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Abstract: The decay ψ(2S) → Ω−Ω̄+ is analyzed using 14 × 106 ψ(2S) events recorded by the Beijing

Spectrometer II (BES/) at the Beijing Electron Positron Collider (BEPC). Based upon events with no missing

charged tracks and a satisfactory four-constraint kinematic fit, we determine the upper limit for the branching

fraction of ψ(2S)→Ω−Ω̄+ to be 1.5×10−4 at a 90% confidence level. By including events with one missing

charged track, we are able to report the first evidence of an Ω−Ω̄+ signal with a statistical significance of 3.1σ.

The branching fraction of ψ(2S)→Ω−Ω̄+ is determined to be (4.80±1.56(stat)±1.30(sys))×10−5.

Key words: upper limit, first evidence, significance level, branching fraction
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1 Introduction

The production of ψ(2S) in e+e− annihilation and

its two-body hadronic decays can be used to test

the predictive power of QCD [1]. These decays oc-

cur, mainly, via cc annihilation into either three glu-

ons or a photon [2]. The gluons or the photon may

lead to baryon antibaryon production e.g., Ω−Ω̄+. In

ψ(2S)→Ω−Ω̄+, Ω− and Ω̄+ are produced, predomi-

nantly through hadronization of gluons into three ss

quark antiquark pairs. Earlier studies of this decay

mode have provided upper limits at the 90% confi-

dence level: 7.3 × 10−5 [3] and 1.6 × 10−4 [4]. In

our analysis we use 14 M ψ(2S) data registered by

the BES/ detector, to search for ψ(2S) → Ω−Ω̄+

decay events. For this purpose we reconstruct the

Ω−(Ω̄+) from ΛK−(Λ̄K+) invariant mass spectrum,

where Λ(Λ̄) is reconstructed from pπ−(p̄π+) combi-

nation. An important aspect of this analysis is that it

also includes events with one missing track, which in-

creases the detection efficiency from 1.62% (for events

with 6 charged tracks) to 10.17% (for events with

6 or 5 charged tracks). We report an upper limit

for the branching fraction of ψ(2S) → Ω−Ω̄+, using

events satisfying a four-constraint kinematic fit, to

be 1.5×10−4 at the 90% confidence level. For events

with one missing charged track and satisfying a one-

constraint kinematic fit, we determine the branching

fraction to be (4.80±1.56(stat)±1.30(sys))×10−5 with

a 3.1σ significance.

2 The BES/// Detector

BES/, a large solid-angle magnetic detector, was

employed at the BEPC [5]. Its innermost part, the

‘vertex chamber’ (VC) has twelve layers surrounding

the Beryllium beam pipe. It provides track and trig-

ger information of events. Outside the VC, there is

a forty-layer ‘main drift chamber’ (MDC) covering

85% of the total solid angle. It measures the momen-

tum and energy loss (dE/dx) of charged particles,

with resolutions: σp/p = 1.78%
√

1+p2 (p in GeV/c)

and σdE/dx ∼ 8%. A barrel-like array of forty-eight

scintillation counters outside the MDC and covering

80% of the total solid-angle is employed to provide

time-of-flight (TOF) information of particles with res-

olutions: σTOF = 180 ps (for Bhabha events) and

σTOF = 200 ps (for hadronic events). Outside the

TOF system, there is a twelve-radiation-length lead-

gas ‘barrel shower counter’ (BSC). It measures the



1042 Chinese Physics C (HEP & NP) Vol. 36

energy and position of electrons and photons, with

resolutions: σE/E = 21%/
√

E (E in GeV), σφ = 7.9

mrad, and σz = 2.3 cm. In the outermost part of the

detector, three double layers of proportional counters

are instrumented to identify muons.

The performance of the detector is checked

through Monte Carlo (MC) simulations. A reason-

able agreement is found between the data and MC

results in high purity decay channels [6].

