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Calculation of equation of state of QCD at zero

temperature and finite chemical potential *
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Abstract In this paper we calculate the equation of state (EOS) of QCD at zero temperature and finite chem-

ical potential by using several models of quark propagators including the Dyson-Schwinger equations (DSEs)

model, the hard-dense-loop (HDL) approximation and the quasi-particle model. The results are analyzed and

compared with the known results in the literature.
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1 Introduction

As is well known, the study of partition function

plays a key role in the equilibrium statistical field the-

ory. The thermal properties of the system, and hence

the equation of state (EOS), are completely deter-

mined by the partition function. The calculation of

the partition function of quantum chromodynamics

(QCD) is a contemporary focus [1–7]. In addition, it

is well known that in astrophysics the study of the

neutron star depends crucially on the assumed EOS

[8, 9]. The study of EOS of QCD is thus of extreme

importance.

Recently, we proposed a new method for calcu-

lating the partition function, and hence the EOS of

QCD at finite quark chemical potential µ [6]. We find

that the pressure density of QCD at finite chemical

potential and zero temperature can be expressed as :

P(µ) = P(µ)|µ=0 +

∫µ

0

dµ′ρ(µ′) =P(µ)|µ=0−

NcNfZ2

∫µ

0

dµ′

∫
d4p

(2π)4
tr{G[µ′](p)γ4} , (1)

where P(µ) and ρ(µ) are the pressure density and

quark number density at finite µ, respectively. Nc

and Nf denote the number of colors and of flavors.

Here G[µ](p) is the renormalized quark propagator

at finite µ and Z2 is the wave-function renormaliza-

tion constant for the quark field. The trace operation

is over Dirac indices. From Eq. (1) it can be seen that

the pressure density is the sum of two terms: the first

term is only a µ-independent constant and we will ig-

nore it in the following because it is not interesting

for our purpose; the second term, which contains all

the nontrival µ-dependence, is totally determined by

G[µ](p). This means once the full quark propagator

at finite µ is known, one can rigorously obtain the

EOS of QCD from Eq. (1). Unfortunately the full

quark propagator, especially the one at finite µ, is far

from being solved. Therefore, when one actually ap-

plies Eq. (1) to calculate the EOS, one has to resort

to various QCD models. In this paper we will use

this formula to calculate the EOS of QCD in three

different models include the Dyson-Schwinger equa-

tions (DSEs) model, the hard-dense-loop approxima-

tion (HDL) and the quasi-particle model.

2 Dyson-Schwinger equations

Over the past few years, considerable progress has

been made in the framework of the DSEs approach

[10, 11]. If one adopts the rainbow approximation of

DSEs and ignores the µ dependence of the dressed

gluon propagator, it can be shown that the dressed
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quark propagator at finite µ is obtained from the one

at µ = 0 by the following substitution [12, 13]:

G−1[µ](p) = G−1(p̃) = iγ · p̃A(p̃2)+B(p̃2), (2)

where p̃ = (~p,p4+iµ) and G−1(p) = iγ ·pA(p2)+B(p2)

is the inverse dressed quark propagator at µ = 0.

In order to obtain G[µ](p) using Eq. (2), one needs

to specify the form of the dressed quark propagator at

µ = 0. In this work, we adopt the following meromor-

phic form of the dressed quark propagator proposed

by Ref. [13]:

G(p) =

nP
∑

j=1

(

rj

i6p+aj +ibj

+
rj

i6p+aj − ibj

)

. (3)

In the numerical calculation in this work, we use three

sets of parameters given in Ref. [13], which represent

three forms of the propagator: three real poles (3R),

two pairs of complex conjugate poles (2CC), and one

real pole and one pair of complex conjugate poles

(1R1CC). These parameters are listed in Table 1.

With this form of dressed quark propagator one

obtains the following expression of the quark number

density

ρ(µ) =
2NcNf

3π
2

nP
∑

j=1

rjθ(µ−|aj |)
(

µ2− a2
jb

2
j

µ2
−a2

j +b2
j

)
3

2

,

(4)

Because the expression of ρ(µ) contains step func-

tions, when µ is smaller than a critical value µ0 =

min{|aj |}, the quark number density vanishes identi-

cally. This result agrees qualitatively with the general

conclusion of Ref. [14].

