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An estimate of two-photon exchange effect

on deuteron electromagnetic form factors *
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Abstract The effect of the two-photon exchange on the deuteron electromagnetic form factors is estimated

based on an effective Lagrangian approach. A numerical estimate calculation of the effect is discussed. In

particular, the effect on the polarization observables is analyzed.
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1 Introduction

The electromagnetic (EM) form factors of the pro-

ton and deuteron are usually extracted from the mea-

surements of the differential cross sections of ep and

eD elastic scatterings and from the Rosenbluth sep-

aration method [1], which is based on one-photon-

exchange (OPE) approximation. For a long time, the

extracted Q2-dependences of the nucleon EM form

factors are believed to be a simple dipole form. For

the proton electric and magnetic form factors, Gp
E,M,

one conventionally assumes

Gp
E(Q2)= Gp

M(Q2)/µp ' 1/(1+Q2(GeV2)/0.71)2, (1)

where µp is the proton magneton. Recently, the

new experiments of the polarized ep elastic scatter-

ing were precisely carried out at Jefferson Labora-

tory [2]. These polarization transfer scattering exper-

iments show that the ratio Rp = µpG
p
E(Q2)/Gp

M(Q2)

behaves like Rp(Q2)∼ 1−0.158Q2. It means that Rp

is no longer a simple constant as implied by Eq. (1).

It monotonously decreases with the increase of Q2.

One way to resolve this discrepancy in hadronic

level is to take the effect of the two-photon-exchange

(TPE) into account [3–8]. Usually, it is believed that

TPE is strongly suppressed by EM coupling constant

αEM (∼ 1/137). However, it was argued [8] that due

to a very steep decreasing of the nucleon EM form fac-

tors, the TPE process, where the Q2 is equally shared

by the two exchanging photons, may be compatible

with the OPE one. Some calculations of the TPE cor-

rections to the ep elastic scattering have been done

recently [3–7, 9]. The effect on the EM form factors

of the nucleon in the time-like region was estimated

in Refs. [10, 11]. According to those analyses in

the literature, it is known that the TPE corrections

not only modify the conventional nucleon electric and

magnetic form factors, but also provide a new one.

The TPE corrections to the deuteron (spin 1 par-

ticle) EM form factors and to e++e− →D+D̄ process

have been also discussed in Refs. [12–14] qualitatively.

In analogy to the TPE effect on the proton EM form

factors, TPE not only modifies the conventional three

EM form factors of the deuteron, but also provides

three new form factors with new structures. The gen-

eral discussion of the structures of the three new form

factors can be seen [12, 13]. In this work, we’ll show

the calculations [15] of the TPE effect based on an

effective Lagrangian approach [16, 17]. This paper

is organized as follows. In section 2 the above men-

tioned two-photon-exchange effect in the eD elastic

scattering is briefly discussed. Numerical results and

conclusions are given in section 3.

2 Two-photon-exchange in the eD

elastic scattering

According to the OPE approximation, the elec-
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tromagnetic form factors of the deuteron are defined

by the matrix element of the electromagnetic current

Jµ(x)

< p′

D, λ′ | Jµ(0) | pD, λ >=

−eD

{[
G1(Q

2)ξ′∗(λ′) ·ξ(λ)−

G3(Q
2)

(ξ′∗(λ′) ·q)(ξ(λ) ·q)

2M 2
D

]
·Pµ +

G2(Q
2)

[
ξµ(λ)(ξ′∗(λ′) ·q)−ξ′∗

µ
(λ′)(ξ(λ) ·q)

]}
, (2)

where p′

D, ξ′,λ′ (or pD, ξ, λ) denote the momentum,

helicity, and polarization vector of the final (or ini-

tial) deuteron, respectively. In Eq. (2) q = p′

D − pD

is the photon momentum, P = pD + p′

D, Q2 = −q2

is the four-momentum transfer squared, MD is the

deuteron mass, and eD is the charge of the deuteron.

