First evidence of $\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+*}$

(BES II collaboration)

[^0][^1]${ }^{6}$ Huazhong Normal University, Wuhan 430079, China
7 Hunan University, Changsha 410082, China
8 Liaoning University, Shenyang 110036, China
${ }^{9}$ Nanjing Normal University, Nanjing 210046, China
${ }^{10}$ Nankai University, Tianjin 300071, China ${ }^{11}$ Peking University, Beijing 100871, China
12 Seoul National University, Seoul, 151-747 Korea
13 Shandong University, Jinan 250100, China
14 Sichuan University, Chengdu 610064, China
15 Tsinghua University, Beijing 100084, China
16 University of Hawaii, Honolulu, Hawaii 96822, USA
17 University of Science and Technology of China, Hefei 230026, China
18 Wuhan University, Wuhan 430072, China
19 Zhejiang University, Hangzhou 310027, China
a now at Zhengzhou University, Zhengzhou 450001, China
b now at Johns Hopkins University, Baltimore, MD 21218, USA
c now at Centre for High Energy Physics, University of the Punjab, Lahore-54590, Pakistan
${ }^{\text {d }}$ now at Graduate University of Chinese Academy of Sciences, Beijing 100049, China
e now at Nagoya University, Nagoya, Japan
${ }^{f}$ now at Soochow University, Suzhou 215006, China

Abstract

The decay $\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+}$is analyzed using $14 \times 10^{6} \psi(2 S)$ events recorded by the Beijing Spectrometer II (BES II) at the Beijing Electron Positron Collider (BEPC). Based upon events with no missing charged tracks and a satisfactory four-constraint kinematic fit, we determine the upper limit for the branching fraction of $\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+}$to be 1.5×10^{-4} at a 90% confidence level. By including events with one missing charged track, we are able to report the first evidence of an $\Omega^{-} \bar{\Omega}^{+}$signal with a statistical significance of 3.1σ. The branching fraction of $\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+}$is determined to be $(4.80 \pm 1.56($ stat $) \pm 1.30$ (sys) $) \times 10^{-5}$.

Key words: upper limit, first evidence, significance level, branching fraction
PACS: 14.40.Pq, 14.65.Dw, 14.20.Gk DOI: 10.1088/1674-1137/36/11/002

1 Introduction

The production of $\psi(2 S)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation and its two-body hadronic decays can be used to test the predictive power of QCD [1]. These decays occur, mainly, via c \bar{c} annihilation into either three gluons or a photon [2]. The gluons or the photon may lead to baryon antibaryon production e.g., $\Omega^{-} \bar{\Omega}^{+}$. In $\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+}, \Omega^{-}$and $\bar{\Omega}^{+}$are produced, predominantly through hadronization of gluons into three ss quark antiquark pairs. Earlier studies of this decay mode have provided upper limits at the 90% confidence level: 7.3×10^{-5} [3] and 1.6×10^{-4} [4]. In our analysis we use $14 \mathrm{M} \psi(2 S)$ data registered by the BES II detector, to search for $\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+}$ decay events. For this purpose we reconstruct the $\Omega^{-}\left(\bar{\Omega}^{+}\right)$from $\Lambda \mathrm{K}^{-}\left(\bar{\Lambda} \mathrm{K}^{+}\right)$invariant mass spectrum, where $\Lambda(\bar{\Lambda})$ is reconstructed from $\mathrm{p} \pi^{-}\left(\overline{\mathrm{p}} \pi^{+}\right)$combination. An important aspect of this analysis is that it also includes events with one missing track, which increases the detection efficiency from 1.62% (for events with 6 charged tracks) to 10.17% (for events with 6 or 5 charged tracks). We report an upper limit for the branching fraction of $\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+}$, using events satisfying a four-constraint kinematic fit, to
be 1.5×10^{-4} at the 90% confidence level. For events with one missing charged track and satisfying a oneconstraint kinematic fit, we determine the branching fraction to be $(4.80 \pm 1.56$ (stat) ± 1.30 (sys) $) \times 10^{-5}$ with a 3.1σ significance.

