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On the moment of inertia of a proto neutron star *
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Abstract The influences of σ∗ and Φ mesons, temperature and coupling constants of nucleons on the moment

of inertia of the proto neutron star (PNS) are examined in the framework of relativistic mean field theory for the

baryon octet {n, p, Λ, Σ−, Σ0, Σ+,Ξ−, Ξ0} system. It is found that, compared with that without considering

σ∗ and Φ mesons, the moment of inertia decreases. It is also found that the higher the temperature, the larger

the incompressibility and symmetry energy coefficient, and the larger the moment of inertia of a PNS. The

influence of temperature and coupling constants of the nucleons on the moment of inertia of a PNS is larger

than that of the σ∗ and Φ mesons.
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1 Introduction

After a supernova implodes with subsequent

bouncing at the center, the proto-neutron star (PNS)

comes into being. A newly formed PNS, where the

temperature may be as high as 10–20 MeV [1], may

consist of neutrons, protons, electrons, muons and

trapped neutrinos. However, in a few seconds, the

neutrinos will escape and then the temperature will

drop down to the order of several MeV [2]. Therefore,

the PNS is a compact stellar object with high tem-

perature and highly rotating angular velocity. So the

moment of inertia of a PNS will play an important

role during its evolution.

In 1967, J. B. Hartle et al. derived the structure

equation of slowly rotating neutron stars from the

general relativistic theory [3], and they calculated the

equilibrium structure of rotating white dwarfs and

neutron stars in 1968 [4]. In the last few years, much

work has been done on the moment of inertia of neu-

tron stars [5–7], but very little on that of PNSs.

The relativistic mean field theory (RMF) pro-

vides a good description of the bulk properties of

nuclear matter as well as a large number of single-

particle properties of finite nuclei [8–10]. It can only

be adapted to static neutron stars with spherical sym-

metry. For very slowly rotating neutron stars, the

spherical symmetry could be approximately looked

upon as not being broken and the RMF can be

adapted to them.

In this paper, we calculate the moment of inertia

of a PNS within the RMF approach considering the

baryon octet {n, p, Λ, Σ−, Σ0, Σ+, Ξ−, Ξ0}. We

mainly study how the scalar meson f0 (975) (denoted

as σ∗) and the vector meson φ(1020) (denoted as

φ) [11], which only interact between hyperons§affect

the moment of inertia of a PNS. On the other hand,

the effects of temperature and the coupling constants

of the nucleons on the moment of inertia are calcu-

lated too.

2 Relativistic mean field theory

(RMF) and the moment of inertia

of neutron stars

The Lagrangian density of hadron matter reads as

follows [12],
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The last term, which represents the contribution of

the σ∗ and φ mesons and only couples to hyperons,

is given by
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Here, Sµν = ∂µ φν −∂ν φµ.

The energy density and pressure of a neutron star

are given by
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The above equations of state will be used to solve

the matter distribution of a neutron star.

We use the Oppenheimer-Volkoff (O-V) equation

[13] to obtain the mass and the radius of neutron

stars,

dp

dr
= − (p+ε) (M +4πr3p)

r (r−2M)
, (5)

M = 4π

∫ r

0

εr2dr. (6)

In the following, we will derive the moment of in-

ertia of a slowly rotating star [14]. Because of the

rotation of the local inertial frames, the structure of

a rotating star depends in a complicated way on its

frequency. The centrifugal force acting on a fluid el-

ement of the star does not depend on the global fre-

quency, Ω, but rather on the difference between Ω

and the local frequency, ω (r), in the local inertial

frame at the location of the fluid element,

ω (r) = Ω−ω (r,θ) . (7)

From the Einstein equation,

Gt
φ = 8πT t

φ, (8)

Hartle [3] obtained the relevant equation

1
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4
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We will use his result in the following.

The quantity j (r) used above is defined in terms

of the metric for a Schwarzschild star,

j (r) = e−(ν+λ) = e−ν
√

1−2M (r)/r, r < R, (10)

j (r) = 1, r 6 R. (11)

After some algebras and by use of
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we obtain
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Integrating (9) within the interval (0,R), we have
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According to
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one obtains the angular momentum,

J =−2
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where the proportionality constant has been set to

2/3.
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From the above results, we find the moment of

inertia of a slowly rotating star as follows,

I =
8π

3

∫R

0

drr4 ε+p
√
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Ω
e−ν , (17)

where ν is defined as
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1

ε+p
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. (18)

The mass distribution M (r) is obtained by solv-

ing first the O-V Eqs. (5) and (6). Then, combining

with Eqs. (3) and (4), we can obtain the moment of

inertia of the neutron star by solving Eqs. (9), (10),

(17) and (18). The solutions have to satisfy the fol-

lowing boundary conditions,

dω
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|r=0 = 0, (19)

ν (∞) = 0, (20)
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3

dω
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∣

∣

∣

∣

r=R
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3 Parameters

The parameters in our calculation are chosen ac-

cording to three cases. For the study of the influence

of the σ∗, φ mesons on the moment of inertia of the

PNS, we assume a temperature of T=15 MeV. The

corresponding coupling constants of the nucleons are

the GL85 [14] constants listed in Table 1.

