0.567

π2 → f2π 58.6 77.1 147 146

π2 → ρπ 58.3 128 232 80.3

π2 →K∗K̄+c.c. 0.23 10.8 4.66 38 10.9

π2 → ρω 9.23 25.1 7.00

ρ3 →ππ 47.3 59.6 116 38.0

ρ3 →ωπ 17.8 17.2 36 25.8

ρ3 →KK̄ 0.68 7.06 0.94 9.2 2.54

f2 → ππ 136 172 203 157

f2 →KK̄ 1.07 5.98 1.48 7.2 8.51

f4 →ωω 23.9 14.9 53 54

f4 → ππ 27.6 34.8 123 40.3

f4 →KK̄ 0.18 3.45 0.25 5.4 1.61

f0(1500)→ ππ 108 34.7 38.0

f0(1500)→KK̄ 4.95 7.99 0.49 9.38

φ→K+K− 1.96 2.63 2.18 2.37 2.10

f′2 →KK̄ 84.3 78.9 21.0 117 64.8

K∗
→Kπ 41.7 45.9 46.4 36 50.8

K∗(1410)→Kπ 21.7 32.4 1.15 15.3

K∗
0 →Kπ 348 1062 194 163 251

K∗
2 →Kπ 81.7 73 90.2 108 49.2

K∗
2 →K∗π 23.0 20.3 20.6 27 24.3

K∗
2 →Kρ 7.22 6.20 6.42 9.3 8.57

K∗
2 →Kω 2.12 1.82 1.88 2.6 2.86

K∗
3 →Kρ 14.4 9.54 12.5 24 49.3

K∗
3 →K∗π 19.5 13.8 17.7 33 31.8

K∗
3 →Kπ 45.1 32 49.4 87 30.0

K∗
4 →Kπ 18.4 10.1 20 55 19.6

K∗
4 →K∗φ 0.37 2.44 0.23 3.2 2.8
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Table 2. The individual amplitudes from scalar and vector interactions. Unit: MeV.

channel L S Ms Mv M

ρ→ππ P 0 −1.39 −0.55 −1.94

b1 →ωπ S 1 2.34 −0.35 2.00

b1 →ωπ D 1 0.62 0.49 1.11

a2 → ρπ D 1 −1.32 −0.79 −2.11

a2 →ηπ D 0 −0.73 −0.29 −1.02

a2 →KK̄ D 0 −0.28 −0.09 −0.36

a2 →η′π D 0 −0.28 −0.11 −0.39

π2 → f2π S 2 2.32 −5.52 −3.20

π2 → f2π D 2 0.383 −0.003 0.380

π2 → f2π G 2 0.01 0.004 0.014

π2 → ρπ P 1 1.85 −0.72 1.14

π2 → ρπ F 1 1.10 0.88 1.98

π2 →K∗K̄+c.c. P 1 0.49 −0.56 −0.07

π2 →K∗K̄+c.c. F 1 0.09 0.07 0.16

π2 → ρω P 1 1.39 −0.09 1.31

π2 → ρω F 1 0.13 0.10 0.23

ρ3 →ππ F 0 −1.31 −0.52 −1.83

ρ3 →ωπ F 1 −0.80 −0.47 −1.27

ρ3 →KK̄ F 0 −0.18 −0.06 −0.24

f2 →ππ D 0 −1.95 −0.77 −2.72

f2 →KK̄ D 0 −0.23 −0.08 −0.31

f4 →ωω G 0 −0.08 −0.03 −0.11

f4 →ωω D 2 0.88 0.87 1.75

f4 →ωω G 2 0.15 0.15 1.30

f4 →ππ G 0 −1.09 −0.43 −1.52

f4 →KK̄ G 0 −0.10 −0.03 −0.13

f0(1500)→ππ S 0 0.95 −3.56 −2.61

f0(1500)→KK̄ S 0 0.13 −0.77 −0.64

φ→K+K− P 0 −0.40 −0.20 −0.60

f′2 →KK̄ D 0 −0.84 −0.28 −1.12

K∗
→Kπ P 0 −1.04 −0.50 −1.54

K∗(1410)→Kπ P 0 −0.18 1.39 1.21

K∗
0 →Kπ S 0 −2.32 7.19 4.87

K∗
2 →Kπ D 0 −1.58 −0.78 −2.36

K∗
2 →K∗π D 1 0.92 0.61 1.52

K∗
2 →Kρ D 1 −0.59 −0.39 −0.98

K∗
2 →Kω D 1 −0.32 −0.21 −0.53

K∗
3 →Kρ F 1 −0.74 −0.50 −1.24

K∗
3 →K∗π F 1 0.74 0.44 1.18

K∗
3 →Kπ F 0 −1.27 −0.63 −1.90

K∗
4 →Kπ G 0 −0.86 −0.43 −1.29

K∗
4 →K∗φ G 0 −0.003 −0.002 −0.005

K∗
4 →K∗φ D 2 0.15 0.15 0.30

K∗
4 →K∗φ G 2 0.007 0.007 0.014
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Fig. 2. D/S ratios for D1 and D2.