2 The BES II Detector

BES II, a large solid-angle magnetic detector, was employed at the BEPC [5]. Its innermost part, the 'vertex chamber' (VC) has twelve layers surrounding the Beryllium beam pipe. It provides track and trigger information of events. Outside the VC, there is a forty-layer 'main drift chamber' (MDC) covering 85% of the total solid angle. It measures the momentum and energy loss $(\mathrm{d} E / \mathrm{d} x)$ of charged particles, with resolutions: $\sigma_{\mathrm{p}} / p=1.78 \% \sqrt{1+p^{2}}(p$ in $\mathrm{GeV} / c)$ and $\sigma_{\mathrm{d} E / \mathrm{d} x} \sim 8 \%$. A barrel-like array of forty-eight scintillation counters outside the MDC and covering 80% of the total solid-angle is employed to provide time-of-flight (TOF) information of particles with resolutions: $\sigma_{\text {TOF }}=180 \mathrm{ps}$ (for Bhabha events) and $\sigma_{\text {TOF }}=200 \mathrm{ps}$ (for hadronic events). Outside the TOF system, there is a twelve-radiation-length leadgas 'barrel shower counter' (BSC). It measures the
energy and position of electrons and photons, with resolutions: $\sigma_{E} / E=21 \% / \sqrt{E}(E$ in GeV$), \sigma_{\phi}=7.9$ mrad , and $\sigma_{z}=2.3 \mathrm{~cm}$. In the outermost part of the detector, three double layers of proportional counters are instrumented to identify muons.

The performance of the detector is checked through Monte Carlo (MC) simulations. A reasonable agreement is found between the data and MC results in high purity decay channels [6].

3 Event selection

The final state particles of $\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+}$have momentum values with $p<0.8 \mathrm{GeV} / c$. Allowing for the possibility of missing low momentum particle(s) during the reconstruction of charged tracks, events with one missing charged track are also selected. Thus $\psi(2 S)$ events with six or five charged tracks (net charge: 0 or +1 or -1) that are well reconstructed from the MDC information are selected. All charged tracks are required to have a minimum transverse momentum of $70 \mathrm{MeV} / c$ and lie within the fiducial region of the MDC; $|\cos \theta| \leqslant 0.8$. As $\Omega^{-}\left(\bar{\Omega}^{+}\right)$and $\Lambda(\bar{\Lambda})$ have long life-times: $(0.821 \pm 0.011) \times 10^{-10} \mathrm{~s}[7]$ and $(2.631 \pm 0.020) \times 10^{-10} \mathrm{~s}[7]$, respectively, charged tracks are required to satisfy only the loose vertex constraints: $R_{x y}=\sqrt{x_{0}^{2}+y_{0}^{2}} \leqslant 0.2 \mathrm{~m}$ and $\left|R_{z 0}\right| \leqslant 0.3$ $\mathrm{m}\left(x_{0}, y_{0}\right.$ and z_{0} are the coordinates of the point of closest approach to the interaction point).

Particle identification is based only upon the track's $\mathrm{d} E / \mathrm{d} x$ information (using time-of-flight information also, would result in comparatively low detection efficiency). The corrected $\mathrm{d} E / \mathrm{d} x$ information of each charged track is used to determine χ^{2} values for each of the three particle/antiparticle hypotheses:

$$
\chi_{\mathrm{d} E / \mathrm{d} x}^{2}(i)=\left[\frac{\mathrm{d} E / \mathrm{d} x_{\text {measured }}-\mathrm{d} E / \mathrm{d} x_{\text {expected }}(i)}{\sigma_{\mathrm{d} E / \mathrm{d} x}(i)}\right]^{2},
$$