3 Event selection

The final state particles of ψ(2S) → Ω−Ω̄+ have

momentum values with p < 0.8 GeV/c. Allowing

for the possibility of missing low momentum parti-

cle(s) during the reconstruction of charged tracks,

events with one missing charged track are also se-

lected. Thus ψ(2S) events with six or five charged

tracks (net charge: 0 or +1 or −1) that are well recon-

structed from the MDC information are selected. All

charged tracks are required to have a minimum trans-

verse momentum of 70 MeV/c and lie within the fidu-

cial region of the MDC; |cosθ|6 0.8. As Ω−(Ω̄+) and

Λ (Λ̄) have long life-times: (0.821±0.011)×10−10 s [7]

and (2.631±0.020)×10−10 s [7], respectively, charged

tracks are required to satisfy only the loose vertex

constraints: Rxy =
√

x2
0 +y2

0 6 0.2 m and |Rz0| 6 0.3

m (x0, y0 and z0 are the coordinates of the point of

closest approach to the interaction point).

Particle identification is based only upon the

track’s dE/dx information (using time-of-flight infor-

mation also, would result in comparatively low detec-

tion efficiency). The corrected dE/dx information of

each charged track is used to determine χ2 values for

each of the three particle/antiparticle hypotheses:

χ2
dE/dx(i) =

[

dE/dxmeasured−dE/dxexpected(i)

σdE/dx(i)

]2

,

where dE/dxmeasured, dE/dxexpected(i) and σdE/dx(i)

represent the measured dE/dx, the expected dE/dx

and the dE/dx resolution for a particle/antiparticle

hypothesis i, respectively. For each charged track of

an event, three χ2
dE/dx values are obtained, one for

each of the three particle/antiparticle hypotheses (p,

π+, K+ or p̄, π−, K−). Proton (p), pion (π+) and

kaon (K+) are identified by using, respectively, the

following inequalities:

χ2
dE/dx(p) < χ2

dE/dx(π
+) and χ2

dE/dx(p) <

χ2
dE/dx(K

+),

χ2
dE/dx(π

+) < χ2
dE/dx(p) and χ2

dE/dx(π
+) <

χ2
dE/dx(K

+),

χ2
dE/dx(K

+) < χ2
dE/dx(π

+) and χ2
dE/dx(K

+) <

χ2
dE/dx(p).

Negatively charged particles (p̄, π− and K−) are

also identified using similar criteria. The χ2
dE/dx

distributions for the three particle/anti-particle hy-

potheses when a proton/anti-proton is identified, are

shown in Fig. 1. The individual events have distinct

values of χ2
dE/dx for three hypotheses but for all events

an overlapping between adjacent χ2
dE/dx distributions

is seen as shown in Fig. 1.

Fig. 1. The χ2
dE/dx distributions of p, π and K

hypotheses for the selected data events when

p is identified.

Events with six identified particles are subjected

to a four constraint (4C) kinematic fit imposing en-

ergy and momentum conservation, and those with five

identified particles to a one constraint (1C) kinematic

fit imposing energy conservation. Events passing the

4C kinematic fit are required to have χ2
4C < 20, while

for those passing the 1C fit, an optimized cut i.e.,

χ2
1C < 10 is applied. For events passing either the 4C

or 1C kinematic fit, the pπ− (p̄π+) and ΛK− (Λ̄K+)

invariant mass spectra are reconstructed to select Λ

(Λ̄) and Ω− (Ω̄+) signals. For events satisfying the

4C selection, the mass resolutions of Λ (Λ̄) and Ω−

(Ω̄+) signals are determined to be ≈ 3 MeV/c2 and

≈ 5 MeV/c2, respectively, through single Gaussian

fits to the respective MC invariant mass spectra. In

this case, Λ(Λ̄) and Ω−(Ω̄+) mass limits are selected

as |Mpπ− −MΛ| < 9 (|Mp̄π+ −MΛ̄| < 9) MeV/c2 and

|MΛK− −MΩ− |< 15 (|MΛ̄K+ −MΩ̄+ |< 15) MeV/c2.

