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Centrality of the collision and random matrix theory
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Abstract I discuss the results from a study of the central 12CC collisions at 4.2 A GeV/c. The data have

been analyzed using a new method based on the Random Matrix Theory. The simulation data coming from the

Ultra Relativistic Quantum Molecular Dynamics code were used in the analyses. I found that the behavior of

the nearest neighbor spacing distribution for the protons, neutrons and neutral pions depends critically on the

multiplicity of secondary particles for simulated data. I conclude that the obtained results offer the possibility

of fixing the centrality using the critical values of the multiplicity.
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1 Introduction

Centrality experiments are usually used to fix the

baryon density of nuclear matter. These are consid-

ered to be the best tool to reach the Quark Gluon

Phase (QGP) [1] of nuclear matter. Studying the dif-

ferent characteristics of events as a function of the

centrality at JINR (Dubna), CERN (Geneva), BNL

(New-York) and SIS (Darmstadt) could provide new

information about the properties of nuclear matter

under extreme conditions. On the other hand, the

centrality of collisions cannot be defined directly in

experiment. In different experiments, the centrality is

defined [2–5] as the number of identified protons, pro-

jectile and target fragments, slow particles, charged

particles as the energy flow of the particles with emis-

sion angles equal to 0◦ or 90◦, etc. Apparently, it

is not simple to compare quantitatively the results

on centrality-dependences obtained in the literature,

while on the other hand the definition of the cen-

trality could significantly influence the final results.

This may be why I could not get a clear signal on

new phases of strongly interacting matter, though a

lot of interesting information has been gathered from

those experiments. From the last few years, some

results from the central experiments are discussed

which demonstrate the point of regime change and

saturation on the behavior of some characteristics of

the events as a function of the centrality [6]. It was

assumed that these phenomena could be connected

with the fundamental properties of the strongly in-

teracting mater and could reflect the changes of its

states (phases) of strongly interacting matter.

2 UrQMD

The Ultra relativistic Quantum Molecular Dy-

namics (UrQMD) is a fully integrated Monte

Carlo simulation package for proton+proton, pro-

ton+nucleus and nucleus+nucleus interactions. The

UrQMD has many applications in particle physics,

high energy experimental physics and engineering,

shielding, detector design, cosmic ray studies and

physics. The UrQMD [7–8] is a microscopic model

based on a phase space description of nuclear reac-

tions. The model was proposed mainly for a descrip-

tion of nucleus-nucleus interactions. It is the unique

theoretical description of the underlying hadron-

hadron interactions, with their vastly different char-

acteristics at different incident energies and in differ-

ent kinematic intervals. The UrQMD is appropriate

for the description of the soft interactions because of

the absence of the large Q2-scale. Therefore, low-

pT collisions are described in terms of the UrQMD

model. The main goals of the code are to gain an un-

derstanding about the following physical phenomena

within a single transport model.

1) Creation of dense hadronic matter at high tem-
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peratures.

2) Properties of nuclear matter, Delta and Reso-

nance matter.

3) Creation of mesonic matter and of anti-matter.

4) Creation and transport of rare particles in

hadronic matter.

5) Creation, modification and destruction of

strangeness in matter.

6) Emission of electromagnetic probes.

The main ingredients of the model are the cross

sections of binary reactions, the two-body potentials

and decay widths of resonances [9–12]. In UrQMD,

different fragmentation functions are used for lead-

ing nucleons and newly produced particles [13–15].

UrQMD is designed as a multipurpose tool for study-

ing a wide variety of heavy ion related effects, ranging

from multifragmentation and collective flow to parti-

cle production and correlations. Using UrQMD1.3

[7, 8], I generated 200000 events of 12CC interaction

at a momentum of 4.2 A GeV/c in the lab frame.

3 Methodology

In this work, I used a method that does not de-

pend on background information and relies only upon

the fundamental symmetries of the composite system.

Our approach is based on the Random Matrix The-

ory (RMT) [16], which was originally introduced to

explain the statistical fluctuations of neutron reso-

nances in compound nuclei [17]. Nowadays, RMT has

become a standard tool for analysing the fluctuations

in nuclei, quantum dots and many other systems [18].