where $\mathrm{d} E / \mathrm{d} x_{\text {measured }}, \mathrm{d} E / \mathrm{d} x_{\text {expected }}(i)$ and $\sigma_{\mathrm{d} E / \mathrm{d} x}(i)$ represent the measured $\mathrm{d} E / \mathrm{d} x$, the expected $\mathrm{d} E / \mathrm{d} x$ and the $\mathrm{d} E / \mathrm{d} x$ resolution for a particle/antiparticle hypothesis i, respectively. For each charged track of an event, three $\chi_{\mathrm{d} E / \mathrm{d} x}^{2}$ values are obtained, one for each of the three particle/antiparticle hypotheses (p , π^{+}, K^{+}or $\overline{\mathrm{p}}, \pi^{-}, \mathrm{K}^{-}$). Proton (p), pion (π^{+}) and kaon $\left(\mathrm{K}^{+}\right)$are identified by using, respectively, the following inequalities:
$\chi_{\mathrm{d} E / \mathrm{d} x}^{2}(\mathrm{p})<\chi_{\mathrm{d} E / \mathrm{d} x}^{2}\left(\pi^{+}\right)$and $\chi_{\mathrm{d} E / \mathrm{d} x}^{2}(\mathrm{p})<$ $\chi_{\mathrm{d} E / \mathrm{d} x}^{2}\left(\mathrm{~K}^{+}\right)$,
$\chi_{\mathrm{d} E / \mathrm{d} x}^{2}\left(\pi^{+}\right)<\chi_{\mathrm{d} E / \mathrm{d} x}^{2}(\mathrm{p})$ and $\chi_{\mathrm{d} E / \mathrm{d} x}^{2}\left(\pi^{+}\right)<$ $\chi_{\mathrm{d} E / \mathrm{d} x}^{2}\left(\mathrm{~K}^{+}\right)$,
$\chi_{\mathrm{d} E / \mathrm{d} x}^{2}\left(\mathrm{~K}^{+}\right)<\chi_{\mathrm{d} E / \mathrm{d} x}^{2}\left(\pi^{+}\right)$and $\chi_{\mathrm{d} E / \mathrm{d} x}^{2}\left(\mathrm{~K}^{+}\right)<$ $\chi_{\mathrm{d} E / \mathrm{d} x}^{2}(\mathrm{p})$.

Negatively charged particles ($\overline{\mathrm{p}}, \pi^{-}$and K^{-}) are also identified using similar criteria. The $\chi_{\mathrm{d} E / \mathrm{d} x}^{2}$ distributions for the three particle/anti-particle hypotheses when a proton/anti-proton is identified, are shown in Fig. 1. The individual events have distinct values of $\chi_{\mathrm{d} E / \mathrm{d} x}^{2}$ for three hypotheses but for all events an overlapping between adjacent $\chi_{\mathrm{d} E / \mathrm{d} x}^{2}$ distributions is seen as shown in Fig. 1.

Fig. 1. The $\chi_{\mathrm{d} E / \mathrm{d} x}^{2}$ distributions of p, π and K hypotheses for the selected data events when p is identified.

Events with six identified particles are subjected to a four constraint (4C) kinematic fit imposing energy and momentum conservation, and those with five identified particles to a one constraint (1C) kinematic fit imposing energy conservation. Events passing the 4 C kinematic fit are required to have $\chi_{4 \mathrm{C}}^{2}<20$, while for those passing the 1 C fit, an optimized cut i.e., $\chi_{1 \mathrm{C}}^{2}<10$ is applied. For events passing either the 4C or 1 C kinematic fit, the $\mathrm{p} \pi^{-}\left(\overline{\mathrm{p}} \pi^{+}\right)$and $\Lambda \mathrm{K}^{-}\left(\bar{\Lambda} \mathrm{K}^{+}\right)$ invariant mass spectra are reconstructed to select Λ $(\bar{\Lambda})$ and $\Omega^{-}\left(\bar{\Omega}^{+}\right)$signals. For events satisfying the 4 C selection, the mass resolutions of $\Lambda(\bar{\Lambda})$ and Ω^{-} $\left(\bar{\Omega}^{+}\right)$signals are determined to be $\approx 3 \mathrm{MeV} / c^{2}$ and $\approx 5 \mathrm{MeV} / c^{2}$, respectively, through single Gaussian fits to the respective MC invariant mass spectra. In this case, $\Lambda(\bar{\Lambda})$ and $\Omega^{-}\left(\bar{\Omega}^{+}\right)$mass limits are selected as $\left|M_{\mathrm{p} \pi^{-}}-M_{\Lambda}\right|<9\left(\left|M_{\overline{\mathrm{p}} \pi^{+}}-M_{\bar{\Lambda}}\right|<9\right) \mathrm{MeV} / c^{2}$ and $\left|M_{\Lambda K^{-}}-M_{\Omega^{-}}\right|<15\left(\left|M_{\bar{\Lambda} K^{+}}-M_{\bar{\Omega}^{+}}\right|<15\right) \mathrm{MeV} / c^{2}$.