For events passing the 1C selection, the mass res-

olutions of Λ (Λ̄) and Ω− (Ω̄+) signals are deter-

mined to be ≈ 10 MeV/c2 and ≈ 20 MeV/c2, respec-

tively, through double Gaussian fits to the respec-

tive MC invariant mass spectra. In this case Λ(Λ̄)

and Ω−(Ω̄+) asymmetric mass limits are determined

for 97.3% area of the invariant mass spectra to be
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1090 < Mpπ− < 1150 (1090 < Mp̄π+ < 1150) MeV/c2

and 1630 < MΛK− < 1750 (1630 < MΛ̄K+ < 1750)

MeV/c2.

4 The analysis results

Comparisons between pπ− (ΛK−) and p̄π+ (Λ̄K+)

invariant mass spectra of data events are shown in

Figs. 2 and 3, where the histograms represent pπ−

and ΛK− invariant mass spectra and the dots with er-

ror bars represent p̄π+ and Λ̄K+ invariant mass spec-

tra. Background is analyzed by using exclusive MC

samples as well as a 14 million inclusive ψ(2S) MC.

The exclusive background channels, each with 10,000

MC events, include ψ(2S) → ΛΛ̄π+π−; ψ(2S) →
ΛΛ̄φ(1020), φ → K+K−; ψ(2S) → Ξ−Ξ̄+,Ξ− →
Λπ−, Ξ̄+ → Λ̄π+; and ψ(2S)→Λp̄K+π+π−. ψ(2S)→
ΛΛ̄φ(1020), with φ(1020) → K+K−, is found to be

the main background channel. The K+K− invariant

mass spectrum for data events is shown in Fig. 4.

From a single Gaussian fit to the MC K+K− in-

variant mass spectrum, the mass resolution (σφ) is

found to be ≈ 5 MeV/c2. The background contribu-

tion of ψ(2S) → ΛΛ̄φ(1020), with φ(1020)→ K+K−

in the Ω−Ω̄+ signal region for 1C selected events is

removed by requiring |M(K+K−)− M(φ(1020))| >

3×σφ. This requirement is applied only for 1C events

in the signal region of the scatter plot of M(ΛK−)

versus M(Λ̄K+).

Fig. 2. Comparison of pπ− and p̄π+ invariant

mass distributions (from data). The his-

togram represents Mpπ− obtained under the

requirements: |Mp̄π+ −MΛ̄| < 9 MeV/c2 and

χ2
4C < 20 or 1090 < Mp̄π+ < 1150 MeV/c2

and χ2
1C < 10 whereas the dots with error

bars represent Mp̄π+ obtained under the re-

quirements |Mpπ− −MΛ| < 9 MeV/c2 and

χ2
4C < 20 or 1090 < Mpπ− < 1150 MeV/c2

and χ2
1C < 10. Background seen is mainly

from ψ(2S) → ΛΛ̄φ(1020), where φ(1020) →
K+K−.

Fig. 3. Comparison of ΛK− and Λ̄K+ invari-

ant mass distributions (from data). The his-

togram represents MΛK− obtained under the

requirements: |Mpπ− −MΛ| < 9 MeV/c2 and

|Mp̄π+ − MΛ̄| < 9 MeV/c2 and |MΛ̄K+ −
MΩ̄+ | < 15 MeV/c2 and χ2

4C < 20 or

1090 < Mpπ− < 1150 MeV/c2 and 1090 <

Mp̄π+ < 1150 MeV/c2 and 1630 < MΛ̄K+ <

1750 MeV/c2 and χ2
1C < 10, and the dots

with error bars represent MΛ̄K+ obtained

under the requirements: |Mpπ− − MΛ| <

9 MeV/c2 and |Mp̄π+ −MΛ̄|< 9 MeV/c2 and

|MΛK− −MΩ− | < 15 MeV/c2 and χ2
4C < 20

or 1090 < Mpπ− < 1150 MeV/c2 and 1090 <

Mp̄π+ < 1150 MeV/c2 and 1630 < MΛK− <

1750 MeV/c2 and χ2
1C < 10. Main back-

ground channel is ψ(2S) → ΛΛ̄φ(1020), with

φ(1020)→K+K−.