The success of RMT is determined by the study of

statistical laws governing the fluctuations having very

different origins. Regarding the relativistic heavy ion

collision data, the study of fluctuation properties of

the momentum distribution of emitted particles could

provide information about (i) possible errors in mea-

surements and (ii) kinematical and dynamical corre-

lations of the composite system.

Let us consider the discrete spectrum {Ei}, i =

1, · · · ,N of a d-dimensional quantum system (d is a

number of degrees of freedom). A separation of fluc-

tuations of a quantum spectrum can be based on the

analysis of the density of states below some threshold

E,

S(E) =
∑N

i=1
δ(E−Ei). (1)

I can define a staircase function

N(E) =

∫
E

−∞

S(E′)dE′ =
∑N

i=1
θ(E−E′), (2)

giving the number of points on the energy axis which

are below or equal to E. Here,

θ(x) =

{

0, for x < 0

1. for x > 1
. (3)

I separate N(E) in a smooth part ζ(E) and the re-

minder that will define the fluctuating part Nfl(E),

N(E) = ζ(E)+Nfl(E). (4)

The smooth part ζ(E) can be determined either from

semi classical arguments or using a polynomial or

spline interpolation for the staircase function. To

study the fluctuations, I have to get rid of the smooth

part. The usual procedure is to “unfold” the original

spectrum {Ei} through the mapping E →x,

xi−ζ(Ei), i−1, · · · ,N. (5)

Now I can define spacing si (the same for all)=xi+1−xi

between two adjacent points and collect them in a his-

togram. The effect of mapping is that the sequence

{xi} has on the average a constant mean spacing (or a

constant density), irrespective of the particular form

of the function ζ (E) [19]. To characterize the fluctu-

ations, one deals with different correlation functions

[20]. In this paper, I will use only a correlation func-

tion related to the spacing distribution between ad-

jacent levels. Below, I follow a simple heuristic argu-

ment due to Wigner [21] that illustrates the presence

or absence of level repulsion in an energy spectrum.

For a random sequence, the probability that the

level will be in the small interval [x0 + s,x0+s+ds]

is independent of whether or not there is a level at

x0. Given a level at x0, let the probability that the

next level be in [x0 +s, x0 +s+ds] be p(s) ds. Then

for p(s), the nearest-neighbor spacing distribution, I

have

p(s)ds = p(1∈ ds | 0∈)p(0∈ s). (6)

Here, p(n ∈ s) is a probability that the interval of

length s contains n levels and p(n ∈ ds | m ∈ s) is

the conditional probability that the interval of length

ds contains n levels, when that of length s contains

m levels. One has p(0 ∈ s) =

∫
∞

s

p(s′)ds′, the prob-

ability that the spacing is larger than s. The term

p(1∈ ds | 0∈ s) = µ(s)ds [µ(s) is the density of spac-

ings s], depends explicitly on the choices, 1 and 0, of

the discrete variables n, m. As a result, one obtains

p(s) = µ(s)

∫
∞

s

p(s′)ds′ which can be solved to give

p(s) = µ(s)exp(−

∫
s

0

µ(s′)ds′). (7)

The function p(s) and its first moment are normalized
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to unity, ∫
s

0

p(s)ds = 1,

∫
s

0

sp(s)ds = 1. (8)

For a linear repulsion µ(s) = πs/2, one obtains the

Wigner surmise,

p(s) =
π

2
sexp

(

−
π

4
s2

)

, s > 0. (9)

For a constant value µ(s)=1, one obtains the Poisson

distribution

p(s) = exp−s, s > 0. (10)

As discussed above, when the quantum numbers of

levels are well defined, one should expect for the spac-

ings the Poisson type distribution, while a Wigner

type distribution occurs due to either internal or

external perturbations that destroy these quantum

numbers. In fact, one of the sources of external per-

turbations can be attributed to the uncertainty in

the determination of the momentum distribution of

emitted particles in relativistic heavy ion collisions. I

make a conjecture that the above discussed ideas of

Fig. 1. Using the UrQMD data for all nucleons (n, p), the nearest neighbor spacing momentum distribution

P (S) for different regions of measured momenta: the first column corresponds to 0.1<| p |<1.14 GeV/c;

the second column corresponds to 1.14<| p |<4.0 GeV/c; and the third column corresponds to 4.0<

| p |<7.5 GeV/c. The Poisson and the Wigner surmise distributions are connected by the dashed and

solid lines, respectively.