For events passing the 1 C selection, the mass resolutions of $\Lambda(\bar{\Lambda})$ and $\Omega^{-}\left(\bar{\Omega}^{+}\right)$signals are determined to be $\approx 10 \mathrm{MeV} / c^{2}$ and $\approx 20 \mathrm{MeV} / c^{2}$, respectively, through double Gaussian fits to the respective MC invariant mass spectra. In this case $\Lambda(\bar{\Lambda})$ and $\Omega^{-}\left(\bar{\Omega}^{+}\right)$asymmetric mass limits are determined for 97.3% area of the invariant mass spectra to be
$1090<M_{\mathrm{p} \pi^{-}}<1150\left(1090<M_{\overline{\mathrm{p}} \pi^{+}}<1150\right) \mathrm{MeV} / c^{2}$ and $1630<M_{\Lambda \mathrm{K}^{-}}<1750\left(1630<M_{\bar{\Lambda}^{+}}<1750\right)$ MeV / c^{2}.

4 The analysis results

Comparisons between $\mathrm{p} \pi^{-}\left(\Lambda \mathrm{K}^{-}\right)$and $\overline{\mathrm{p}} \pi^{+}\left(\bar{\Lambda} \mathrm{K}^{+}\right)$ invariant mass spectra of data events are shown in Figs. 2 and 3, where the histograms represent $\mathrm{p} \pi^{-}$ and ΛK^{-}invariant mass spectra and the dots with error bars represent $\overline{\mathrm{p}} \pi^{+}$and $\bar{\Lambda} \mathrm{K}^{+}$invariant mass spectra. Background is analyzed by using exclusive MC samples as well as a 14 million inclusive $\psi(2 S)$ MC. The exclusive background channels, each with 10,000 MC events, include $\psi(2 S) \rightarrow \Lambda \bar{\Lambda} \pi^{+} \pi^{-} ; \psi(2 S) \rightarrow$ $\Lambda \bar{\Lambda} \phi(1020), \phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} ; \psi(2 S) \rightarrow \Xi^{-} \bar{\Xi}^{+}, \Xi^{-} \rightarrow$ $\Lambda \pi^{-}, \bar{\Xi}^{+} \rightarrow \bar{\Lambda} \pi^{+} ;$and $\psi(2 S) \rightarrow \Lambda \overline{\mathrm{p}} \mathrm{K}^{+} \pi^{+} \pi^{-} . \psi(2 S) \rightarrow$ $\Lambda \bar{\Lambda} \phi(1020)$, with $\phi(1020) \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$, is found to be the main background channel. The $\mathrm{K}^{+} \mathrm{K}^{-}$invariant mass spectrum for data events is shown in Fig. 4.

From a single Gaussian fit to the $\mathrm{MC} \mathrm{K}^{+} \mathrm{K}^{-}$invariant mass spectrum, the mass resolution $\left(\sigma_{\phi}\right)$ is found to be $\approx 5 \mathrm{MeV} / c^{2}$. The background contribution of $\psi(2 S) \rightarrow \Lambda \bar{\Lambda} \phi(1020)$, with $\phi(1020) \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$ in the $\Omega^{-} \bar{\Omega}^{+}$signal region for 1 C selected events is removed by requiring $\left|M\left(\mathrm{~K}^{+} \mathrm{K}^{-}\right)-M(\phi(1020))\right|>$ $3 \times \sigma_{\phi}$. This requirement is applied only for 1 C events in the signal region of the scatter plot of $M\left(\Lambda \mathrm{~K}^{-}\right)$ versus $M\left(\bar{\Lambda} \mathrm{~K}^{+}\right)$.

