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Wigner function for the Dirac oscillator in spinor space *
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Abstract: The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly,

since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner

function as a matrix function in spinor space. Secondly, the matrix form of the Wigner function is proven to

support the Dirac equation. Thirdly, by solving the Dirac equation, energy levels and the Wigner function for

the Dirac oscillator in spinor space are obtained.
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1 Introduction

In recent years the Wigner function has enjoyed

popularity in virtually all areas of physics. In fact,

the Wigner function was first introduced in 1932

[1]. As a quasi-probability distribution function in

phase-space as well as a special representation of

the density matrix, it is of great value in quantum

measurement [2, 3]. It has also been useful in de-

scribing quantum transport in quantum optics, nu-

clear physics, decoherence (e.g. quantum computing),

quantum chaos, signal processing, etc. Moreover, the

Wigner function is a highly semi-classical approxi-

mation [4–7]. Nevertheless, a remarkable aspect of

the Wigner function was not pioneered until 1975 by

Moyal according to the internal logic of Quantum Me-

chanics. With the Moyal ?-eigenvalue equation [8–12]

as its general form, the Wigner function is as valu-

able as other formulations, such as the Schrodinger,

the Hesneberge regularization operator, Feymen path

integral quantization, etc. In this logically complete

and self-standing formulation, one need not choose

sides – coordinate or momentum space – because the

function works in full phase-space, accommodating

some uncertainty principles. What’s more, as a time-

independent function and a quasi-probability distri-

bution function in phase space, the Wigner function

is of significance in modern quantum measurement.

Take Ref. [13] for example, the Wigner function of an

ensemble of helium atoms was skillfully tested there

and the result was the same as that obtained through

theoretical calculation.

In this paper, we generalize the method of quan-

tization in phase space into spinor space with a focus

on the spin-1/2 particles. To be clear, this paper

is organized as follows: in Section 2, we review the

interpretation-quantization in a non-spinor space; In

Section 3, we generalize the method into the spinor

space with a detailed discussion of spin-1/2 space and

the Wigner function in a spinor space; In Section 4,

we calculate the energy level and the Wigner function

for the Dirac oscillator. Conclusions are given in the

last section.

2 Wigner function and ?-eigenvalue

equation

In this part we begin to discuss the Wigner func-

tion in non-spinor space. As a quasi-probability dis-

tribution function in phase space, the Wigner func-

tion is a very good semi-classical approximation, with

great importance in physics measurement. It is known

that in phase space with the degree of freedom s=n,

the general form of the Wigner function is described
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by

W (~x,~p,t) =
1

(2π~)n

∫∞
−∞

dye−i~y~p

〈

~x−
~y

2
|ρ̂|~x+

~y

2

〉

.

(1)

While in a stative situation the Wigner function reads

W (~x,~p) =
1

(2π~)n

∫∞
−∞

dyψ∗
(

~x−
~y

2

)

e−i~y~pψ

(

~x+
~y

2

)

.

(2)

This is a special representation of the density matrix.

According to the definition of Eq. (1), we can prove

that the time-independent Wigner function has the

following dynamic evolution equation

∂W
∂ t

=−
~p

m

∂W
∂~x

+
∂V
∂~x

∂W
∂~p

, (3)

which is similar to Liouville theorem in classical

mechanics. In fact, with the Hamiltonian H(~x,~p),

Eq. (3) can also be written as the following Moyal

equation [9]

∂W
∂ t

=
H?W −W ?H

i~
(4)

where the ?-product is

?≡ e
i~

2
(

←−

∂ x

−→

∂ p+

←−

∂ p

−→

∂ x). (5)

Since the ?-product involves exponential opera-

tors, which causes much difficulty in real calculations

and ~ is a very small volume, ?-product, as a series

expansion, can be expressed as [9]

f(x,p)?g(x,p) = f

(

x+
i~

2

−→
∂ p, p−

i~

2

−→
∂ x

)

g(x,p)

(6)

and

f(x,p)?g(x,p) = f(x,p) g

(

x−
i~

2

←−
∂ p, p+

i~

2

←−
∂ x

)

.