In the one-photon exchange approximation or Born

approximation, the unpolarized differential cross sec-

tion of the eD elastic scattering, e(k1,s1)+D(pD, ξ)→

e(k′

1,s3)+D(p′

D, ξ′), in the laboratory frame is

dσ

dΩ
=

dσ

dΩ

∣∣∣∣
Mott

I0(OPE),

I0(OPE) = A(Q2)+B(Q2)tan2 θ

2
, (3)

where θ is the scattering angle of the electron,

(dσ/dΩ)Mott is the Mott cross section for a structure-

less particle with recoil effect, and the two structure

functions are

A(Q2) = G2
C(Q2)+

2

3
τDG2

M(Q2)+
8

9
τ 2
DG2

Q(Q2),

B(Q2) =
4

3
τD(1+τD)G2

M(Q2). (4)

In Eq. (4) τD = Q2/4M 2
D, and GM, GC and GQ are

the deuteron magnetic, charge and quadrupole form

factors, respectively. They can be expressed, in terms

of G1, G2 and G3, as

GM = G2, GQ = G1−G2 +(1+τD)G3,

GC = G1 +
2

3
τDGQ. (5)

The normalizations of the three form factors are

GC(0) = 1, GM(0) = 1.714, and GQ(0) = M 2
DQD =

25.83. Note that in Eqs. (3) and (4), there are two

unpolarized structure functions A and B, and three

independent form factors GC, GQ and GM for the

deuteron. To determine the three form factors com-

pletely, one needs, at least, one polarization observ-

able. The optimal choice is the polarization T20 (or

Pzz). In fact, there are many different approaches to

discuss the form factors of the deuteron in the liter-

ature. Most of them can reasonably explain the data

for the electric, magnetic and quadrupole form fac-

tors and they are based on the one photon exchange

approximations.

Considering both OPE (C = −1) and TPE

(C = +1), and taking Lorentz, party, and charge-

conjugation invariance into account, one obtains the

most general form of the eD elastic scattering [12],

MeD =
e2

Q2
ū(k′

1,s3)γµu(k1,s1)

6∑

i=1

G′

iM
µ
i , (6)

where

Mµ
1 = (ξ′∗ ·ξ)P µ,

Mµ
2 =

[
ξµ(ξ′∗ ·q)−(ξ ·q)ξ′∗µ

]
,

Mµ
3 = −

1

2M 2
D

(ξ ·q)(ξ′∗ ·q)P µ, (7)

and

Mµ
4 =

1

2M 2
D

(ξ ·K)(ξ′∗ ·K)P µ,

Mµ
5 =

[
ξµ(ξ′∗ ·K)+(ξ ·K)ξ′∗µ

]
,

Mµ
6 =

1

2M 2
D

[
(ξ ·q)(ξ′∗ ·K)−(ξ ·K)(ξ′∗ ·q)

]
P µ, (8)

where K = k1 + k′

1. Generally speaking, the form

factors G′

i, with i = 1,6, are complex functions of

s = (pD + k1)
2 and Q2 = −(k1 − k′

1)
2. They can be

expressed as

G′

i(s,Q
2) = Gi(Q

2)+G
(2)
i (s,Q2), (9)

where Gi correspond to the contributions arising from

the one-photon exchange and G(2)
i stand for the rest

which would come mostly from TPE. In the OPE ap-

proximation, G′

4 = G′

5 = G′

6 = 0. It is easy to see

that Gi (i = 1,2,3) are of order of (αEM)0 and G(2)
i

(i = 1, ...,6) are of order αEM.

To consider that a deuteron is a weakly bound

state of a proton and a neutron, we take the follow-

ing effective interaction between the deuteron and its

composites (pn) [17]

LD = gDDµ+(x)

∫
dyΦD(y2)p̄

(
x+

1

2
y

)
×

Cγµn

(
x−

1

2
y

)
+H.c., (10)

where C is the charge conjugate matrix, Dµ, p and

n are the fields of the deuteron, proton and neutron,

respectively. The correlation function ΦD in Eq. (10)

characterizes the finite size of the deuteron as a pn
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bound state and depends on the relative Jacobi co-

ordinate y, in addition, x being the center-of-mass

(CM) coordinate. The Fourier transformation of the

correlation function reads

ΦD(y2) =

∫
d4p

(2π)4
e−ipy Φ̃X(−p2) . (11)