With respect to the D1 ratio, it decreases with an

increasing β. When β rises to 524 MeV, the ratio re-

generates the experimental value 0.277. Nonetheless,

as to the D2 ratio, the numerical value keeps its op-

posite sign since this ratio changes rather slowly with

β.

Based on the fact of the dominance of the scalar

interaction, a scalar-kernel-scalar (sKs) decay model

was proposed [10]. As a result we consider only the

contribution from scalar interaction while leaving the

vector interaction aside. The best-fitted value for Mg

now becomes 597 MeV and the fitted decay widths

are listed in the Γ3 column in Table 1.

One of the advantages of considering scalar inter-

action alone is that the D/S ratios are greatly im-

proved. Now these ratios turn out to be:

D1 = − 5
√

2p2
f

5p2
f −24β2

, (19)

D2 =
5p2

f√
2(5p2

f −24β2)
. (20)

We obtain D1 = 0.264 and D2 = −0.140 when

β= 400 MeV, well fit to the experimental results. An-

other improvement lies in the specific channel, 3P0 →
1S0 +1S0. As in the process f0(1370)→ ππ, with the

negligence of vector interaction, the decay width be-

comes a reasonable value 318.5 MeV.

4 Summary

To summarize, we have studied a decay model

based on the potential quark model. The model in-

corporates the decay interactions of scalar and vector

quark currents which are in accordance with the con-

fining and OGE potentials in the quark model. In the

non-relativistic limit, the massive gluon propagator

is assumed and the decay interactions are reduced

to four fermion interactions. In this framework, we

have calculated 34 decay channels. The results fit

the experimental data comparable to the popular 3P0

decay model if the SU(3) flavor symmetry is assumed

in the decay processes. Meanwhile the results also

show the dominance of the scalar interaction in most

of the decay channels. Besides, the scalar interaction

is also preferred by the D/S ratios of b1 →ω+π and

a1 → ρ+π. Thus we have calculated decay widths

with only scalar interaction (the sKs model which is

quite similar to the 3P0 model since the qq̄ scalar cur-

rent produces a 3P0 quark pair). It seems that scalar

interaction alone is able to give a crude estimation of

most decay widths.

We would like to thank Prof. Shi-Lin Zhu for use-

ful discussions.
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Appendix A

Amplitudes and overlapping integrals for some

channels

The partial wave decay amplitude A → B+C can be

expressed as

MLS =

√
8EAEBEC

24π5
CfM

LS, (A1)

where Cf is the flavor factor:

C2
f = (2TB +1)(2TC +1)

{

TA TB TC

t t2 t1

}2

, (A2)

where TA, TB, TC are the iso-spins of mesons A, B, C,

respectively. t1, t2, t are the iso-spins of quarks labeled as

1, 2, 3 in Fig. 1, respectively. Similarly, in the following,

the masses of quarks 1, 2, 3 will be denoted by m1, m2,

m, respectively.

The decay amplitudes MLS can be split into two parts

which include scalar MLS
s and vector MLS

v . Furthermore,

each MLS
i would part into four components:

MLS
i =MLS

i (a)+MLS
i (b)+MLS

i (c)+MLS
i (d), (A3)

according to Fig. 1. In the following, we will only present

the formulae for MLS
i (a). MLS

i (b) is related to MLS
i (a) by

a charge conjugate:

MLS
i (b;A→B+C) = (−1)JB+JC−S+SA+SB+SC+1

×MLS
i (a; Ā→ C̄+B̄), (A4)

where Ā, B̄, C̄ are the charge conjugates of A, B, C, re-

spectively. The MLS
i (c), MLS

i (d) are related to MLS
i (a),

MLS
i (b) by the exchange of final particles B and C.

