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The structure of the spherical tensor forces in the USD

and GXPF1A shell model Hamiltonians *
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Abstract: The realistic shell model Hamiltonians, USD and GXPF1A, have been transformed from the

particle-particle (normal) representation to the particle-hole representation (multipole-multipole) by using the

known formulation in Ref. [1]. The obtained multipole-multipole terms were compared with the known

spherical tensor forces, including the coupled ones. It is the first time the contributions of the coupled tensor

forces to the shell model Hamiltonian have been investigated. It has been shown that some coupled-tensor

forces, such as [r2Y2⊗σ]1, also give important contributions to the shell model Hamiltonian.
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1 Introduction

The Shell Model (SM) has been one of the most

fundamental theories in nuclear physics. It has been

very successful in describing various properties of the

low-lying states in light and medium nuclei, such as

the binding energies, the spectroscopy and other ob-

servables based on the shell model wavefunctions.

The key to the success of the SM is the selection

of a reliable Hamiltonian. The realistic shell model

Hamiltonians, such as the USD [2, 3] in the sd shell,

the KB3 [4], FPD6 [5] and GXPF1A [6] in the pf

shell, have provided a very good base to study nuclear

structure problems microscopically. It is interesting

and necessary to investigate the structures of those

known Hamiltonians in terms of the spherical tensor

forces that are important and thus useful in the con-

struction of new types of shell model Hamiltonians.

A shell model Hamiltonian usually includes a one-

body term and a two-body force. Sometimes, if nec-

essary, a three-body force may also be considered [7].

In the present study, we focus on the two body forces

which are most widely used. The Hamiltonian can be

separated into the monopole part Hm and the multi-

pole part HM. Hm is responsible for the bulk prop-

erties, such as binding energies and shell gaps, while

HM may provide good spectroscopy.

It is well known that HM is dominated by pairing

and quadrupole interactions [1]. Therefore, the mod-

elling with pairing plus quadrupole forces has been

very successful in describing various properties of nu-

clei, especially, for the deformed ones. A typical ex-

ample is the Projected Shell Model (PSM) [8], which

provides a good description of the rotational bands.

Other types of tensor forces such as the Gamow-Teller

force (στ ·στ), octupole and hexadecapole forces are

also important parts of the shell model Hamiltonian

[1].

However, the importance of the coupled tensor

forces, e.g., [rlYl ⊗σ]λ and [l⊗σ]λ (λ is the rank of

the coupled tensor), in the shell model Hamiltonian

have not yet been analysed. Such analyses are neces-

sary because some coupled-tensor forces have already

been found to play important roles, for example, the

coupled-tensor forces may lead to dramatic changes

in the strength functions of SD and SQ transitions
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[9].

In this paper, we decompose the shell model

Hamiltonians into the multipole-multipole form and

then investigate various spherical tensor forces as-

sociated with those multipole-multipole interactions.

The results for the USD and the GXPF1A shell model

Hamiltonians are compared.

2 Representations of the Hamiltonian

The shell model Hamiltonian with spin and

isospin symmetries can be expressed in the particle-

particle representation,

H =
∑

r

εrn̂r

+
∑

r6s,t6u,
JT

V JT
rstu

∑

M,Tz

Z†JT

MTz

(rs)ZJT
MTz

(tu), (1)

where n̂r is the number operator for the spherical or-

bit r with quantum numbers (nr, lr, jr) and

Z†JT

MTz

(rs) = (1+δrs)
−1/2[a†

r ⊗a†
s]

JT
MTz

(2)

[a†
r⊗a†

s]
JT
MTz

is the creation operator for nucleon pairs

in orbits r and s coupled to spin quantum numbers

JM and isospin quantum numbers TTz. ZJT
MTz

(tu) is

the Hermitian conjugate of Z†JT

MTz

(tu). A set of the

numbers εr and V JT
rstu determines the Hamiltonian.

The Hamiltonian in Eq. (1), ready for use in a

shell model calculation, can be rigorously separated

into the monopole part Hm,

Hm =
∑

r

εrn̂r

+
∑

r6s,T

V T
rs

∑

JM,Tz

Z†JT

MTz

(rs)ZJT
MTz

(rs), (3)

where

V T
rs =

∑

J
(2J +1)V JT

rsrs
∑

J
(2J +1)

, (4)

and the multipole part HM,

HM =
∑

r6s,t6u,
JT

W JT
rstu

∑

M,Tz

Z†JT

MTz

(rs)ZJT
MTz

(tu), (5)

with

W JT
rstu =

{

V JT
rstu−V T

rs (for r = t and s = u)

V JT
rstu (for r 6= t or s 6= u)

. (6)

According to the prescription of Ref. [1], HM can be

transformed into the particle-hole representation,

HM =
∑

rstuλτ

(λτ)fλτ
rtsu[Sλτ (rt)⊗Sλτ (su)]00, (7)

where

(λτ) ≡
√

(2λ+1)(2τ +1), (8)

fλτ
rtsu = ωλτ

rtsu

√

(1+δrs)(1+δtu)/4, (9)

Sλτ
µτz

(rt) = [a†
r⊗ ãt]

λτ
µτz

. (10)

Here ãjm,τz
= (−1)j+m+1/2+τzaj−m,−τz

. Notice that

ãt is a good tensor but at is not. W JT
rstu and ωλτ

rtsu can

be related through equations in Ref. [1].

