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Viscosities in chiral symmetry breaking phase *
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Abstract In the chiral symmetry breaking phase described by the NJL model at quark level, along with the

chiral symmetry restoration the ratio of shear viscosity to entropy density η/s drops down monotonously and

reaches the minimum at the critical point, while the ratio of bulk viscosity to entropy density ζ/s behaves

oppositely.
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1 Introduction

Transport coefficients are often used to describe

the properties of hot and dense medium. From re-

cent application of the AdS/CFT method [1] to the

strongly interacting quark matter [2, 3], the ratio of

shear viscosity to entropy density η/s is considered as

a probe to detect the deconfinement phase transition,

it reaches the minimum 1/4π at the critical point.

Considering a real QCD system [4, 5], however, we

need to consider the quark contribution to the ther-

modynamics and especially the non-perturbative cal-

culation at moderate temperature and density around

the phase transition. Since it is hard to calculate

transport coefficients with lattice for a QCD system

with dynamic quarks, effective models [6, 7] are usu-

ally used to investigate the transport properties at

finite temperature and density.

Another important phase transition for a QCD

system is the chiral symmetry restoration. From the

lattice calculation at finite temperature, the spon-

taneously broken chiral symmetry is restored at the

critical temperature of the deconfinement. The chiral

phase transition can happen in either a hadron sys-

tem or a quark system. At quark level, the Nambu–

Jona-Lasinio model (NJL) [8] describes well the chiral

properties in the vacuum and at finite temperature

and density. Recently, the model is used to calculate

viscosities by using the Boltzmann transport equation

[9]. Taking into account the fact that the Boltzmann

equation is in principle for a weakly coupled dilute

gas, it is not clear if the equation can be used in the

strongly coupled region.

Unlike the Boltzmann equation, the Kubo formu-

las are valid for both weakly and strongly correlated

matter in the frame of linear response. Therefore,

they can be applied to calculate the transport co-

efficients in hydrodynamics up to the first order in

derivative expansion of velocity. We study in this pa-

per the viscosity around the chiral phase transition

with the Kubo formulas in the NJL model.

2 Viscosities

From the Kubo formulas, the shear viscosity η

and bulk viscosity ζ are defined through the imagi-

nary part of the propagator in the medium [10–12],
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, (1)

where the retarded Green functions in coordinate

space are defined as

Gη
R(x) = −iθ(t)〈[T̂ij(x), T̂ij(0)]〉, i 6= j,

Gζ
R(x) = −iθ(t)〈[T̂ii(x), T̂jj(0)]〉, (2)

and T̂µ,ν is the energy-momentum operator which

controls the dynamics of the medium.

With the quark spectra function ρ(ε,p) which is
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defined through the quark propagator S(p0,p),

S(p0,p) =

∫
∞

−∞

dε

2π

ρ(ε,p)

p0−ε
, (3)

the shear and bulk viscosities cab be expressed as

η =
1

2

∫
d4p

(2π)4
p2

xn
′

F(ε−µ)Tr[γ2ρ(p)γ2ρ(p)],

ζ =
1

18

∫
d4p

(2π)4
pipjn

′

F(ε−µ)Tr[γjρ(p)γiρ(p)], (4)

where nF(x) = 1/(1+eβx) is the Fermi-Dirac distribu-

tion function, n′

F(x) stands for n′

F(x) = ∂xnF(x), µ is

the quark chemical potential, and the trace operator

runs over color, flavor and Dirac spaces.

We adopt the SU(2) NJL model as a microscopic

theory to describe the two flavor quark matter [8],

L= ψ̄(iγµ ∂µ−m0 +µγ0)ψ+g[(ψ̄ψ)2 +(ψ̄iγ5τψ)2],(5)

where ψ and ψ̄ are the quark fields, τ is the Pauli

matrix, m0 is the current quark mass which explic-

itly breaks down the chiral symmetry, and g is the

coupling constant in scalar and pseudoscalar chan-

nels with dimension GeV−2. Since the model is non-

renormalizable, it is necessary to introduce a reg-

ulator Λ to avoid divergence. The three parame-

ters, m0, g and Λ are fixed by the vacuum values of

pion mass, pion decay constant and constituent quark

mass. The mean field approximation to quarks plus

random phase approximation (RPA) to mesons in this

model describe successfully the chiral dynamics in the

vacuum and at finite temperature and density [8].

We first review the mean field propagator Smf of

quarks which is at O(1) level of 1/Nc expansion and

the meson propagator DM constructed with Smf in

RPA which is at O(1/Nc) level. Then we consider

the feedback of mesons on the quark motion. We de-

rive the dressed quark propagator at O(1/Nc) level

by including the quark-meson interaction. Finally we

calculate the transport coefficients with the known

quark propagator or quark spectral function.