Since the decay interaction is a four-fermion interac-

tion, the spatial overlap integrals involve:

pAC(mA,mC) =

∫
dkψ∗

nClCmC
(k)

×ψnAlAmA
(k+ξpf ẑ),

vAC(mA,mC,m) =

∫
dkψ∗

nClCmC
(k)

×ψnAlAmA
(k+ξpf ẑ)km,

pB(mB) =

∫
dkψ∗

nBlBmB
(k).

vB(mB,m) =

∫
dkψ∗

nBlBmB
(k)km, (A5)

where ξ=
m2

m2 +m
, and

km =



























− 1√
2
(kx +iky) m= 1

kz m= 0

+
1√
2
(kx− iky) m=−1

. (A6)

All the spatial wave functions ψnlm are taken to be the

simple harmonic oscillator (SHO) wave functions with the

oscillator parameters βA, βB, βC for mesons A, B, C re-

spectively. We have

pB(mB) =
δ(lB,0)

nB!
(4πβ2

B)
3
4 , (A7)

vB(mB,m) =
δ(lB,1)δ(mB,m)

nB!
4π

3
4 β

5
2

B . (A8)

Let

η≡
(

2βAβC

β2
A +β2

C

) 3
2

e
−

ξ2p2
f

2(β2
A

+β2
C) . (A9)

Below we list the non-vanishing integrals pAC and vAC

relevant to our work.

1) 1S→ 1S

pAC(0,0) = η,

vAC(0,0,0) = − ξηβ2
C

β2
A +β2

C

pf .

2) 2S→ 1S

pAC(0,0) =
(3β4

A−3β4
C−2p2

f β
2
Aξ

2)η√
6(β2

A +β2
C)2

,

vAC(0,0,0) =
pfβ

2
Cξη√

6(β2
A +β2

C)3
(−7β4

A +3β4
C,

−4β2
Aβ

2
C +2p2

f ξ
2β2

A).

3) 1P → 1S

pAC(0,0) =

√
2ηξβApf

β2
A +β2

C

,

vAC(0,0,0) =

√
2ηβAβ

2
C(β2

A +β2
C−p2

f ξ
2)

(β2
A +β2

C)2
,

vAC(1,0,−1) = vAC(−1,0,1) =
−
√

2ηβAβ
2
C

(β2
A +β2

C)
.

4) 1D→ 1S

pAC(0,0) =
2p2

f β
2
Aξ

2η√
3(β2

A +β2
C)2

,

vAC(0,0,0) =
2pfβ

2
Aβ

2
Cξη(2β

2
A +2β2

C−p2
f ξ

2)√
3(β2

A +β2
C)3

,

vAC(1,0,−1) = vAC(−1,0,1) =
−2pfβ

2
Aβ

2
Cηξ

(β2
A +β2

C)2
.
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5) 1D→ 1P

pAC(0,0) =
2
√

2pfξηβ
2
AβC(2β2

A +2β2
C−p2

f ξ
2)√

3(β2
A +β2

C)3
,

pAC(1,1) = pAC(−1,−1) =
2
√

2pfηξβ
2
AβC

(β2
A +β2

C)2
,

vAC(0,0,0) =
2
√

2β2
AβCη√

3(β2
A +β2

C)4
[2β6

C−4p2
f β

4
Cξ

2 +p4
f β

2
Cξ

4 +β4
A(2β2

C +p2
f ξ

2)+β2
A(4β4

C−3p2
f β

2
Cξ

2)],

vAC(2,1,−1) = vAC(−2,−1,1) =− 4β2
Aβ

3
Cη

(β2
A +β2

C)2
,

vAC(1,0,−1) = vAC(−1,0,1) =−2
√

2β2
Aβ

3
Cη(β

2
A +β2

C−ξ2p2
f )

(β2
A +β2

C)3
,

vAC(1,1,0) = vAC(−1,−1,0) =−vAC(1,0,−1),

vAC(0,1,1) = vAC(0,−1,−1) =−2
√

2ηβ2
AβC[β4

C +β2
A(β2

C−ξ2p2
f )]√

3(β2
A +β2

C)3
.

6) 1F → 1S

pAC(0,0) =
2
√

2ηξ3β3
Ap

3
f√

15(β2
A +β2

C)3
,

vAC(0,0,0) =
2
√

2ηp2
f β

3
Aβ

2
Cξ

2(3β2
A +3β2

C−p2
f ξ

2)√
15(β2

A +β2
C)4

,

vAC(1,0,−1) = vAC(−1,0,1) =
−4ηp2

f β
3
Aβ

2
Cξ

2

√
5(β2

A +β2
C)3

.