Replacing pairs by single indices rt = a and su = b,

we bring the matrix fλτ
ab = fλτ

rtsu to diagonal form

through unitary transformation uλτ
ak ,

fλτ
ab =

∑

k

uλτ
akuλτ

bk eλτ
k , (11)

then

HM =
∑

λτ,k

(λτ)eλτ
k [Mλτ

k ⊗Mλτ
k ]00, (12)

Mλτ
k,µτz

=
∑

a

uλτ
akSλτ

µτz

(a). (13)

On the other hand, let’s denote T λτ
µτz

=

T λ
µ (R)T τ

τz

(τ) as a product of irreducible spherical ten-

sors in coordinate + spin space (R) and the isospin

space (τ). Then the tensor force can be constructed

as the scalar product of T λτ ,

T λτ ·T λτ = (−1)λ+τ(λτ)[T λτ ⊗T λτ ]00, (14)

T λτ
µτz

= (λτ)−1
∑

rt

〈r‖T λτ‖t〉Sλτ
µτz

(rt), (15)

where 〈r‖T λτ‖t〉 is the reduced matrix element of T λτ .

Actually, one has

〈r‖T λτ‖t〉= 〈jr‖T
λ(R)‖jt〉〈1/2‖T τ(τ)‖1/2〉. (16)

For convenience, the reduced matrix elements are nor-

malized as

vλτ
a = vλτ

rt =
〈r‖T λτ‖t〉

√
∑

r′t′
〈r′‖T λτ‖t′〉2

. (17)

To associate Mλτ
k with the certain irreducible

spherical tensor operator T λτ , one can calculate the

following quantity,

A(Mλτ
k ,T λτ) =

(

∑

a

uλτ
akvλτ

a

)2

. (18)

The value of A(Mλτ
k ,T λτ), ranging from 0 to 1,

measures the contribution of the T λτ force in

Eq. (14) to the multipole term eλτ
k [Mλτ

k ⊗Mλτ
k ]00. If

A(Mλτ
k ,T λτ) = 1, Mλτ

k is exactly the same as T λτ . If

A(Mλτ
k ,T λτ) = 0, there is no relation between Mλτ

k

and T λτ . Notice that uλτ
k vectors form a complete set
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and we have
∑

k

A(Mλτ
k ,T λτ) = 1. (19)

3 Calculations and discussions

Among the known shell model Hamiltonians, the

USD and the GXPF1A Hamiltonians have been very

successful in describing various properties in sd shell

nuclei and fp shell nuclei. Their structures in terms

of the spherical tensor forces may provide a guidance

to construct new types of shell model Hamiltonians

useful in new nuclear regions.

In the present calculations, for each λτ , we diago-

nalize the matrix fλτ and obtain the eigenvalues eλτ
k

and the corresponding eigenvectors uλτ
k . The value of

eλτ
k measures the strength of the multipole-multipole

interaction of Mλτ
k . The important terms in Eq. (12)

should be those with relatively large |eλτ |. In Fig. 1

and Fig. 2, the locations of eλτ
k are marked with open

stars and the values of A(Mλτ
k ,T λτ) have been shown

as the columns at the positions of eλτ
k .

The results for USD and GXPF1A Hamiltonians

are shown in Fig. 1 and Fig. 2, respectively. The ir-

reducible spherical tensor operators include not only

the simple ones, i.e., σ̂, l̂ and rλYλ, but also the cou-

pled ones, [rlYl⊗σ̂]λ and [l̂⊗σ̂]λ, whose contributions

to the realistic shell model Hamiltonian have not yet

been studied. Just like the vectors of uλτ
k which are

orthogonal, we have numerically checked that the vλτ

vectors of the considered tensors are also orthogonal

to each other. For simplicity, only those tensors with

ranks up to 4 are considered. The operators with neg-

ative parity are not considered in the present study

since they couple orbits from different main shells and

thus vanish in the studied Hamiltonians.

