
CPC(HEP & NP), 2009, 33(Suppl..): 137—139 Chinese Physics C Vol. 33, Suppl.., Mar., 2009

Number of spin I states for bosons *
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Abstract We study number of spin I states for bosons in this paper. We extend Talmi’s recursion formulas

for number of states with given spin I to boson systems, and we prove empirical formulas for five bosons by

using these recursions. We give number of states with given spin I and isospin F for three and four bosons by

using sum rules of six-j and nine-j symbols. We also present formulas of states with given spin I and given

F -spin for three and four single-l bosons.
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1 Introduction

Recently there have been many efforts to obtain

simple formulas of enumerating number of states with

given spin. In Ref. [1], Ginocchio and Haxton ob-

tained a simple formula of spin zero states for four

particles. In Ref. [2] Zamick and Escuderos gave a

much simpler proof for dimension of spin zero states

of the j4 configuration. In Ref. [3], two of present au-

thors, Zhao and Arima, obtained empirical formulas

for given spin I states with particle number n = 3 and

4, and some for n = 5. In Ref. [4], Talmi developed

recursion relations for n, n− 1 and n− 2 fermions,

and proved results of Ref. [3] for three fermions. In

Ref. [5], we found a simple correspondence between

number of given spin states of fermions and that of

bosons, and proved results of Ref. [3] for n = 4 by us-

ing reduction rule of d bosons. In Ref. [6], Zamick and

Escuderos derived an interesting relation between di-

mension for isospin T = 0 and spin I states and that

for isospin T = 2 and spin I states. In Ref. [7], formu-

las of dimension with given spin and isospin for three

and four nucleons are derived by using sum rules of

six-j and nine-j symbols of Refs. [8, 9]. However,

most studies concentrated on fermions, it is therefore

interesting to study boson systems as well. The pur-

pose of this paper is to present formulas for spin-l

bosons which have not been extensively discussed in

previous studies.

This paper is organized as follows. In Sec. II we

extend Talmi’s recursions to boson systems and ap-

ply it to prove empirical results for n = 5 in Ref. [3].

In Sec. III we present number of states with given

spin I and isospin F for three and four bosons, by

using sum rules of six-j and nine-j symbols derived

in Ref. [8].

2 Number of states for five bosons

In this Section, we use notations of Talmi’s

paper[4] for bosons. We denote z-axis projection of to-

tal spin I of n spin-l bosons by M = m1+m2+· · ·+mn,

and the number of states with given M in the ln con-

figuration by N(M,l,n). The number of states with

given value of I in the ln configuration will be denoted

D(I, l,n).

Then for m1 < l, the sum of number of states with

z-axis projection M for n spin-l bosons is given by

N(M,l−1,n)+N(M + l, l−1,n−1)+

N(M +2l, l−1,n−2)+ · · ·+N(M +(n−2)l, l−1,2)+

N(M +(n−1)l, l−1,1) ;
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and for m1 = l, the sum of number of states with

z-axis projection M for n spin-l bosons is given by

N(M,l,n−2)+N(M− l, l−1,n−1)+

N(M −2l, l−1,n−2)+ · · ·+

N(M −(n−2)l, l−1,2)+

N(M −(n−1)l, l−1,1) .

According to the relationship of D(I, l,n) and

N(I, l,n), One has following recursion relations for

bosons. For I 6 l−1,

D(I, l,n) = D(I, l,n−2)+D(I, l−1,n)+

D(I + l, l−1,n−1)+

D(I +2l, l−1,n−2)+ · · ·+

D(I +(n−2)l, l−1,2)+

D(I +(n−1)l, l−1,1)−

D(l−1−I, l−1,n−1)−

D(2l−1−I, l−1,n−2)−·· ·−

D((n−2)l−1−I, l−1,2)−

D((n−1)l−1−I, l−1,1) . (1)

For I = 1 and n = 5, we obtain

D(1, l,5) = D(1, l,3)+D(1, l−1,5)+

D(l+1, l−1,4)+D(2l+1, l−1,3)−

D(l−2, l−1,4)−D(2l−2, l−1,3) . (2)

In Ref. [3], an empirical formula for I = 1 and

n = 5 was given by D(1, l,5) = (Q + 1)(Q + 1 + q),

where






















Q =

[

l

4

]

, q = (l mod 4−1)/2, if l mod 2 = 1,

Q =

[

l−3

4

]

, q = ((l−3) mod 4−1)/2,

if l mod 2 = 0,

and [ ] means to take the largest integer not exceeding

the value inside.

Now we prove the formula of D(1, l,5) by induc-

tion with respect to l, namely, we assume that it holds

for spin l−1 bosons and prove it holds also for spin

l bosons (it was shown to hold for lower spins up to

l = 99 in Ref. [3]). For convenience, we first take cases

with even l = 6k (k is an odd number here; cases with

even k can be shown similarly). Cases of other even

l = 6k+2 and 6k+4 can be solved in the same way. We

also note without details that one can repeat this pro-

cess while proving the formula of D(1, l,5) in Ref. [3]

for odd l, and that the formula of I = 0 and n = 5 for

spin-l bosons can be proved via the same procedure.

Using Eq. (1) of Ref. [3], we obtain

D(1,6k,3) = 0 ,

D(12k+1,6k−1,3) = k, (3)

D(12k−2,6k−1,3) = k.

Using Eq. (5) of Ref. [5], we obtain

D(6k+1,6k−1,4) = 3k2−k+3
[k

2

]2

+4
[k

2

]

+1 ,

D(6k−2,6k−1,4) = 3k2−k+3
[k

2

]2

+7
[k

2

]

+3 .