A basic requirement for the choice of an explicit form

of the correlation function is that it vanishes suf-

ficiently fast in the ultraviolet region of Euclidean

space to render the Feynman diagrams ultraviolet

finite. Here, we adopt a Gaussian form Φ̃D(p2
E)

.
=

exp(−p2
E/Λ2

D) for the vertex function, where pE is the

Euclidean Jacobi momentum of the deuteron, and ΛD

is a size parameter. It characterizes the distribution

of the constituents inside the deuteron. In our ap-

proach, the coupling gD in Eq. (10) is determined by

the compositeness condition [18, 19]. It implies that

the renormalization constant of the deuteron wave

function is set equal to zero. The mass operator of

the deuteron in our approach is described by Fig. 1.

If the size parameter ΛD is fixed, the coupling gD is

fixed too according to the compositeness condition

(see detail in Ref. [17]).

Fig. 1. Deuteron mass operator.

3 Numerical results and conclusions

To proceed a numerical calculation, we adopt the

parametrization forms of the nucleon EM form factors

given by Mergell, Meissner and Drechsel [20]. Here we

follow the numerical technique of Ref. [21] to simplify

our loop integration. In our calculation, we have one

parameter ΛD in the correlation function. Accord-

ing to the condition that the deuteron is bound as

<| r−2 |>6 0.02 GeV2, we select a typical value for

the parameter: ΛD = 0.30 GeV which is consistent

with the one used in Refs. [15, 17].

To check TPE on the charge, magnetic and

quadrupole form factors in our numerical calculation,

we find the TPE effect on the three form factors are

small. Moreover, one can estimate the new form fac-

tors G5,6 based on our approach. The result show a

clear θ-dependence contributed by TPE. To further

study the TPE effect, we find that we can clearly see

the effect from the polarizations of Pxz and Pz. In

the one photon exchange approximation we have

Pxz = −τD

K0

MD

tan
θ

2
GMGQ,

Pz =
1

3

K0

MD

√
τD(τD +1)tan2 θ

2
G2

M. (12)

When the TPE effect is taken into account, they are

the contributions are

δPxz ∼ 2τ 2
D cot

θ

2

[
2

(
G1

τD +1
+G3

)
Re(G′

5)+

(
G1−4G2 +2(τD +1)G3

)
Re(G′

6)

]
(13)

and

δPz ∼−
2τD

3

√
τD

τD +1

[(
3+2(τD+1)tan2 θ

2

)
×

G2Re(G′

5)+2(τD +1)G2Re(G′

6)

]
. (14)

Clearly, one sees that the TPE corrections to this two

polarizations, δPxz and δPz, do not vanish while the

one photon exchange contributions do in the limit of

θ → 0. The explicit illustrations for the TPE effect

on the two polarizations are shown in Figs. 2 and 3,

where R(Pxz,z) stand for the ratios of the TPE contri-

butions of Pxz and Pz to the OPE ones, respectively.

A clear θ dependence is seen and moreover, one may

conclude that the TPE corrections play an important

role, and turn out to be sizeable, especially in the

polarization of Pz .

Fig. 2. Ratio for Pxz.

To summarize our numerical results, we have esti-

mated the TPE corrections to the conventional form

factors of the deuteron, GC,M,Q and of G′

5,6. Our nu-

merical results of the TPE contributions tell that
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Fig. 3. Ratio for Pz.

G(2)
C,M,Q are small (less than 1%). However, G′

5,6 are

clearly θ-dependent. The two additional form factors

are expected to be tested in the future measurements

of the double and single polarization observables of

Pxz(T21) and Pz (T10) in the small angle limit and

at some specific Q2 values. Further work on a full

calculation of the two-photon exchange effect on the

deuteron system, without using the assumption of

Ref. [21], is in progress.

Author thanks the discussions with S. N. Yang and

D. Y. Chen
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