In mean field approximation, quarks propagate in

the medium like quasi-particles,

Smf(p) =
1

γµpµ−m
=

∫
dε

2π

ρmf(ε,p)

p0−ε
(6)

with the mean field spectral function

ρmf(p) = 2π

γµpµ +m

2Ep

[δ(p0−Ep)−δ(p0 +Ep)], (7)

where Ep =
√

p2 +m2 is the quark energy. The mean

field interaction only changes the quark massm which

is self-consistently determined by the gap equation,

m=m0 +2ig

∫
d4p

(2π)4
Tr

1

γµpµ−m0−m
. (8)

In the NJL model, the meson modes are regarded

as quantum fluctuations above the mean field. The

meson modes can be calculated in the frame of RPA.

In the current case with only chiral condensation,

the mean field quark propagator is diagonal in fla-

vor space, and the summation of bubbles in RPA se-

lects its specific channel by choosing at each stage the

same proper polarization function. After the bubble

summation one obtains the meson propagator [8],

DM(q) =
2g

1−2gΠM(q)
(9)

with the polarization function

ΠM(q) = i

∫
d4p

(2π)4
Tr[V ∗

MSmf(p+q)VMSmf(p)] , (10)

where Vm is the meson vertices

VM =
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(11)

with the definition τ± = (τ1± iτ2)/
√

2.

To the order O(1/Nc), the quark self-energy con-

tains a Hartree term and a meson exchange term, the

former is a constant and the latter is momentum de-

pendent and divided into a scalar and a vector part,

Σ(p) = Σmf +ΣM(p), Σmf =m,

ΣM(p) = γµΣ
µ
M(p)+Σs

M(p) =

−i

∫
d4q

(2π)4
V ∗

MSmf(p+q)VMDM(q). (12)

The dressed quark self energy becomes

S(p) =
1

γµpµ−Σ(p)
. (13)

In the chiral symmetry breaking phase with T <

Tc, where Tc is the critical temperature for the chiral

phase transition, the mesons are stable bound states

and one can use pole approximation to simplify the

meson propagator,

DM(q)∼ 1

q2−m2
M

(14)

with the meson mass mM determined by

1−2gΠM(mM,0) = 0. (15)

In chiral limit with m0 = 0, from the comparison be-

tween the gap equation for the quark mass and pole

equation for the meson mass, it is easy to see that
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pions are Goldstone modes with mπ = 0, correspond-

ing to the spontaneously broken chiral symmetry, and

sigma mass mσ is two times the quark mass m.

To further simplify the numerical calculation, we

take pole approximation for the dressed quarks too.

Note that in the chiral breaking phase, quarks can

decay into pions and their pole is a complex pole,

S(p)∼ 1

γµpµ−(M− iΓ/2)
. (16)

Under the approximation of Γ �M , the complex pole

equation is divided into two equations to separately

determine the quark mass M and width Γ ,

M =m+[ReΣ0(M,0)+ReΣs(M,0)] ,

Γ =−2Im[Σ0(M,0)+Σs(M,0)] , (17)

where we have employed the fact that the 3-vector

part of the dressed quark self-energy vanishes when

the quark 3-momentum is set to be zero.

We first show our numerical results Fig. 1 on the

scaled shear viscosity η/s and bulk viscosity ζ/s as

functions of temperature T at zero baryon density.

The entropy density s = −∂Ω/∂T can be derived

from the thermodynamic potential Ω = Ωmf +Ωm,

where Ω is the contribution from mesons. As is well

know, η/s is divergent and ζ/s vanishes in free gas

limit. In the chiral symmetry breaking phase, the

ratio η/s drops down monotonously with increasing

temperature and reaches the minimum at the critical

temperature. This reflects the fact that the quarks

Fig. 1. The scaled shear and bulk viscosities

η/s (solid line) and ζ/s (dashed line) as func-

tions of scaled temperature T/Tc at zero chem-

ical potential in the chiral symmetry breaking

phase.

are strongly coupled around the critical point. As for

the bulk viscosity, it goes up monotonously with in-

creasing temperature and the maximum is located at

the critical point. While the bulk viscosity is much

less than the shear viscosity, it plays a role at the

critical point. Such properties of the scaled shear and

bulk viscosities agree qualitatively with the previous

theoretical calculations [5, 6, 9].

We calculate also the density dependence of the

two viscosities at fixed temperature in the chiral sym-

metry breaking phase Fig. 2. Considering the fact

that entropy is proportional to the number of dy-

namic degrees of freedom of the system, we use quark

number density n=−∂Ω/∂µ instead of the entropy

density s. Similar to the temperature behavior, the

ratio η/n decreases with increasing quark chemical

potential µ and approaches to the minimum value at

the critical point, and the ratio ζ/n increases with µ

and reaches the maximum at µc.

Fig. 2. The scaled shear and bulk viscosities

η/n (solid line) and ζ/n (dashed line) as func-

tions of scaled quark chemical potential µ/µc

at fixed temperature T =150 MeV in the chi-

ral symmetry breaking phase.

3 Conclusion

In summary, we investigated the transport coef-

ficients in a chiral symmetry breaking phase in the

frame of the NJL model. Like what previously found

in the study of deconfinement phase transition, the

scaled shear viscosity monotonously decreases with

increasing temperature and baryon density in the chi-

ral breaking phase, and oppositely, the scaled bulk

viscosity increases with temperature and density.
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