We define the following ratios: xσh = gσh/gσ,

xωh = gωh/gω, xρh = gρh/gρ. For the ω coupling

constants g, we use ratios

gωN/3 = gωΣ/2 = gωΛ/2 = gωΞ, (22)

which are given by the constituent quark model

[SU(6) symmetry]. The σ couplings are then deter-

mined by fitting the Λ and Ξ well depth in nuclear

matter, U (N)
Λ = U (N)

Σ ≈30 MeV and U (N)
Ξ ≈ 28 MeV.

For the φ couplings, we use the quark model re-

lationships,

gφΞ = 2gφΛ =−2
√

2gωN/3. (23)

For the σ∗ mesons, we use the mass of the obtained

f0 (975) meson, but treat its couplings purely phe-

nomenologically such as to satisfy the equation for

the potential depths,

U (Ξ)
Λ ≈U (Ξ)

Ξ ≈ 2U (Λ)
Λ ≈ 40 MeV.

This leads to

gσ∗Λ/gσN = gσ∗Σ/gσN = 0.69, gσ∗Ξ/gσN = 1.25 [15].

Next, the influence of the temperature on the mo-

ment of inertia of a PNS is calculated. In this case,

the contribution of the σ∗, φ mesons has to be con-

sidered. The nucleon coupling constants are listed

in Table 1 as GL85. The temperature is chosen as

T=10 MeV, 15 MeV, 20 MeV and 25 MeV.

Table 1. Parameters for the nucleon interactions.

m mσ mω mρ gσ gω gρ g2

GL85 [14] 939 500 782 770 7.9955 9.1698 9.7163 10.07

GL97 [16] 939 500 782 770 7.9835 8.7 8.5411 20.966

g3 C3 ρ0 B/A K asym m∗/m

GL85 [14] 29.262 0 0.145 15.95 285 36.8 0.77

GL97 [16] −9.835 0 0.153 16.3 240 32.5 0.78

Finally we studied the influence of the coupling

constants of the nucleons on the moment of inertia of

a PNS. In this case, the coupling constants of nucle-

ons GL85 and GL97 were used. The temperature is

T=15 MeV and the contribution of the σ∗, φ mesons

is considered.

4 Theoretical results and analysis

The effect of the σ∗, φ mesons on the field strength

of mesons and the chemical potentials of neutrons and

electrons are shown in Fig. 1. The solid curves show

the results without considering the contribution of the

σ∗, φ mesons, and the dotted ones show the results

including their contribution. The temperature and

the coupling constants of the nucleons are chosen as

T=15 MeV and GL85, respectively.

From Fig. 1 it can be seen that the influence of the

σ∗, φ mesons becomes visible around 0.43 fm−3 and

the fields of the σ0, ω0 and ρ0 mesons are decreasing

if the contribution of the σ∗, φ mesons is taken into

acount. From Fig. 1 we can also see that the chemical

potential of the neutrons grows rapidly as the baryon

density increases. Compared with those without con-

sidering the σ∗, φ mesons, the chemical potentials of

neutrons and electrons obviously decrease. The rea-

son is that the degrees of freedom of the σ∗ and φ

mesons lowers the Fermi momentum of the baryons

and leptons.
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Fig. 1. The field strengths of σ, ω0, ρ03, σ∗ and

φ, and the chemical potential of neutrons and

electrons as functions of the baryon density.

The solid curves show the results without the

contribution of the σ∗, φ mesons. The dotted

ones show the results with their contribution

included. The temperature is 15 MeV and the

coupling constants of the nucleons are GL85.

The effect of the σ∗, φ mesons on the moment of

inertia of a PNS is shown in Fig. 2, from which we can

see that a maximum value Imax occurs. Including the

σ∗, φ mesons, Imax decreases from 2.1565×1045 g·cm2

to 2.1551× 1045 g · cm2, i.e. a reduction of ∆Imax =

0.0014×1045 g ·cm2 or roughly 0.06%. The reason is

that including the contribution of the σ∗, φ mesons,

the equation of state becomes softer and the moment

Fig. 2. The moment of inertia of a PNS as a

function of the central energy density. The

solid curves show the results without the con-

tribution of the σ∗, φ mesons. The dot-

ted ones show the results with their contribu-

tion included. The temperature and the cou-

pling constants of the nucleons are chosen as

T=15 MeV and GL85.

of inertia of the PNS decreases. But the influence is

not very pronounced.