Fig. 1. The structure of the tensor forces in the USD Hamiltonian. The star symbols show the locations of

eλτ in Eq. (12) and the values of A(Mλτ
k , T λτ ) have been shown as the columns at the positions of eλτ

k .
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Fig. 2. The same as Fig. 1, but for the GXPF1A interaction.

From Fig. 1 and Fig. 2 we can see some common

points:

(1) In both Hamiltonians, the most important

term is the quadrupole-quadrupole interaction whose

|eλτ | is the largest. The Gamow-Teller interaction

στ·στ and the hexadecapole-hexadecapole interaction

are also very important, as has already been turned

out in Ref.[1].

(2) For all λτ , the values of eλτ are distributed

around zero and for each λ, the distribution of eλτ=1

is more compact than that of eλτ=0, showing that the

tensor forces with τ = 1 may generally be less impor-

tant than those with τ = 0.

Additionally, some details can be seen by compar-

ing USD with GXPF1A:

(1) In the λτ = 10 channel, the important forces

are those with tensor σ̂, l̂ and the coupled-tensor

[r2Y2⊗σ]1 . In the USD Hamiltonian, σ̂ and [r2Y2⊗σ]1

are mixed in the lowest and the second lowest multi-

pole terms and the lowest term is mainly contributed

by σ̂. In GXPF1A, however, the lowest multipole

term in total comes from [r2Y2 ⊗σ]1 and the second

lowest one from σ̂. This fact implies that [r2Y2⊗σ]1

may be more important than σ̂ in the fp shell model

space. The l̂ · l̂ interaction always takes the highest

λτ = 10 term, but the role of [l̂⊗σ]1 · [l̂⊗σ]1 is not

clear, since it lies at the negative side in USD, but

the positive side in GXPF1A.

(2) In the λτ = 11 channel of both USD and

GXPF1A, apart from the important Gamow-Teller

interaction, other values of e11 are very close to zero.

The e11 terms in GXPF1A can be neatly assigned to

the known tensors, however, the situation in USD is

somewhat complicated.

(3) In the λτ = 20 channel, the quadrupole-

quadrupole interaction, whose e20 is far below the
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others, is the most important. The second impor-

tant multipole term should be those with e20 right

below 1. Surprisingly, from both Fig. 1 and Fig. 2,

neither [r2Y2⊗σ]2 nor [l̂⊗σ]2 is assigned to the second

lowest multipole term, and this problem remains to

be answered.

(4) In the λτ = 21 channel, the GXPF1A has a

neatly detached e21 = −0.99 MeV and the assigned

operator is r2Y2τ . In USD, although the r2Y2τ oper-

ator is also assigned to the lowest e21 = −0.70 MeV

term, however, there is no apparent gap between the

lowest and the second lowest terms.

(5) For the channels with λ > 3, one can see that

both USD and GXPF1A have very similar features.

It should be mentioned that since the r3Y3 is a neg-

ative parity operator and absent in the present stud-

ied Hamiltonians, only the coupled tensors were con-

sidered for the λ = 3 channel. It is seen that the

non-negligible tensors for both USD and GXPF1A

are r4Y4, r4Y4τ , [r2Y2 ⊗σ]3 and [r2Y2 ⊗σ]3τ . All of

them are assigned to the lowest or largest eλτ in their

corresponding channels.

4 Summary

The USD and GXPF1A have been widely used

in the studies of the sd shell and fp shell nuclei and

believed to be good Hamiltonians. These two real-

istic Hamiltonians, after subtracting the monopole

parts, have been transformed from the particle-

particle representation (normal form) to the particle-

hole representation (multipole-multipole form) by us-

ing the formulation presented in Ref. [1]. The

obtained multipole-multipole interactions are com-

pared with the known tensor forces, including some

coupled-tensor forces, whose contributions to the

shell model Hamiltonian have been studied for the

first time. The results show that the dominant

terms are still the quadrupole-quadrupole, Gamow-

Teller and Hexadecapole-Hexadecapole interactions.

However, it is found that the coupled-tensor force

[Q⊗ σ]1 · [Q⊗ σ]1 is even more important than the

usually used σ ·σ in the GXPF1A interaction.

Most of the tensor forces considered here can be

assigned to the multipole terms with relatively large

|eλτ | values. This aspect may lead to the possibil-

ity that the realistic Hamiltonian could be approxi-

mately expressed by the combination of those tensor

forces and it would be easy to construct a shell model

Hamiltonian by properly adjusting the coupling con-

stant for each of the underlying tensor forces.

It should be mentioned that pairing is also a very

important part of the shell model Hamiltonian, as it

has been pointed out that the monopole pairing and

the quadrupole pairing have already been included in

the USD and GXPF1 Hamiltonians. The treatment

of the pairing together with other particle-particle

type forces in the particle-particle representation will

been done in the forthcoming paper.
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