Fig. 4. K+K− invariant mass spectrum (for

data events) under the constraints: χ2
1C < 10

and 1090<Mpπ− < 1150 MeV/c2 and 1090<

Mp̄π+ < 1150 MeV/c2.

The number of signal and background events are

determined from the scatter plot of MΛK− versus
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MΛ̄K+ by employing the technique used in Ref. [8].

For 4C fit events, the scatter plot is obtained un-

der the requirements |Mpπ− −MΛ| < 9 MeV/c2 and

|Mp̄π+ −MΛ̄| < 9 MeV/c2 and χ2
4C < 20 (Fig. 5). In

this scatter plot, the signal region is defined by a cir-

cle with center at (1672 MeV/c2, 1672 MeV/c2) and

radius of 15 MeV/c2. In this region, only one event

is found. In this case, the detection efficiency is de-

termined to be 1.62%. Assuming that the observed

events follow the Poisson probability distribution [9]:

P (x,U) =
e−UUx

x!
,

where x is the number of observed events in an ex-

periment (in this case x = 1) and U is the expected

number of events, an upper limit for the expected

number of events is determined to be U = 3.89 at the

90% confidence level.

Fig. 5. Scatter plot of ΛK− versus Λ̄K+ for

4C fit events under the constraints: |Mpπ− −
MΛ| < 15 MeV/c2 and |Mp̄π+ − MΛ̄| <

15 MeV/c2 and χ2
4C < 20. The circle with cen-

ter: (1672 MeV/c2, 1672 MeV/c2) and radius

of 60 MeV/c2 represents the signal region.

For 1C fit events, the scatter plot is obtained un-

der the requirements 1090 < Mpπ− < 1150 MeV/c2

and 1090 < Mp̄π+ < 1150 MeV/c2 and |M(K+K−)−
M(φ(1020))|> 15 MeV/c2 and χ2

1C < 10 (Fig. 6). In

this case the signal region is defined by a circle with

center at (1690 MeV/c2, 1690 MeV/c2) and radius of

60 MeV/c2. Two concentric circles of 120 MeV/c2

and 180 MeV/c2 radii are used for background esti-

mation in the signal region.

The center of these circles is shifted from nominal

central mass value (1672 MeV/c2) of Ω− (Ω̄+) due

to the asymmetric nature of the ΛK− (Λ̄K+) invari-

ant mass distribution. The numbers of events found

in the signal and background regions are 12 and 6,

respectively. So the number of Ω−Ω̄+ signal events

is determined to be 12−6/5 = 10.8±3.5, where 5 is

the normalization factor (area of the background re-

gion/area of signal region), and the error is statistical.

In this case, the detection efficiency is determined to

be 8.55%. The significance of the Ω−Ω̄+ signal is ob-

tained to be 3.1σ by using the method described in

Ref. [9].

Fig. 6. Scatter plot of ΛK− versus Λ̄K+ for 1C

fit events under the constraints: |M(K+K−)−
1020)| > 15 MeV/c2 and 1090 < Mpπ− <

1150 MeV/c2 and 1090 < Mp̄π+ < 1150

MeV/c2 and χ2
1C < 10. Circles are centered

at (1690 MeV/c2, 1690 MeV/c2) due to asym-

metric mass limits of Ω− and Ω̄+: (1630–1750)

MeV/c2, with radii of 60 MeV/c2, 120 MeV/c2

and 180 MeV/c2. The innermost circle repre-

sents the signal region, and the region between

the outer circles is used to estimate the nor-

malized background in the signal region.

5 Systematic error analysis

Uncertainties in the branching fraction are studied

for 4C and 1C kinematic fit results. The uncertain-

ties of the hadronic interaction model are determined

to be 23.3% and 13.2%, respectively, by comparing

the numbers of Ω−Ω̄+ MC events reconstructed using

the GCALOR and FLUKA models. Particle iden-

tification uncertainties are taken as 6% and 5% [6],

respectively. MDC tracking errors are taken as 12%

and 10% [6], respectively. Kinematic fit uncertain-

ties are 19.1% and 14.6%, respectively, by studying

J/ψ→ Ξ−Ξ̄+ (Ξ− → Λπ−, Λ → pπ− and Ξ̄+ → Λ̄π−,

Λ̄→ p̄π+) decays with and without the kinematic fits.