Fig. 2. Comparison of $\mathrm{p} \pi^{-}$and $\overline{\mathrm{p}} \pi^{+}$invariant mass distributions (from data). The histogram represents $M_{\mathrm{p} \pi^{-}}$obtained under the requirements: $\left|M_{\overline{\mathrm{p}} \pi^{+}}-M_{\bar{\Lambda}}\right|<9 \mathrm{MeV} / c^{2}$ and $\chi_{4 \mathrm{C}}^{2}<20$ or $1090<M_{\overline{\mathrm{p}} \pi^{+}}<1150 \mathrm{MeV} / c^{2}$ and $\chi_{1 \mathrm{C}}^{2}<10$ whereas the dots with error bars represent $M_{\overline{\mathrm{p}} \pi^{+}}$obtained under the requirements $\left|M_{\mathrm{p} \pi^{-}}-M_{\Lambda}\right|<9 \mathrm{MeV} / c^{2}$ and $\chi_{4 \mathrm{C}}^{2}<20$ or $1090<M_{\mathrm{p} \pi^{-}}<1150 \mathrm{MeV} / c^{2}$ and $\chi_{1 \mathrm{C}}^{2}<10$. Background seen is mainly from $\psi(2 S) \rightarrow \Lambda \bar{\Lambda} \phi(1020)$, where $\phi(1020) \rightarrow$ $\mathrm{K}^{+} \mathrm{K}^{-}$.

Fig. 3. Comparison of $\Lambda \mathrm{K}^{-}$and $\bar{\Lambda} \mathrm{K}^{+}$invariant mass distributions (from data). The histogram represents $M_{\Lambda K^{-}}$obtained under the requirements: $\left|M_{\mathrm{p} \pi^{-}}-M_{\Lambda}\right|<9 \mathrm{MeV} / c^{2}$ and $\left|M_{\overline{\mathrm{p}} \pi^{+}}-M_{\bar{\Lambda}}\right|<9 \mathrm{MeV} / c^{2}$ and $\mid M_{\bar{\Lambda} \mathrm{K}^{+}}-$ $M_{\bar{\Omega}^{+}} \mid<15 \mathrm{MeV} / c^{2}$ and $\chi_{4 \mathrm{C}}^{2}<20$ or $1090<M_{\mathrm{p} \pi^{-}}<1150 \mathrm{MeV} / c^{2}$ and $1090<$ $M_{\overline{\mathrm{P}} \pi^{+}}<1150 \mathrm{MeV} / c^{2}$ and $1630<M_{\bar{\Lambda} \mathrm{K}^{+}}<$ $1750 \mathrm{MeV} / c^{2}$ and $\chi_{1 \mathrm{C}}^{2}<10$, and the dots with error bars represent $M_{\bar{\Lambda} K^{+}}$obtained under the requirements: $\left|M_{\mathrm{p} \pi^{-}}-M_{\Lambda}\right|<$ $9 \mathrm{MeV} / c^{2}$ and $\left|M_{\overline{\mathrm{p}} \pi^{+}}-M_{\bar{\Lambda}}\right|<9 \mathrm{MeV} / c^{2}$ and $\left|M_{\Lambda K^{-}}-M_{\Omega^{-}}\right|<15 \mathrm{MeV} / c^{2}$ and $\chi_{4 \mathrm{C}}^{2}<20$ or $1090<M_{\mathrm{p} \pi^{-}}<1150 \mathrm{MeV} / c^{2}$ and $1090<$ $M_{\overline{\mathrm{P}} \pi^{+}}<1150 \mathrm{MeV} / c^{2}$ and $1630<M_{\Lambda \mathrm{K}^{-}}<$ $1750 \mathrm{MeV} / c^{2}$ and $\chi_{1 \mathrm{C}}^{2}<10$. Main background channel is $\psi(2 S) \rightarrow \Lambda \bar{\Lambda} \phi(1020)$, with $\phi(1020) \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$.

Fig. 4. $\mathrm{K}^{+} \mathrm{K}^{-}$invariant mass spectrum (for data events) under the constraints: $\chi_{1 \mathrm{C}}^{2}<10$ and $1090<M_{\mathrm{p} \pi^{-}}<1150 \mathrm{MeV} / c^{2}$ and $1090<$ $M_{\overline{\mathrm{p}} \pi^{+}}<1150 \mathrm{MeV} / c^{2}$.