We further introduce some useful combinations:

AL = pfpB(0)
∑

mAmC

pAC(mA,mC)〈lCmCL0|lAmA〉, (A10)

BLJ =
√

2lA +1pB(0)
∑

mAmCm

vAC(mA,mC,m)〈lCmCL0|JmC〉〈lAmA1m|JmC〉. (A11)

The relevant partial wave amplitudes are given in subsections.

1 S → S+S

1) 3S1 → 1S0 + 1S0

M10
s (a) = −

√
πb√

2M4
g

[(

1

m+m1
+

1

m+m2

)

A0− 1

m
B11

]

,

M10
v (a) = −

√
2παs

3M2
g

[

m1(m1 +m2)−m(m1−3m2)

m1(m+m1)(m+m2)
A0 +

(

3

m1
− 1

m

)

B11

]

.

2) 3S1 → 3S1 + 1S0

M11
s (a) =

√
2M10

s (a; 3S1 → 1S0 + 1S0),

M11
v (a) = −2

√
παs

3M2
g

[(

m1 +m2

m1(m+m2)

)

A0 +

(

1

m1
− 1

m

)

B11

]

.

3) 3S1 → 1S0 + 3S1

M11
s (a) = −

√
2M10

s (a; 3S1 → 1S0 + 1S0),

M11
v (a) = −

√
2M10

v (a; 3S1 → 1S0 + 1S0).
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4) 1S0 → 3S1 + 1S0

M11
s (a) = −

√
3M10

s (a; 3S1 → 1S0 + 1S0),

M11
v (a) =

√
2παs√
3M2

g

[

m(3m1−m2)+m1(m1 +m2)

m1(m+m1)(m+m2)
A0−

(

1

m
+

1

m1

)

B11

]

.

5) 1S0 → 1S0 + 3S1

M11
s (a) = −

√
3M10

s (a; 3S1 → 1S0 + 1S0),

M11
v (a) = −

√
3M10

v (a; 3S1 → 1S0 + 1S0).

2 P → S+S

1) 3P0 → 1S0 + 1S0

M00
s (a) =

√
πb√

2M4
g

[(

1

m+m1
+

1

m+m2

)

A1 +
1

m
B00

]

,

M00
v (a) =

√
2παs

3M2
g

[

m1(m1−m)+m2(m1 +3m)

m1(m+m1)(m+m2)
A1−

(

3

m1
− 1

m

)

B00

]

.

2) 3P2 → 1S0 + 1S0

M20
s (a) = −

√
πb√

5M4
g

[(

1

m+m1
+

1

m+m2

)

A1−
√

2

2m
B22

]

,

M20
v (a) = −

√
παs

3
√

5M2
g

[

2m1(m1−m)+2m2(m1 +3m)

m1(m+m1)(m+m2)
A1 +

√
2

(

3

m1
− 1

m

)

B22

]

.

3) 3P2 → 3S1 + 1S0

M21
s (a) =

√
6

2
M20

s (a; 3P2 → 1S0 + 1S0),

M21
v (a) = −

√
παs√

30M2
g

[

2(m1 +m2)

m1(m+m2)
A1 +

√
2

(

1

m1
− 1

m

)

B22

]

.

4) 3P2 → 1S0 + 3S1

M21
s (a) = −

√
6

2
M20

s (a; 3P2 → 1S0 + 1S0),

M21
v (a) =

√
παs√

30M2
g

[

2m1(m1−m)+2m2(m1 +3m)

m1(m+m1)(m+m2)
A1 +

√
2

(

3

m1
− 1

m

)

B22

]

.

3 D → S+S

1) 1D2 → 3S1 + 3S1

M11
s (a) = −

√
3πb

5
√

2M4
g

[

2

(

1

m+m1
+

1

m+m2

)

A2 +

√
2

m
B11

]

,

M11
v (a) = −

√
2παs

5
√

3M2
g

[

2(m1 +m2)

m1(m+m2)
A2 +

√
2

(

1

m
− 1

m1

)

B11

]

,

M31
s (a) =

√
πb

5M4
g

[

3

(

1

m+m1
+

1

m+m2

)

A2−
√

3

m
B33

]

,

M31
v (a) =

2
√
παs

5M2
g

[

m1 +m2

m1(m+m2)
A2 +

1√
3

(

1

m1
− 1

m

)

B33

]

.
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2) 1D2 → 3S1 + 1S0

M11
s (a) =

1√
2
M11

s (a;1D2 → 3S1 + 3S1),

M11
v (a) = −

√
παs

5
√

3m2
g

[

2m(3m1−m2)+2m1(m1 +m2)

m1(m+m1)(m+m2)
A2 +

√
2

(

1

m
+

1

m1

)

B11

]

,

M31
s (a) =

1√
2
M31

s (a;1D2 → 3S1 + 3S1),

M31
v (a) =

√
2παs

5m2
g

[

m(3m1−m2)+m1(m1 +m2)

m1(m+m1)(m+m2)
A2− 1√

3

(

1

m
+

1

m1

)

B33

]

.