(7)

In this way, the Wigner function meets the more bind-

ing ?-eigenvalue equations [9]

H(x,p)?W (x,p)

= H

(

x+
i~

2

−→
∂ p, p−

i~

2

−→
∂ x

)

W (x,p) =EW (8)

and

H(x,p)?W (x,p)

= H(x,p) W

(

x−
i~

2

←−
∂ p, p+

i~

2

←−
∂ x

)

=EW. (9)

Here E is the energy eigenvalue of Hψ = Eψ. Us-

ing Eqs. (8) and (9) the Wigner function and energy

levels can be obtained.

3 Wigner function in spinor space

We are now in a position to describe the Wigner

function and the Dirac equation in phase space for a

particle with spin-
1

2
. As is known, the Dirac equa-

tion for a spin-
1

2
particle is a first-order differential

equation. In the case of potentials its form is

i~
∂ψ
∂t

= [c~α ·~p+βmc2 +V (x)]ψ, (10)

and the four-dimensional vector jµ = ψγµψ is con-

served ∂µ j
µ = 0. Thus, the probability density j0 is

tr(ρs) = j0 =ψγ0ψ= |ψ1|
2+ |ψ2|

2+ |ψ3|
2+ |ψ4|

2, (11)

which is clearly positive. j0 can be the probability

density. Therefore, for a particle with spin-
1

2
, the

Wigner function is meaningful and the quantization

in phase-space can be extended to spinor space with

spin-
1

2
particles.

We define the Wigner function W s for a particle

with spin-
1

2
as

W s =
1

2π~

∫
dy e−ipy

〈

x−
y

2
|ρs|x+

y

2

〉

=
1

2π~

∫
dy e−ipy

〈

x−
y

2
|ψ
〉

(γ0)2
〈

ψ|x+
y

2

〉

=
1

2π~

∫
dy e−ipyψ†

(

x−
y

2

)

ψ
(

x+
y

2

)

, (12)

where the spinors ψ†
(

x−
y

2

)

and ψ
(

x+
y

2

)

each

have four components. Therefore, the Wigner func-

tion for a particle with spin-
1

2
is generally a four-order

matrix function with sixteen components


















W s
11 W

s
12 W

s
13 W

s
14

W s
21 W

s
22 W

s
23 W

s
24

W s
31 W

s
32 W

s
33 W

s
34

W s
41 W

s
42 W

s
43 W

s
44



















(13)

where

W s
ij =

1

2π~

∫
dy e−ipyψ∗i

(

x−
y

2

)

ψj

(

x+
y

2

)

,

(i, j = 1,2,3,4). (14)

It is useful to split up the spinor ψ into two two-

component spinors φ and χ so as to solve the

Dirac equation. The Wigner function is then re-

duced to a diagonally partitioned matrix. However,

with appropriate representation, the Wigner func-

tion can also be approximately transformed into a
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diagonal matrix, and its amount should be

W s
ij =

δij

2π~

∫
dy e−ipyψ∗i

(

x−
y

2

)

ψj

(

x+
y

2

)

,

(i, j = 1,2,3,4). (15)

Now, generalizing the quantization in phase space

to the Dirac equation, we can prove that in the phase

space with spin, the general product should be re-

placed by the ?-product, and the Wigner function

described as a four-order matrix function. This can

be supported by the following.

Hs ?W s = (c~α ·~p+βmc2 +V (x))?W s =
1

(2π~)3

(

c~α ·

(

~p−
i~

2

−→
∂ ~x

)

+βmc2

+V (~x)

)

·

∫
dy exp

[

−i~y

(

~p+
i~

2

←−
∂ ~x

)]

ψ†
(

x−
y

2

)

ψ
(

x+
y

2

)

=
1

(2π~)3

∫
dy

(

c~α ·

(

~p−
i~

2

−→
∂ ~x

)

+βmc2

+V

(

~x+
~

2
~y

)

)

exp(−i~y~p)ψ†
(

x−
y

2

)

ψ
(

x+
y

2

)

=
1

(2π~)3

∫
dy exp(−i~y~p)

(

c~α ·

(

−i
−→
∂ ~y−

i~

2

−→
∂ ~x

)