The number of signal and background events are determined from the scatter plot of $M_{\Lambda K^{-}}$versus
$M_{\bar{\Lambda} \mathrm{K}^{+}}$by employing the technique used in Ref. [8]. For 4 C fit events, the scatter plot is obtained under the requirements $\left|M_{\mathrm{p} \pi^{-}}-M_{\Lambda}\right|<9 \mathrm{MeV} / c^{2}$ and $\left|M_{\overline{\mathrm{p}} \pi^{+}}-M_{\bar{\Lambda}}\right|<9 \mathrm{MeV} / c^{2}$ and $\chi_{4 \mathrm{C}}^{2}<20$ (Fig. 5). In this scatter plot, the signal region is defined by a circle with center at $\left(1672 \mathrm{MeV} / c^{2}, 1672 \mathrm{MeV} / c^{2}\right)$ and radius of $15 \mathrm{MeV} / c^{2}$. In this region, only one event is found. In this case, the detection efficiency is determined to be 1.62%. Assuming that the observed events follow the Poisson probability distribution [9]:

$$
P(x, U)=\frac{\mathrm{e}^{-U} U^{x}}{x!}
$$

where x is the number of observed events in an experiment (in this case $x=1$) and U is the expected number of events, an upper limit for the expected number of events is determined to be $U=3.89$ at the 90% confidence level.

Fig. 5. Scatter plot of $\Lambda \mathrm{K}^{-}$versus $\bar{\Lambda} \mathrm{K}^{+}$for 4 C fit events under the constraints: $\mid M_{\mathrm{p} \pi^{-}}-$ $M_{\Lambda} \mid<15 \mathrm{MeV} / c^{2}$ and $\left|M_{\overline{\mathrm{p}} \pi^{+}}-M_{\bar{\Lambda}}\right|<$ $15 \mathrm{MeV} / c^{2}$ and $\chi_{4 \mathrm{C}}^{2}<20$. The circle with center: $\left(1672 \mathrm{MeV} / c^{2}, 1672 \mathrm{MeV} / c^{2}\right)$ and radius of $60 \mathrm{MeV} / c^{2}$ represents the signal region.

For 1 C fit events, the scatter plot is obtained under the requirements $1090<M_{\mathrm{p} \pi^{-}}<1150 \mathrm{MeV} / c^{2}$ and $1090<M_{\overline{\mathrm{p}} \pi^{+}}<1150 \mathrm{MeV} / c^{2}$ and $\mid M\left(\mathrm{~K}^{+} \mathrm{K}^{-}\right)-$ $M(\phi(1020)) \mid>15 \mathrm{MeV} / c^{2}$ and $\chi_{1 \mathrm{C}}^{2}<10$ (Fig. 6). In this case the signal region is defined by a circle with center at ($1690 \mathrm{MeV} / c^{2}, 1690 \mathrm{MeV} / c^{2}$) and radius of $60 \mathrm{MeV} / \mathrm{c}^{2}$. Two concentric circles of $120 \mathrm{MeV} / c^{2}$ and $180 \mathrm{MeV} / c^{2}$ radii are used for background estimation in the signal region.

The center of these circles is shifted from nominal central mass value $\left(1672 \mathrm{MeV} / c^{2}\right)$ of $\Omega^{-}\left(\bar{\Omega}^{+}\right)$due to the asymmetric nature of the $\Lambda \mathrm{K}^{-}\left(\bar{\Lambda} \mathrm{K}^{+}\right)$invariant mass distribution. The numbers of events found in the signal and background regions are 12 and 6 , respectively. So the number of $\Omega^{-} \bar{\Omega}^{+}$signal events
is determined to be $12-6 / 5=10.8 \pm 3.5$, where 5 is the normalization factor (area of the background region/area of signal region), and the error is statistical. In this case, the detection efficiency is determined to be 8.55%. The significance of the $\Omega^{-} \bar{\Omega}^{+}$signal is obtained to be 3.1σ by using the method described in Ref. [9].

Fig. 6. Scatter plot of ΛK^{-}versus $\bar{\Lambda} K^{+}$for 1 C fit events under the constraints: $\mid M\left(\mathrm{~K}^{+} \mathrm{K}^{-}\right)-$ 1020) $\mid>15 \mathrm{MeV} / c^{2}$ and $1090<M_{\mathrm{p} \pi^{-}}<$ $1150 \mathrm{MeV} / c^{2}$ and $1090<M_{\overline{\mathrm{p}} \pi^{+}}<1150$ MeV / c^{2} and $\chi_{1 \mathrm{C}}^{2}<10$. Circles are centered at ($1690 \mathrm{MeV} / c^{2}, 1690 \mathrm{MeV} / c^{2}$) due to asymmetric mass limits of Ω^{-}and $\bar{\Omega}^{+}:(1630-1750)$ MeV / c^{2}, with radii of $60 \mathrm{MeV} / c^{2}, 120 \mathrm{MeV} / c^{2}$ and $180 \mathrm{MeV} / c^{2}$. The innermost circle represents the signal region, and the region between the outer circles is used to estimate the normalized background in the signal region.

