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New quantization conditions for field theory

without divergence
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Abstract: Quantum field theory is a fundamental tool in particle and nuclear physics. Elemental particles are

assumed to be point particles and, as a result, the loop integrals are divergent in many cases. Regularization

and renormalization are introduced in order to get the physical finite results from the infinite, divergent loop

integrations. We propose new quantization conditions for the fields whose base is very natural, i.e., any particle

is not a point particle but a solid one with three dimensions. With this solid quantization, divergence could

disappear.
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1 Introduction

Quantum field theory is the fundamental theory

for nuclear and particle physics. The first method de-

veloped for quantization of field theories was canon-

ical quantization. Canonical quantization of a field

theory is analogous to the construction of quan-

tum mechanics from classical mechanics. The clas-

sical field is treated as a dynamical variable called

the canonical coordinate, and its time-derivative is

the canonical momentum. One introduces a commu-

tation relation between these quantities which is ex-

actly the same as the commutation relation between

a particle’s position and momentum in quantum me-

chanics. The procedure is also called second quanti-

zation.

With the quantized field theory, one can study the

micro process with Feynman rules. When high order

terms are included, the loop contribution will appear.

These integrals are often divergent, i.e., they become

infinite when momentum integration goes to infinity.

This ultraviolet divergence is a short-distance phe-

nomenon. We will see that the divergence is caused

by the assumption that the particles are point ones.

Many kinds of methods are introduced in quan-

tum field theory to deal with the divergence. One of

the most popular methods is the dimensional regular-

ization, invented by Gerardus ’t Hooft and Martinus

J. G. Veltman, which tames the integrals by carrying

them into a space with a fictitious fractional number

of dimensions [1]. Another is Pauli-Villars regulariza-

tion, which adds fictitious particles to the theory with

large masses, so that loop integrations involving the

massive particles cancel out the existing loops at large

momentum [2].

The above quantum field theory is very standard

and widely accepted. However, the assumption that

the elemental particles are point ones is not justified

and could only be an approximation of real particles.

It is difficult to imagine that an existing physical par-

ticle is like a mathematical point one. Is there any-

thing in the world which exists as a dimensionless

point? One may agree that the elemental particles

are not point ones, but think it is a good approxima-

tion to treat them as point-like, since we can treat a

physical object as a point particle even in Newton dy-

namics. In Newton dynamics, mass-point approxima-

tion simplifies the calculation and the volume effect

can be added in the high order correction. However,

for quantum field theory, the point-like treatment will

cause not only quantitative but also qualitative dif-

ferences, which is different from that in Newton dy-

namics. It causes infinity in field theory.
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2 Solid quantization

Let’s start with the traditional canonical quanti-

zation for the simplest scalar field. The traditional

commutation relations are

[φ(~x,t),φ(~y,t)] = [π(~x,t),π(~y,t)] = 0,

[φ(~x,t),π(~y,t)] = iδ(3) (~x−~y ) . (1)

The δ function in the above equation means that a

point particle and anti-particle can only be created at

the same position point. This is natural since the par-

ticles are assumed to be point ones. The δ function

guarantees the “causality”.

The field and its conjugate partner can be ex-

panded in momentum space, expressed as

φ(~x,t) =

∫
d̃p

[
a(~p )ei~p·~x−iωpt +a†(~p )e−i~p·~x+iωpt

]
, (2)

π(~x,t) =

∫
d̃p(−i)ωp

[
a(~p )ei~p·~x−iωpt−a†(~p )e−i~p·~x+iωpt

]
,

(3)

where

d̃p=
d3p

(2π)32ωp

. (4)

It is straightforward to obtain the commutation

relations between creation and annihilation opera-

tors,

[a(~p ),a(~q )] =
[
a†(~p ),a†(~q )

]
= 0,

[
a(~p ),a†(~q )

]
= (2π)32ωpδ

(3)(~p−~q ). (5)

The creation operator creates a momentum state

|p〉= a†(~p )|0〉, which is normalized as∫
d̃p|p〉〈p|= 1. (6)

Because the particle is assumed to be a point par-

ticle (behaves like δ function in position space), when

expanded in momentum space, it has the same possi-

bility for different momenta. However, the real parti-

cle could be like a wavepacket. It is partially localized

in both position and momentum space. The possi-

bility of the particle with high momentum is small.

With high-momentum suppression, the divergence in

the loop integral may not appear.