Secondly, the influence of the temperature on the

moment of inertia of a PNS is examined. The results

are shown in Fig. 3 and Fig. 4. Here we choose GL85

and consider the contribution of the σ∗, φ mesons.

The temperatures are chosen as T=10 MeV, 15 MeV,

20 MeV and 25 MeV.

From Fig. 3 we see that the higher the tempera-

ture, the lower the field strengths of σ0, ω0 and ρ0

mesons and the chemical potential of the neutrons

and electrons.

Fig. 3. The field strengths of σ, ω0, ρ03, σ∗, φ

and the chemical potentials of neutrons and

electrons as functions of the baryon density.

The coupling constants of the nucleons are

GL85 and the contribution of the σ∗ and φ

mesons is included.

The effect of the temperature on the moment of

inertia of a PNS is shown in Fig. 4, from which we see

that there is a maximum value Imax for each tempera-

ture. With growing temperature, the maximum value

Imax increases. For the temperatures T=10 MeV,

15 MeV, 20 MeV and 25 MeV, we obtain the corre-

sponding maximum values Imax: 2.0961×1045 g·cm2,

2.1535×1045 g·cm2, 2.2648×1045 g·cm2 and 2.4539×
1045 g ·cm2 and the increments 0.0574×1045 g ·cm2,

0.1113×1045 g·cm2 and 0.1891×1045 g·cm2, or roughly

2.7%, 5.2% and 8.3%. Obviously, a higher temper-

ature corresponds to a larger maximum value Imax.

From Ref. [13] we know that the higher the tempera-

ture, the larger the radius and the mass. So it is easy

to understand why a higher temperature corresponds

to a larger moment of inertia.

Finally, the influence of the coupling constants of

the nucleons on the moment of inertia is shown in
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Fig. 5 and Fig. 6. In this case, the contribution of

the σ∗, φ mesons is included and the temperature is

chosen as T=15 MeV.

Fig. 4. The moment of inertia of a PNS as a

function of the central energy density. The

coupling constants of the nucleons are GL85

and the contribution of the σ∗ and φ mesons

is included.

In Fig. 5 we see that the coupling constants GL85

and GL97 of the nucleons lead to different field

strengths and chemical potentials. For GL97, the

influence of the σ∗, φ mesons appears at a higher

baryon density.

Fig. 5. The field strengths of σ, ω0, ρ03, σ∗

and φ and the chemical potential of the neu-

trons and electrons as functions of the baryon

density. The temperature is T=15 MeV and

the contribution of the σ∗ and φ mesons is

included.

From Fig. 6 we can see that for GL97 the max-

imum value of the moment of inertia Imax is lower

than that for GL85. The individual maximum val-

ues Imax for GL85 and GL97 are 2.1530×1045 g ·cm2

and 1.8025 × 1045 g · cm2, and their difference is

0.3505×1045 g ·cm2, i.e. about 19%. We know that

the compression modulus and the symmetry energy

coefficient of GL85 and GL97, respectively, are

K = 285 MeV, asym = 36.8 MeV

and

K = 240 MeV, asym = 32.5 MeV.

It is evident that the former is larger than the latter.

This shows that the larger the compression modulus

and symmetry energy coefficient, the larger the max-

imum of the moment of inertia.

Fig. 6. The moment of inertia of a PNS as a

function of the central energy density. The

temperature is T=15 MeV and the contribu-

tion of the σ∗ and φ mesons is included.

In conclusion, the effects of the σ∗ and φ mesons,

the temperature and the coupling constants of the

nucleons on the moment of inertia of a proto neutron

star are quite different. The influence of the temper-

ature and coupling constants of the nucleons on the

moment of inertia of a proto neutron star is lager than

that of the σ∗ and φ mesons.

5 Summary

In conclusion, in this paper the influence of the

σ∗ and φ mesons, the temperature and the coupling

constants of the nucleons on the moment of inertia

of a PNS have been investigated within the frame-

work of relativistic mean field theory for the baryon

octet {n,p, Λ, Σ−, Σ0, Σ+, Ξ−, Ξ0} system. It is

found that, compared with the case without consid-

ering the σ∗, φ mesons, the moment of inertia de-

creases. It is also found that the higher the temper-

ature, the larger the incompressibility and symmetry
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energy coefficient, and the larger the moment of in-

ertia of a PNS. The influence of the temperature and

the coupling constants of the nucleons on the moment

of inertia of a PNS is larger than that of the σ∗ and

φ mesons.

In forthcoming work, we shall study other very

important physical properties of PNSs, such as the

angular velocity and the kinetic energy.
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