3) 1D2 → 1S0 + 3S1

M11
s (a) =

1√
2
M11

s (a;1D2 → 3S1 + 3S1),

M11
v (a) =

√
παs

5
√

3m2
g

[

2m(m1−3m2)−2m1(m1 +m2)

m1(m+m1)(m+m2)
A2 +

√
2

(

3

m1
− 1

m

)

B11

]

,

M31
s (a) =

1√
2
M31

s (a;1D2 → 3S1 + 3S1),

M31
v (a) =

√
2παs

5m2
g

[

m1(m1 +m2)−m(m1−3m2)

m1(m+m1)(m+m2)
A2 +

√
3

(

1

m1
− 1

3m

)

B33

]

.

4) 3D3 → 1S0 + 1S0

M30
s (a) = − 5√

70
M31

s (a;1D2 → 3S1 + 3S1),

M30
v (a) =

√
2παs√
35M2

g

[

m(m1−3m2)−m1(m1 +m2)

m1(m+m1)(m+m2)
A2−

√
3

(

1

m1
− 1

3m

)

B33

]

.

5) 3D3 → 3S1 + 1S0

M31
s (a) = −

√

10

21
M31

s (a;1D2 → 3S1 + 3S1),

M31
v (a) = −2

√
2παs√

105M2
g

[

m1 +m2

m1(m+m2)
A2 +

1√
3

(

1

m1
− 1

m

)

B33

]

.

6) 3D3 → 1S0 + 3S1

M31
s (a) =

√

10

21
M31

s (a;1D2 → 3S1 + 3S1),

M31
v (a) = 2

√
2παs√

105M2
g

[

m1(m1−m)+m2(m1 +3m)

m1(m+m1)(m+m2)
A2 +

√
3

(

1

m1
− 1

3m

)

B33

]

.

4 D → P +S

1) 1D2 → 3P2 + 1S0

MLS
s (a) =MLS

v (a)= 0.



116 Chinese Physics C (HEP & NP) Vol. 36

2) 1D2 → 1S0 + 3P2

M02
s = −

√
πb

5
√

2mM4
g

[√
3
m(m1 +m2 +2m)

(m+m1)(m+m2)
A1 +B01

]

,

M02
v = −

√
2παs

15M2
g

[

m1(m1−m)+m2(m1 +3m)

m1(m+m1)(m+m2)

√
3A1 +

(

1

m
− 3√

2m1

)

B01

]

,

M22
s =

√
πb

2
√

35mM4
g

[
√

2m(m1 +m2 +2m)

(m+m1)(m+m2)
A′−B′

]

,

M22
v =

√
παs

3
√

35M2
g

[
√

2[m1(m1−m)+m2(m1 +3m)]

m1(m+m1)(m+m2)
A′ +

(

3

m1
− 1

m

)

B′

]

,

M42
s =

√
6πb

10
√

7mM4
g

[

2
√

7m(m1 +m2 +2m)

(m+m1)(m+m2)
A3−3B43

]

,

M42
v =

√
6παs

15
√

7M2
g

[

2
√

7[m1(m1−m)+m2(m1 +3m)]

m1(m+m1)(m+m2)
A3 +3

(

3

m1
− 1

m

)

B43

]

,

where

A′ =pfpB(0)[
√

3pAC(1,1)+2pAC(0,0)],

B′ =pB(0)[4
√

3vAC(2,1,−1)+
√

6vAC(1,1,0)−
√

6vAC(1,0,−1)−2
√

2vAC(0,1,1)+2
√

2vAC(0,0,0)].

5 F → S+S

3F4 → 1S0 + 1S0

M40
s =

√
2πb√

21M4
g

[

−
(

1

m+m1
+

1

m+m2

)

A3 +
1

2m
B44

]

,

M40
v =

√
2παs

3
√

21M2
g

[

2m(m1−3m2)−2m1(m1 +m2)

m1(m+m1)(m+m2)
A3−3

(

1

m1
− 1

3m

)

B44

]

.
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