Therefore, we propose new quantization condi-

tions (solid quantization),

[φ(~x,t),φ(~y,t)] = [π(~x,t),π(~y,t)] = 0,

[φ(~x,t),π(~y,t)] = iΦ(~x−~y ) . (7)

The function Φ(~x−~y ) describes the correlation be-

tween ~x and ~y. Due to the fact that the particle is not

a dimensionless point particle, but a solid one, parti-

cles at different positions could be partially superim-

posed, which means that there exists some possibility

that particle and antiparticle are created in different

positions. For point particles, it is impossible. If a

point particle is created at position A, an antiparticle

should be created at the same time at position B due

to the conservation laws, such as the conservation of

baryon number, energy, etc. Therefore, the informa-

tion transfers from A to B with infinite speed. This is

why the commutation function for point particles has

to be a delta function. For solid particles, the situa-

tion is different. Though the particles are created in

different positions, their wave- functions are partially

superimposed. There is no violation of “causality”.

The solid particle system satisfies the conservation

laws, which means that the total energy, baryon num-

ber, etc are conserved within a finite volume.

One can also expand the field as Eq. (2) (in this

case, we use capital letter A instead of a),

φ(~x,t) =

∫
d̃p

[
A(~p )ei~p·~x−iωpt +A†(~p )e−i~p·~x+iωpt

]
. (8)

As a result, the creation and annihilation operators

satisfy the following relations,

[A(~p ),A(~q )] =
[
A†(~p ),A†(~q )

]
= 0, (9)

[
A(~p ),A†(~q )

]
= (2π)3δ(3)(~p−~q )Ψ(~p ). (10)

Φ(~x ) and Ψ (~p ) obey the following relations,

Φ(~x) =

∫
d3p

(2π)3
Ψ(~p )

2
(ei~p·~x +e−i~p·~x), (11)

Ψ (~p ) =

∫
d3x

Φ(~x )

2
(ei~p·~x +e−i~p·~x). (12)

The above two equations generate two normaliza-

tion formulas,

Φ(0) =

∫
d3p

(2π)3
Ψ(~p ), (13)

Ψ(0) =

∫
d3xΦ(~x) = 1. (14)

Compared with the traditional commutation relation

where Φ(~x ) = δ(3)(~x), Φ(~x ) is normalized to be 1,

while Ψ(~p ) is normalized to be Φ(0).

With the new quantization, the field can be writ-

ten in terms of traditional creation and annihilation

operators as

φ(~x,t) =

∫
d̃p

√
Ψ(~p )

[
a(~p )ei~p·~x−iωpt +a†(~p )e−i~p·~x+iωpt

]
.

(15)

It is easy to get the Feynman propagator of the

scalar field in the solid quantization. The propagator
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is defined as

∆F(x′−x)= 〈0|Tφ(x′)φ(x)|0〉=
∫
d̃k[θ(t′− t)eik·(x′−x)

+θ(t− t′)e−ik·(x′−x)].

The integral expression of the step function is

θ(t) = limε→0+

∫
dτ

2πi

eiτt

τ− iε
. (16)

With the help of the above equation, the Feynman

propagator can be obtained as

∆F(x′−x) =

∫
d4k

(2π)4
iΨ(~k)e−ik·(x′−x)

k2−m2 +iε
. (17)

For the other fields, the quantization condition

is similar. For example, for spin 1/2 fermion, the

nonzero anti-commutation relationship is
{
ψα(~x,t), ψ̄β(~y,t)

}
= γ0

αβΦ(~x−~y ). (18)

Correspondingly, the field should be written as

ψ(~x,t) =
∑

s=±

∫
d̃p

√
Ψ(~p )

[
bs(~p )us(~p)e

i~p·~x−iωpt

+d†(~p)vs(~p)e
−i~p·~x+iωpt

]
, (19)

where b and d† are normal annihilation and creation

operators. us(~p ) and vs(~p ) are Dirac spinors. The

propagator of the spin 1/2 field can be obtained as

SF(x′−x) =

∫
d4k

(2π)4
iΨ(~k)(k ·γ+m)e−ik·(x′−x)

k2−m2 +iε
. (20)

The vector field, say the photon field, can also be

expanded as

Aµ(~x,t) =
∑

λ=±

∫
d̃p

√
Ψ(~p )