+βmc2 +V

(

~x+
~

2
~y

)

)

ψ
(

x+
y

2

)

ψ†
(

x−
y

2

)

=
1

(2π~)3

∫
dy exp(−i~y~p)Eψ

(

x+
y

2

)

ψ†
(

x−
y

2

)

= EW s (16)

Symmetrically,

W s ?Hs = W s ?(c~α ·~p+βmc2 +V (x))

=
1

(2π~)3

[∫
dy exp

(

−i~y

(

~p−
i~

2

−→
∂ ~x

))

ψ†
(

x−
y

2

)

ψ
(

x+
y

2

)

]

(

c~α ·

(

~p+
i~

2

←−
∂ ~x

)

+βmc2 +V (~x)

)

=
1

(2π~)3

∫
dy exp(−i~y~p)ψ

(

x+
y

2

)

Eψ†
(

x−
y

2

)

=EW s. (17)

Obviously, in phase space with spin the Wigner

function is a matrix function and its Dirac equation

becomes a ? engenvalue equation.

4 Wigner function for the Dirac oscil-

lator

In this section we investigate the enegy level and

the Wigner function for the Dirac oscillator. It is

known that in a stationary state the relativistic equa-

tion for the Dirac oscillator is described as

[c~α ·(~p− imωβ~r)+βmc2]ψ(~r) =Eψ(~r) (18)

where

ψ(~r) =

(

ψa(~r)

ψb(~r)

)

,

~α =

(

0 α

α 0

)

,

~β =

(

I 0

0 −I

)

. (19)

Thus, the Wigner function has the following form

W s =

(

W s(a) 0

0 W s(b)

)

=













W s(a)
11 W s(a)

12 0 0

W s(a)
21 W s(a)

22 0 0

0 0 W s(b)
11 W s(b)

12

0 0 W s(b)
21 W s(b)

22













. (20)

Obviously, the Wigner function is transformed to a

diagonal matrix.

In phase space the Dirac oscillator is defined by

the following equation

[c~α ·(~p− imωβ~r)+βmc2]?W s =EW s, (21)

where α and β are Pauli matrixes. If the eigne-state

of the operator σz is chosen, the Wigner function is

simplified as

W s =

(

W s(a) 0

0 W s(b)

)

. (22)

With a straightforward calculation, the following two
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simultaneous equations appear

c~σ ·(~p− imωβ~r)?W s(b) = (E−mc2)W s(a), (23)

and

c~σ ·(~p− imωβ~r)?W s(a) = (E+mc2)W s(b). (24)

In both Eq. (24) and Eq. (25) W s(b) is a small com-

ponent, which tends to be zero in the non-relativistic

limit. Inserting Eq. (24) into Eq. (23), we can have

[c2(p2 +m2ω2r2)−2~ωmc2

−4mc2(ω/~)~L · ~S)]?W s(a) = (E2−m2c4)W s(a) (25)

where ~L is the angular momentum operator, and ~S is

the spinor operator. If the eigne-state of the operator

σz is chosen, the Wigner function also reduces to

W s =

(

W s(a)
11 0

0 W s(a)
22

)

. (26)

In the two dimensions, we deduce by using the

matrix-equation that the Wigner function satisfies a

Dirac oscillator in a non-relativistic state as the fol-

lowing

c2{(p2
1 +p2

2)+m
2ω2(x2

1 +x2
2)−

~
2

4
m2ω2(∂2

p1
+∂2

p2
)

−
~

2

4
(∂2

x1
+∂2

x2
)+2mω(x1p2−x2p1)+

~
2

2
mω(∂x2

∂p1

−∂x1
∂p2

)}

(

W s(a)
11 0

0 W s(a)
22

)

=

(

εW s(a)
11 0

0 εW s(a)
22

)

(27)

where ε = E2 −m2c4. With further calculation we

arrive at the following equations

c2{(p2
1 +p2

2)+m
2ω2(x2

1 +x2
2)−

~
2

4
m2ω2(∂2

p1
+∂2

p2
)