Substituting Eq. (4) into Eq. (1) one can immedi-

ately obtain the pressure density in DSEs approach.

The µ dependent part reads

P(µ) =

∫µ

0

dµ′ρ(µ′) =
2NcNf

3π
2

nP
∑

j=1

rj θ(µ−|aj |)I, (5)

where I(µ;aj , bj) is:

I(µ;aj , bj) ≡
3(a4

j +b4
j −6a2

jb
2
j)

16
ln

√

µ2 +b2
j +

√

µ2−a2
j

√

µ2 +b2
j −

√

µ2−a2
j

+
3(a2

j −b2
j)|ajbj |

2
arctan

√

b2
j(µ

2−a2
j)

a2
j(µ

2 +b2
j)

+

[

µ2

4
− 5

8
(a2

j −b2
j)

]

√

(µ2−a2
j)(µ

2 +b2
j)+

a2
jb

2
j

2µ2

√

(µ2−a2
j )(µ

2 +b2
j). (6)

Table 1. The parameters for the quark propagator from Ref. [13].

Parameterization r1 a1/GeV b1/GeV r2 a2/GeV b2/GeV r3 a3/GeV

2CC 0.360 0.351 0.08 0.140 −0.899 0.463 – –

1R1CC 0.354 0.377 – 0.146 −0.91 0.45 – –

3R 0.365 0.341 – 1.2 −1.31 – −1.06 −1.40

Fig. 1. The pressure density relative to the free

quark gas pressure Pfree =NcNfµ
4/(12π

2).

The numerical result is shown in Fig. 1. In Fig. 1

we give a comparison between the DSEs result and

the perturbative QCD result given in Ref. [15] (named

as FPS in Fig. 1). It is to be noted that in a large

region of µ (< 1.7 GeV) the DSEs result is smaller

than the perturbative QCD result. This fact may be

important for the study of neutron stars.

3 Hard-dense-loop approximation

As is well known, the hard thermal/dense loop ap-

proximation (HTL/HDL) is considered to be a good

approximation for quark-gluon plasma at high tem-

perature/density, where quark is deconfined and chi-

ral symmetry is restored [17]. The quark propagator

under HTL/HDL approximation in QCD can be writ-

ten as [17]:

GH(p) =
−1

D+(p)

γ4 +ip̂ ·~γ
2

+
−1

D−(p)

γ4− ip̂ ·~γ
2

, (7)
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where p̂ = ~p/|~p |. The form of the functions D±(p) is

D±(p) = −ip4 +µ±|~p |+
m2

q

|~p |

[

Q0

(

ip4−µ

|~p |

)

∓

Q1

(

ip4−µ

|~p |

)]

, (8)

where mq ≡ gµ/(
√

6π) is the quark thermal mass

with g being the strong coupling constant, Q0 and

Q1 are Legendre functions of the second kind. There-

fore, based on HDL quark propagator and Eq. (1)

one can obtain the EOS under HDL approximation.

To do this, first we note the result of the previ-

ous section that under some critical chemical po-

tential µ0 the quark number density vanishes iden-

tically. Based on a general argument, Ref. [14] find

that µ0 ∼ 307 MeV and our calculation shows that

µ0 = 351 MeV (for 2CC case), which is determined

by the poles of quark propagator at zero µ. Second,

it is generally believed that HDL approximation is

valid for high chemical potential µ. Here we assume

that the HDL quark propagator (7) is applicable in

the range µ > µ0 = 351 MeV. Because for µ < µ0

the quark number density ρ(µ) vanishes identically,

and also because the HDL quark propagator (7) is

only applicable in the range µ > µ0, when one calcu-

lates the pressure density under HDL approximation

by means of Eq. (1), one should take the lower limit

of µ′ integration to be µ′ = µ0. Thus one can obtain

the pressure density under HDL approximation:

P(µ) =−NcNf

∫µ

µ0

dµ′

∫
d4p

(2π)4
tr{GH(p)γ4} .