Comparing MC Ω−Ω̄+ signal under different values of

the angular distribution parameter: α = 0.5, +1 &−1

with that from the nominal value α = 0, the uncer-

tainties are 16.7% and 14.0%, respectively. Monte

Carlo statistical errors are evaluated to be 3.6% and

1.5%. The uncertainty due to intermediate branch-

ing fractions is 2.4% (by combining the errors in the
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branching fractions of intermediate resonances [7]) for

both the 4C and 1C events. The uncertainty in the

number of ψ(2S) data events is 4.3% [10]. Combining

all uncertainties in quadrature, the uncertainties for

4C and 1C fit results, are 37.4% and 27.1%, respec-

tively. These results are also listed in Table 1.

Table 1. Systematic uncertainties (%) in the

Branching Fraction.

4C fit 1C fit
source of uncertainty

uncertainty uncertainty

models of Hadron Interaction 23.3 13.2

particle identification 6 5

MDC tracking 12 10

kinematic fit 19.1 14.6

angular distribution 16.7 14

MC statistics 3.6 1.5

intermediate branching fractions 2.4 2.4

total number of ψ(2S) events 4.3 4.3

total = 37.4 total = 27.1

6 Determination of branching fraction

Using the following formula:

Nupper/(1−σsys)

ε.[B(Ω− →ΛK−)]2.[B(Λ→ pπ−)]2.Nψ(2S)

,

where Nupper = 3.89, B(Ω− → ΛK−) = (67.8±0.7)%

[7], B(Λ → pπ−) = (63.9 ± 0.5)% [7], Nψ(2S) =

(14±0.6)×106 (number of ψ(2S) data events) [10],

ε = 0.0162 and σsys = 0.374, an upper limit for the

branching fraction of ψ(2S) → Ω−Ω̄+ is determined

to be 1.5×10−4 at the 90% confidence level, for 4C

fit events. Using the formula:

N obs

ε.[B(Ω− →ΛK−)]2.[B(Λ→ pπ−)]2.Nψ(2S)

,

where N obs = 10.8±3.5 and ε = 0.0855, the branch-

ing ratio is determined to be (4.80 ± 1.56(stat) ±
1.30(sys))× 10−5 for 1C fit events. In the limit of

SU(3) flavor symmetry, the phase-space-corrected re-

duced branching fraction (|M |2) for ψ(2S) → Ω−Ω̄+

is calculated by using the following formula [3]:

|M |2 =
B(ψ(2S)→Ω−Ω̄+)

πp∗/
√

s
,

where p∗ is the momentum of Ω− or Ω̄+ in ψ(2S)

rest frame. In Fig. 7, the reduced branching frac-

tion for ψ(2S) → Ω−Ω̄+ is plotted along with other

octet baryon-antibaryon pairs computed by using the

branching fractions from Particle Data Group 2012

[7]. The plot shows a trend towards smaller values

of reduced branching fractions for baryon-antibaryon

pairs of higher masses.

Fig. 7. The reduced branching fractions:

|Mi|2= B(ψ(2S) → BiB̄i)/(πp
∗/
√
s), where

p∗ is momentum of baryon (antibaryon) in

rest frame of ψ(2S).

7 Conclusion

Using 14 million ψ(2S) decay events recorded by

the BES/ detector at BEPC, we report an upper

limit for the branching fraction of ψ(2S) → Ω−Ω̄+

to be 1.5 × 10−4 at 90% confidence level based

upon the 4C fit result. We report the first evi-

dence of an Ω−Ω̄+ signal, with a statistical signif-

icance of about 3.1σ using 1C events. The branch-

ing fraction of ψ(2S) → Ω−Ω̄+ is determined to be

(4.80±1.56(stat)±1.30(sys))×10−5 and is consistent

with the upper limit.

The BES Collaboration would like to thank the
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hard work.
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