5 Systematic error analysis

Uncertainties in the branching fraction are studied for 4 C and 1 C kinematic fit results. The uncertainties of the hadronic interaction model are determined to be 23.3% and 13.2%, respectively, by comparing the numbers of $\Omega^{-} \bar{\Omega}^{+}$MC events reconstructed using the GCALOR and FLUKA models. Particle identification uncertainties are taken as 6% and 5% [6], respectively. MDC tracking errors are taken as 12% and 10% [6], respectively. Kinematic fit uncertainties are 19.1% and 14.6%, respectively, by studying $\mathrm{J} / \psi \rightarrow \Xi^{-} \bar{\Xi}^{+}\left(\Xi^{-} \rightarrow \Lambda \pi^{-}, \Lambda \rightarrow \mathrm{p} \pi^{-}\right.$and $\bar{\Xi}^{+} \rightarrow \bar{\Lambda} \pi^{-}$, $\bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}$) decays with and without the kinematic fits. Comparing MC $\Omega^{-} \bar{\Omega}^{+}$signal under different values of the angular distribution parameter: $\alpha=0.5,+1 \&-1$ with that from the nominal value $\alpha=0$, the uncertainties are 16.7% and 14.0%, respectively. Monte Carlo statistical errors are evaluated to be 3.6% and 1.5%. The uncertainty due to intermediate branching fractions is 2.4% (by combining the errors in the
branching fractions of intermediate resonances [7]) for both the 4 C and 1 C events. The uncertainty in the number of $\psi(2 S)$ data events is 4.3% [10]. Combining all uncertainties in quadrature, the uncertainties for 4 C and 1 C fit results, are 37.4% and 27.1%, respectively. These results are also listed in Table 1.

Table 1. Systematic uncertainties (\%) in the Branching Fraction.

source of uncertainty	4 C fit uncertainty	1 C fit uncertainty
models of Hadron Interaction	23.3	13.2
particle identification	6	5
MDC tracking	12	10
kinematic fit	19.1	14.6
angular distribution	16.7	14
MC statistics	3.6	1.5
intermediate branching fractions	2.4	2.4
total number of $\psi(2 S)$ events	4.3	4.3
	total $=37.4$	total $=27.1$

6 Determination of branching fraction

Using the following formula:

$$
\frac{N^{\text {upper }} /\left(1-\sigma_{\mathrm{sys}}\right)}{\epsilon \cdot\left[B\left(\Omega^{-} \rightarrow \Lambda \mathrm{K}^{-}\right)\right]^{2} \cdot\left[B\left(\Lambda \rightarrow \mathrm{p} \pi^{-}\right)\right]^{2} \cdot N_{\psi(2 S)}}
$$

where $N^{\text {upper }}=3.89, B\left(\Omega^{-} \rightarrow \Lambda \mathrm{K}^{-}\right)=(67.8 \pm 0.7) \%$ $[7], B\left(\Lambda \rightarrow \mathrm{p} \pi^{-}\right)=(63.9 \pm 0.5) \%[7], N_{\psi(2 S)}=$ $(14 \pm 0.6) \times 10^{6}$ (number of $\psi(2 S)$ data events) [10], $\epsilon=0.0162$ and $\sigma_{\text {sys }}=0.374$, an upper limit for the branching fraction of $\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+}$is determined to be 1.5×10^{-4} at the 90% confidence level, for 4 C fit events. Using the formula:

$$
\frac{N^{\mathrm{obs}}}{\epsilon \cdot\left[B\left(\Omega^{-} \rightarrow \Lambda \mathrm{K}^{-}\right)\right]^{2} \cdot\left[B\left(\Lambda \rightarrow \mathrm{p} \pi^{-}\right)\right]^{2} \cdot N_{\psi(2 S)}}
$$

where $N^{\mathrm{obs}}=10.8 \pm 3.5$ and $\epsilon=0.0855$, the branching ratio is determined to be $(4.80 \pm 1.56$ (stat) \pm 1.30 (sys) $) \times 10^{-5}$ for 1 C fit events. In the limit of $S U(3)$ flavor symmetry, the phase-space-corrected reduced branching fraction $\left(|M|^{2}\right)$ for $\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+}$ is calculated by using the following formula [3]:

$$
|M|^{2}=\frac{B\left(\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+}\right)}{\pi p^{*} / \sqrt{s}}
$$