Fig. 2. Using the UrQMD data for nucleons (n, p)=10–14, 15–19, 20–24, the nearest neighbor spacing mo-

mentum distribution P (S) for different regions of measured momenta: the first column corresponds to

0.1<| p |<1.14 GeV/c; the second column corresponds to 1.14<| p |<4.0 GeV/c; and the third column cor-

responds to 4.0<| p |<7.5 GeV/c. The Poisson and the Wigner surmise distributions are connected by the

dashed and solid lines, respectively.
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Fig. 3. Using the UrQMD data for all neutral particles (n, π
0), the nearest neighbor spacing momen-

tum distribution P (S) for different regions of measured momenta: the first column corresponds to 0.1<

| p |<1.14 GeV/c; the second column corresponds to 1.14<| p |<4.0 GeV/c; and the third column corresponds

to 4.0<| p |<7.5 GeV/c. The Poisson and the Wigner surmise distributions are connected by the dashed and

solid lines, respectively.

Fig. 4. Using the UrQMD data for neutral particles (n, π
0)=10–14, 15–19, 20–22, the nearest neighbor spacing

momentum distribution P (S) for different regions of measured momenta: the first column corresponds to

0.1< | p |<1.14 GeV/c; the second column corresponds to 1.14< | p |<4.0 GeV/c; and the third column

corresponds to 4.0<| p |<7.5 GeV/c. The Poisson and the Wigner surmise distributions are connected by

the dashed and solid lines, respectively.

the RMT are applicable to the momentum distribu-

tion. Therefore, I simply replace in Eqs. (1)–(5) the

variable E with the variable P and construct the cor-

responding correlation function P (S).

To identify the correlations between nucleons and

neutral particles, I divided the set of spacings {si}

into three sets, in correspondence with three re-

gions of the measured momenta: a) 0.1< | p |<

1.14 GeV/c (Region .); b) 1.14< | p |< 4.0 GeV/c

(Region /); and c) 4.0<| p |<7.5 GeV/c (Region 0)

(see Figs. 1–4).

4 Results and discussion

I can see the distributions of p(s) functions for all

nucleons (n, p) and for all neutral particles (n, π
0)

in the three regions of momentum from the UrQMD

data, as shown in Figs. 1 and 3. I can see the Poisson

distribution in Region ., while Wigner distribution

is in Region 0. These results show the existence of

some peaks in the region of / and their transforma-

tion to the Wigner distribution in the region of 0.

These results demonstrate the existence of some non-
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trivial non-kinematic correlations for the secondary

nucleons and neutral particles in the regions of /

and 0.

To observe the changes with multiplicity, I divide

the events in the three groups from UrQMD data for

nucleons (n, p): i) the events with N=10–14; ii) the

events with N=15–19; and iii) the events with N=20–

24 and for neutral particles (n, π
0): i) the events with

N=10–14; ii) the events with N=15–19; and iii) the

events with N=20–22.

I can see from Figs. 2 and 4 that the correlation

between secondary nucleons and neutral particles de-

creases inversely with the multiplicity of secondary

nucleons and neutral particles.

I can see the Poisson distribution in Region .,

but the behavior of P (S) functions changes inversely

with the multiplicity for Region / and 0 for nu-

cleons and neutral particles. The Wigner type be-

havior disappears (or becomes weaker essentially) in

Region 0 with the increasing number of nucleons and

neutral particles. So the results from Figs. 2 and 4

demonstrate uniquely that the observed structure for

the P (S) behaviors for nucleons and neutral particles

with the momentum in / and 0 ranges is connected

with the multiplicity. At high multiplicity I could

see that the correlation which was the reason for non

Passion behavior of p(s) function for nucleons and

neutral particles with greater momentum decreases.

5 Conclusion

In conclusion, one can say that the simulated

data coming from the UrQMD code show the crit-

ical change in the behavior for the nearest neigh-

bor spacing momentum distribution for protons, neu-

trons and neutral pions produced in 12CC-reactions at

4.2 A GeV/c with multiplicity. So I could conclude

that the obtained results offer the possibility of fixing

the centrality using the critical values of the multi-

plicity.
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