With HDL quark propagator (7) one can also find the

quark number density as follows:

ρ(µ) = 2NcNf

∫
d3~p

(2π)3
[θ(µ−ω+)Z+−θ(µ−ω−)Z−]+

NcNf

∫
d3~p

(2π)3

∫|~p |

−|~p |

dω

2π

[ρ+(ω)+ρ−(ω)]×

[1−2θ(ω−µ)], (9)

where ρ± is the spectral density of 1/D± and Z± is

defined as

Z±(|~p |) =
ω±−|~p |2

2m2
q

(10)

with ω± (> |~p |) being the solutions of the following

equations

|~p |(ω+−|~p |)
m2

q

−1 =
1

2

(

1− ω+

|~p |

)

ln
ω+ + |~p |
ω+−|~p | , (11)

|~p |(ω−+ |~p |)
m2

q

+1 =
1

2

(

1+
ω−

|~p |

)

ln
ω−+ |~p |
ω−−|~p | . (12)

The numerical results of ρ(µ) and P(µ) are shown

in Fig. 2 and Fig. 3, respectively. A comparison be-

tween the HDL result and FPS result is also shown

in Fig. 4. From Fig. 4 it can be seen that the HDL

pressure density is much larger than the FPS one,

and as µ tends to infinity, the HDL pressure density

tends to the free quark gas result from above, whereas

the FPS one tends to the free quark gas result from

below. In our opinions such a behavior is understand-

able. In QGP phase the interaction is still strong and

QGP behaves as a perfect fluid [18]. Consequently

the pressure should be stronger than a weakly cou-

pled quark gas.

Fig. 2. The quark number density under HDL

approximation.

Fig. 3. The pressure density under HDL ap-

proximation.

4 Quasi-particle model

In the quasi-particle model, it was assumed that

a system of interacting particles can be effectively

described as an ideal gas of noninteracting quasi-

particles with a temperature and density dependent

mass. So the quark propagator in the quasi-particle

model should have the form of a free quark propaga-
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tor with such an effective mass:

G−1[µ](p) = iγ · p̃+m(µ). (13)

Here we choose the effective mass to be [19]:

m2(µ) =
(N 2

c −1)µ2

8Ncπ
2

g2(µ), (14)

g2(µ) =
16π

2

9ln[λ(µ+Ts)/(Tcπ)]2
, (15)

where the parameters λ = 6.6, Tc = 170 MeV and

Ts = −0.78Tc. Substituting such a propagator into

Eq. (1), one would find the EOS for the quasi-particle

model. The numerical result and a comparison with

the perturbative result [16] is shown in Fig. 4. From

Fig. 4 one finds that the pressure in the quasi-particle

model just lies between the leading order perturbative

QCD result and the next-to-leading order one. There-

fore at large chemical potential the quasi-particle

model should be regarded as a perturbative model.

Fig. 4. The pressure density in quasi-particle model.

5 Summary

In this paper we calculate the EOS of QCD at

zero temperature and finite chemical potential using

three different models: the DSEs model, the HDL

approximation and the quasi-particle model.

From DSEs approach we find that the quark num-

ber density vanishes when µ is smaller than a critical

value µ0 which is determined by the pole position of

the quark propagator. In addition, the pressure ob-

tained from DSEs approach is smaller than the per-

turbative QCD result in a large region of µ. This fact

may be important for the study of neutron stars.

Under HDL approximation, we calculate the EOS

and find that the HDL pressure density is much larger

than the FPS one (the perturbative QCD result) [16].

It is also found that as µ tends to infinity, the HDL

pressure density tends to the free quark gas result

from above, whereas the FPS one tends to the free

quark gas result from below.

In the quasi-particle model, it is found that the

obtained pressure density just lies between the lead-

ing order perturbative QCD result and the next-to-

leading order one. This indicates that at high chem-

ical potential the quasi-particle model is a perturba-

tive model.

The determination of the EOS of QCD is a long-

standing problem in strong interaction physics. Lat-

tice QCD calculations and phenomenological models

try to pin down a usable EOS since two decades ago.

We expect that the results obtained in this work can

be useful for the study of EOS of QCD.
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