References

1 Farrar G R, Jackson R D. Phys. Rev. Lett., 1975,35: 1416; Ioffe B L. Phys. Lett. B, 1976, 63: 425; Vainshtein A I, Zakharov V I. Phys. Lett. B, 1978, 72: 368; Brodsky S J, Lepage G P. Phys. Rev. D, 1981, 24: 2848
2 Bolz J. Kroll P. Eur. Phys. J. C, 1998, 2: 545-556
3 BAI J Z et al. (BES collaboration). Phys. Rev. D, 2001, 63: 032002
4 Pedlar T K et al. (CLEO collaboration). Phys. Rev. D, 2005, 72: 051108
5 BAI J Z et al. (BES collaboration). Nucl. Instrum. Methods
where p^{*} is the momentum of Ω^{-}or $\bar{\Omega}^{+}$in $\psi(2 S)$ rest frame. In Fig. 7, the reduced branching fraction for $\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+}$is plotted along with other octet baryon-antibaryon pairs computed by using the branching fractions from Particle Data Group 2012 [7]. The plot shows a trend towards smaller values of reduced branching fractions for baryon-antibaryon pairs of higher masses.

Fig. 7. The reduced branching fractions: $\left|M_{\mathrm{i}}\right|^{2}=B\left(\psi(2 S) \rightarrow \mathrm{B}_{\mathrm{i}} \overline{\mathrm{B}}_{\mathrm{i}}\right) /\left(\pi p^{*} / \sqrt{s}\right)$, where p^{*} is momentum of baryon (antibaryon) in rest frame of $\psi(2 S)$.

7 Conclusion

Using 14 million $\psi(2 S)$ decay events recorded by the BES II detector at BEPC, we report an upper limit for the branching fraction of $\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+}$ to be 1.5×10^{-4} at 90% confidence level based upon the 4 C fit result. We report the first evidence of an $\Omega^{-} \bar{\Omega}^{+}$signal, with a statistical significance of about 3.1σ using 1 C events. The branching fraction of $\psi(2 S) \rightarrow \Omega^{-} \bar{\Omega}^{+}$is determined to be $(4.80 \pm 1.56$ (stat) $\pm 1.30($ sys $)) \times 10^{-5}$ and is consistent with the upper limit.

The BES Collaboration would like to thank the staff of BEPC and the Computing Center for their hard work.

A, 2001, 458: 627

6 Ablikim M et al. (BES collaboration). Nucl. Instrum. Methods A, 2005, 552: 344
7 Beringer J et al. (Particle Data Group). Phys. Rev. D, 2012, 86: 010001 (web edition: accessed on July 09, 2012)
8 Ablikim M et al. (BES collaboration). Phys. Rev. D, 2004, 70: 092002
9 Bityukov S I, Krasnikov N V. Nucl. Instrum. Methods A, 2003, 502: 795-798
10 Ablikim M et al. (BES collaboration). Phys. Lett. B, 2007, 648: 149-155

[^0]: ${ }^{1}$ Institute of High Energy Physics, Beijing 100049, China
 ${ }^{2}$ China Center of Advanced Science and Technology, Beijing 100190, China
 ${ }^{3}$ Guangxi Normal University, Guilin 541004, China
 ${ }^{4}$ Guangxi University, Nanning 530004, China
 ${ }^{5}$ Henan Normal University, Xinxiang 453007, China

[^1]: Received 11 July 2012, Revised 14 August 2012
 *Supported by National Natural Science Foundation of China (10491300, 10225524, 10225525, 10425523, 10625524, 10521003, 10821063, 10825524), Chinese Academy of Sciences (KJ 95T-03), 100 Talents Program of CAS (U-11, U-24, U-25), Knowledge Innovation Project of CAS (U-602, U-34 (IHEP)), National Natural Science Foundation of China (10775077, 10225522) (Tsinghua University), and Department of Energy (DE-FG02-04ER41291) (U. Hawaii)
 ©2012 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