[
aλ(~p )εµ(~p,λ)ei~p·~x−iωpt

+a†λ(~p )εµ(~p,λ)e−i~p·~x+iωpt
]
, (21)

where εµ(~p,λ) is the polarization vector. The photon

propagator can be written as

Dµν
F (x′−x) =

∫
d4k

(2π)4
−iΨ(~k)gµνe−ik·(x′−x)

k2−m2 +iε
. (22)

We should mention that, in principle, the function

Ψ(~p) or Φ(~x−~y ) is particle dependent. It describes the

particle’s property (“shape”) in addition to the mass

and width. Therefore, with the new quantization con-

dition, the Feynman rules should be changed corre-

spondingly. The new propagator of the field should be

multiplied by a factor Ψ(~k). The external field should

be multiplied by a factor

√
Ψ(~k).

A question that may arise here is how to connect

the new propagator with the path integral formula-

tion. The path integral for the free point-like field is

defined as

Z0(J) =

∫
Dφei

∫
d4x[L0+Jφ], (23)

where

L0 =−1

2
∂µ
φ∂µφ−

1

2
m2φ2 (24)

is the Lagrangian density and J is the external cur-

rent. For a solid particle, the free Lagrangian density

is different. From Eq. (2), the density can be writ-

ten in terms of a realistic physical field with three

dimensions as

L0 =φ
(∂µ ∂µ−m2)

2Ψ(~∂ )
φ. (25)

With the above Lagrangian density, the propagator of

scalar field obtained in the path integral formulation

is the same as that in solid canonical quantization.

For the fermion and vector fields, the situation is the

same.

The factor Φ(~x−~y ) is the correlation of two par-

ticles at ~x and ~y. If we choose Φ(~x−~y ) = δ(3)(~x−~y ),

Ψ(~p ) will equal 1. All of the above propagators will

be changed back to the conventional ones. As we ex-

plained previously, the particle could be a solid par-

ticle with three space dimensions. The particle and

antiparticle can be created at small distance. There-

fore, the function of Φ(~x−~y ) can be a function that

decreases with increasing distance |~x−~y|. The smaller

the particle, the closer the function to the δ function.

With the new propagator, the loop integration

is convergent. From Eq. (14), one can see that our

new approach does not affect the infrared behavior.

It is known that infrared divergence cancels in any

given order of perturbation theory. In practical calcu-

lations, it is helpful to use a non-zero photon (gluon)

mass and to set its value to zero at last. The infrared

divergence disappears when the soft photons are in-

cluded. For details, see, for instance, Refs. [3, 4]. Here

we discuss an example of how the new quantization

deals with ultraviolet divergence. Let’s look at the

following integration, which appears in the photon

self-energy at one-loop level,

I =

∫
d4k

(2π)4
Ψ(~k)Ψ(~k+~p )

[k2−m2] [(p+k)2−m2]
, (26)

where p is the external momentum of a photon. k

and k+p are the internal momentum of two electron

or quark propagators. After the integration of k0, the

above equation can be written as

I =

∫
d3k

2(2π)3





−iΨ(~k)Ψ(~k+~p )

ω(~k)
[
(ω(~k )+ω(~p ))2−ω2(~k+~p )

]

− iΨ(~k )Ψ(~k+~p )

ω(~k+~p )
[
(ω(~k+~p )−ω(~p ))2−ω2(~k )

]



 , (27)
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where ω(~q ) =
√
~q 2 +m2. Without the factor Ψ(~k) and

Ψ(~k+~p), the above integration is log-divergent. Since

the particle is a solid one with three dimensions, its

wave-function is suppressed at high momentum. If we

choose Ψ(~k) to be a dipole or Gauss function, the in-

tegration is convergent.

We should mention that due to the inclusion of

the size of the particle, the fields as well as the prop-

agators are not Lorentz covariant quantities. One

may think how to get the Lorentz covariant formal-

ism for this new quantization method. For example,

the possible propagator could look like Ψ(k2)∆F(k) in

momentum space, where k2 is the Lorentz invariant

scalar. However, it is interesting to study the possi-

ble CPT [5, 6] violation due to this size effect. This

CPT violation is proportional to the size of the par-

ticle and it disappears when the particle is a point

one.