(4)

Here we used following identities: for odd k,
[6k−1

3

]

= 2k−1,
[k−1

2

]

=
[k

2

]

,
[6k+2

4

]

= 3
[k

2

]

+2,

(6k−1) mod 3 = 2, and (k−1) mod 2 = 0. According

to our assumption,

D(1,6k−1,5) =

([

6k−1

4

]

+1

)([

6k−1

4

]

+1+

((6k−1) mod 4−1)/2) =

(

3

[

k

2

]

+2

)2

. (5)

Here we note that

[

6k−1

4

]

= 3

[

k

2

]

+1, (6k−1) mod

4 = 1.

Substituting Eqs. (3—5) into Eq. (2), we obtain

that

D(1,6k,5) =

(

3

[

k

2

]

+1

)(

3

[

k

2

]

+2

)

. (6)

For odd k, 3

[

k

2

]

=

[

6k−3

4

]

=

[

l−3

4

]

, ((6k−3) mod

4−1)/2 = ((l−3) mod 4−1)/2 = 1, we obtain

D(1,6k,5) =

([

l−3

4

]

+1

)([

l−3

4

]

+1+

((l−3) mod 4−1)/2

)

. (7)

This is indeed identical to D(1, l,5) result of Ref. [3].

We shall not go to cases with l = 6k + 2 (or

l = 6k + 4) and k is odd, cases with l = 6k + 1 (or

l = 6k+3, l = 6k+5), but point out the procedure is

exactly the same as above.

3 Number of states with given spin

and F spin for bosons in a single-

l shell

In this Section we apply the method of Ref. [9], in

which we obtained number of states with given spin

and isospin for nucleons in a single-j orbit, to obtain
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number of states with given spin and F -spin for three

and four spin-l bosons.

We first discuss the case of four spin-l bosons.

Similarly to Eq. (2) of Ref. [9], we obtain that the

trace of HIF matrix is given by summing

〈0|[A(JF2)A(KF ′

2
)](IF )

MMF
[A(JF2)†A(KF ′

2
)†](IF )

MMF
|0〉=

1+(−)I+F δJK +

4(2J +1)(2K +1)(2F2 +1)(2F ′
2 +1)×















l l J

l l K

J K I





























1/2 1/2 F2

1/2 1/2 F ′
2

F2 F ′
2 F















, (8)

over K, F2, and F ′
2. Here F2(F

′
2) and F are F spin for

two and four bosons, respectively. Similar to Eq. (3)

of Ref. [9], one sees

∑

J

∑

α

〈j4αIF |HJ |j
4αIF 〉=

∑

JKF2F ′

2

〈0|[A(JF2)A(KF ′

2
)](IF )

MMF

[A(JF2)†AKF ′

2
†](IF )

MMF
|0〉= 6D(I, l,4,F ) . (9)

D(I, l,n,F ) refer to number of states ln bosons with

given spin I and F spin.

The same as DIT with T = Tmax in Ref. [9],

D(I, l,n,F ) with F = Fmax here must equals DI of

Refs. [3, 5], and we shall not discuss this case in the

present paper.

For convenience we define

SI(l
4,condition X on J and K) =

∑

X















l l J

l l K

J K I















. (10)

Now we discuss the case of n = 4 and F = 1.

Here (F2, F ′
2) can take the following values: (1,0),

(0,1), (1,1). Because of the symmetry of the wave

functions of bosons, corresponding requirements for

(J ,K) are (J = even,K = odd), (J = odd, K = even),

or (J = even, K = even). Thus we obtain

6D(I, l,4,1) =
∑

even J even K

[1−(−)IδJK ]+

2

JKI forms a triangle
∑

even J odd K

1+S(l4,even J odd K)

(11)

for F = 1.

When n = 4 and F = 1, Imax equals 4l. For I > 2l,

let us define I = Imax−2I0−1 for odd I and Imax−2I0−2

for even I . Using (33) of Ref. [8], we obtain

D(I, l,4,1) =

([

I0

2

]

+1

)([

I0

2

]

+1+(I0 mod 2)

)

.

(12)

Now we come to case with n = 4 and I 6 2l−1.

We define I0 = (I−1)/2 for odd I , and obtain

D(I, l,4,1) = (I0 +1)(l+
1

2
)−

(

1+4

[

I0

2

]

+

6

[

I0

2

]2

+(I0 mod 2)

(

6

[

I0

2

]

+3

))

/2 ; (13)

we define I0 = I/2 for even I , and obtain

D(I, l,4,1) = (I0 +1)

(

l+
1

2

)

−(l−I0)−

(

1+4

[

I0

2

]

+6

[

I0

2

]2

+(I0 mod 2)

(

6

[

I0

2

]

+3

))

/2 .

(14)

For the case of F = 0 and n = 4, and the case of

F = 1/2 and n = 3, we can get the similar results via

the same procedure.

4 Summary and discussion

To summarize, in this paper we studied number

of spin-I boson states for ln configurations (denoted

by D(I, l,n)). First, we extended Talmi’s recursion

relations to bosons and proved number of states with

I = 1 and n = 5, which was constructed empirically

in Ref. [3]. The same procedure is readily used to

prove other formulas for bosons. Second, we derived

number of states for three and four spin-l bosons with

total angular momentum I and F spin, by using sum-

rules of six-j and nine-j symbols given in Ref. [9].
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