−
~

2

4
(∂2

x1
+∂2

x2
)+2mω(x1p2−x2p1)+

~
2

2
mω(∂x2

∂p1

−∂x1
∂p2

)}W s(a)
11 = ε1W

s(a)
11 (28)

and

c2{(p2
1 +p2

2)+m
2ω2(x2

1 +x2
2)−

~
2

4
m2ω2(∂2

p1
+∂2

p2
)

−
~

2

4
(∂2

x1
+∂2

x2
)+2mω(x1p2−x2p1)

+
~

2

2
mω(∂x2

∂p1
−∂x1

∂p2
)}W s(a)

22 = ε1W
s(a)
22 . (29)

This equation is similar to the Landau problem and is

equivalent to the movement of a relativistic charged

particle in an external magnetic field. For Eq. (29),

we introduce four new variables Xi (i= 1,2,3,4),

X1 =

(

√

1

2mω
p1 +

√

mω

2
x2

)

,

X2 =

(

√

1

2mω
p2 +

√

mω

2
x1

)

,

X3 =

(

√

1

2mω
p2−

√

mω

2
x1

)

,

X4 =

(

√

1

2mω
p1−

√

mω

2
x2

)

. (30)

By straightforward calculation we can derive

c2{3mω(X2
2 +X2

4 )−mω(X2
1 +X2

3 )

−
3~

2

8
mω(∂2

X2
+∂2

X4
)+

~
2

8
mω(∂2

X1

+∂2
X3

)}W s(a)
22 = ε1W

s(a)
22 . (31)

With two more new variables ξ and η,

ξ :=
2

~
(X2

1 +X2
3 ), η :=

2

~
(X2

2 +X2
4 ), (32)

Eq.(32) may be rewritten as follows,

c2mω

[

6

(

η

4
−η∂2

η−∂η

)

−2

(

ξ

4
−ξ ∂2

ξ−∂ξ

)]

W s(a)
11 = ε1W

s(a)
11 (33)

With the separation of variables, W s(a)
11 (ξ,η) =

W
s(a)
11 (ξ)1W

s(a)
11 (η)2, ε= 6ε2−2ε1, we have

c2mω

[

ξ

4
−ξ ∂2

ξ−∂ξ−ε
1

]

W
s(a)
11 (ξ)1 = 0 (34)

and

c2mω
[η

4
−η∂2

η−∂η−ε
2
]

W s(a)
11 (η)2 = 0. (35)

Finally, we can find the solutions for Eq. (34) and

Eq. (35)

W s(a)
11 (ξ)1m =

(−1)m

π~
e−ξ/2Lm(ξ),

ε1 =

(

m+
1

2

)

c2m~ω, m= 0,1, · · · (36)

and

W s(a)
11 (η)2n =

(−1)n

π~
e−η/2Ln(η),

ε2 =

(

n+
1

2

)

c2m~ω, n= 0,1, · · · (37)
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Thus, we have

W s(a)
11 (ξ,η)nm =

(−1)m+n

(π~)2
e−(ξ+η)/2Lm(ξ)Ln(η),

ε = 6

(

n+
1

2

)

c2m~ω

−2

(

m+
1

2

)

c2m~ω. (38)

Symmetrically, we can find the solutions forW s(a)
22 ,

W s(a)
22 (µ,ν)nm =

(−1)m+n

(π~)2
e−(µ+ν)/2Lm(µ)Ln(ν),

ε = 6

(

n+
1

2

)

c2m~ω

−2

(

m+
1

2

)

c2m~ω. (39)

This is the very Wigner function and energy level

for an oscillator in phase space.

5 Conclusion

In summary, by defining a matrix Wigner function

in spinor space, this paper first provides the Dirac

equation which a four-order matrix Wigner function

obeys in a phase space with spin. From this, one

knows that in phase space the Dirac equation should

be described as a matrix equation with a ?-product,

and in spinor space the Wigner function can be de-

scribed as a matrix function. As a result, by solv-

ing the Dirac equation in phase space, the energy

level and the Wigner function for a Dirac oscillator

in spinor space are obtained. In addition, in recent

years increasing attention has been paid to the non-

commutative feature of the Wigner function [14-22].

This is to be reported elsewhere.
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