Without the renormalization, the so-called run-

ning coupling constant can also be understood. With

the new quantization condition, even at tree level, the

coupling constant will be associated with a momen-

tum dependent factor. For example, for the fermion-

boson coupling, if the initial and final momentum

of the fermion are −~q/2 and ~q/2, the momentum of

the absorbed boson is ~q, and the momentum depen-

dent factor of the coupling constant at tree level is√
Ψf(−~q/2)Ψf(~q/2)Ψg(~q). The label f and g are for

fermion and gauge boson, respectively. The asymp-

totic free is a general property not only for strong in-

teraction. It is because the size of the particle is not

a point, the momentum is partially localized which

favors at low value.

Let’s now discuss the potential between two

Fermion fields. For simplicity, the functions of Φ(~x−~y)
and Ψ(~p ) can be written as Φ(|~x−~y |2) and Ψ(~p 2). In

momentum space, one gauge field exchange will give

the potential

V (Q2)∼ Ψ 2
f (Q2/4)Ψg(Q

2)

Q2
, (28)

where Q2 is the momentum transfer. Since Ψ(Q2) de-

creases with increasing Q2, the above potential could

be written as

V (Q2)∼ 1

Q2(1+aQ2 +bQ4 + · · · ) . (29)

When Q2 is very small, the Q2 term is dominant,

which means that the potential behaves like 1/r at

large r in position space. If Q2 is very large, the higher

order term of momentum in the expansion is more im-

portant. In position space, the potential behaves like

rn (n is positive) when r is small. When we sepa-

rate two particles, the r dependence of the potential

changes from rn to rn−1, rn−2, · · · , r2, r, r0 and even-

tually to 1/r.

When the coupling constant is small and pertur-

bation theory is valid, one boson exchange gives 1/r

potential at large r. If the coupling constant is large,

the non-perturbation behavior is dominant. It is diffi-

cult to get the potential in this case. However, we can

understand (not prove) the linear confining potential.

For example, when we separate a quark and an anti-

quark, at some distance, the string will be broken

and a quark-antiquark pair will be produced. It is

unknown at what distance the quark pairs will be pro-

duced. We assume that they appear before the poten-

tial behaves like r0 or 1/r. Therefore, there are many

quark-antiquark pairs between a quark and an anti-

quark. The total potential between a quark and an

antiquark at distance R (R=Nr) is N(ar+br2+· · · ),
i.e. (aR+ bR2/N + · · · ), since the potential between

each quark pair is (ar+ br2 + · · · ). The linear poten-

tial survives when N is large. Color confinement is

still an open question. It may be related to the non-

Abelian properties of the strong interaction. In this

work, we did not prove the confinement but tried to

understand the linear confining potential.

This new quantization is for the elemental parti-

cles. It is very straightforward to apply this quanti-

zation to hadrons. For example, in the effective field

theory or chiral perturbation theory, hadron fields are

assumed to be point particles. To deal with the diver-

gence, dimensional regularization was applied in the

same way as for the elemental particles [7, 8]. Fi-

nite regularization in which a vertex regulator was

introduced was also used to get rid of the divergence

[9, 10]. In fact, in many model calculations, regula-

tors or form factors are widely used to avoid diver-

gence. Most of the regulators or form factors were in-

troduced “by hand”. Our method is very fundamental

and systematic.

3 Summary

In summary, we have proposed a new quantiza-

tion - solid quantization for the elemental fields. The

traditional point-like treatment created divergence,

which needs to be taken care of with the regular-

ization method. This solid quantization condition is

very natural and based on the idea that a physical

particle is not a mathematic point particle. Parti-

cles cannot exist in the world as dimensionless points.

Each particle has its “shape”, which is another fun-

damental property of the particle as well as mass,



No. 3 WANG Ping: New quantization conditions for field theory without divergence 227

spin, width, etc. The corresponding Feynman rules

need to be changed for both external fields and inter-

nal propagators. The divergence of loop integration

could be avoided from the beginning. We need not

deal with infinity, which is caused by point particle

assumption. The asymptotic free and confining po-

tentials can be understood in our method. The small

size of the elemental particles could be the source of

CPT violation. This method can easily be applied to

the effective theory, which is on the hadron level.

This method provides an interesting approach

that is quite different from traditional quantum field

theory. In this paper, we did not specify the func-

tion of Φ(~x ) or Ψ(~p ). It could be dipole, monopole,

Gauss or some other type of function. To get more

information about the “shape” of the particle, it is

important to do further calculations to compare with

experiments and traditional results.

The author would like to thank Prof. Y. B. Dong

for helpful discussions.
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