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B→ f0(980)(π,η(′)) decays in the PQCD approach *
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Abstract Based on the assumption of a two-quark structure of the scalar meson f0(980), we calculate the

branching ratios and CP -violating asymmetries for the four B → f0(980)π and B → f0(980)η
(′) decays by

employing the perturbative QCD (pQCD) factorization approach. The leading order pQCD predictions for

branching ratios are, Br(B−
→ f0(980)π

−)∼ 2.5×10−6 , Br(B̄0
→ f0(980)π

0)∼ 2.6×10−7 , Br(B̄0
→ f0(980)η)∼

2.5×10−7 and Br(B̄0
→ f0(980)η

′)∼ 6.7×10−7 , which are consistent with both the QCD factorization predictions

and the experimental upper limits.
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1 Introduction

Very recently, some B → SP decays have been

studied, for example, by employing the QCD factor-

ization (QCDF) approach or the perturbative QCD

(pQCD) approach[1—3]. In the B factory, the first

scalar meson f0(980) was observed in the decay mode

B → f0(980)K by Belle[4], and later confirmed by

BaBar[5], then many B → SP channels have been

measured[6, 7].

In this paper, we will calculate the branching ra-

tios and CP asymmetries of B− → f0(980)π−, B̄0 →
f0(980)π0 and B̄0 → f0(980)η(′) decays in the pQCD

approach at the leading order. This paper is orga-

nized as follows: In Sec. 2, we give a brief discus-

sion about the physical properties of f0(980), and will

calculate the decay amplitudes for the considered de-

cays. Sec. 3 contains the numerical results and dis-

cussions.

2 Decay amplitudes of B → f0(980)

(π,η(′)) decays

At present we still do not have a clear understand-

ing about the inner structure of the scalar mesons.

There are many interpretations for the scalar mesons,

such as the qqq̄q̄ four-quark state[8] or the qq̄ state[9],

the possibilities of the KK̄ molecular state[10], and

even an admixture with glueball states.

In the four-quark model, the flavor wave func-

tion of f0(980) is symbolically given by[8] f0 = ss̄(uū+

dd̄)/
√

2, which is supported by a lattice calculation.

This scenario can explain some experiment phenom-

ena, such as the mass degeneracy of f0(980) and

a0(980), the large coupling of f0(980) and a0(980) to

KK̄. But we may wonder if the energetic f0(980) pro-

duced in B decays is dominated by the four-quark

configuration as it needs to pick up two energetic

quark-anti quark pairs to form a fast-moving light

four-quark scalar meson[11].

In the naive 2-quark model, f0(980) is purely an ss̄

state and this is supported by the data of D+
s → f0π

+

and φ→ f0γ. However, there also exists some experi-

ment evidence, such as Γ (J/ψ→ f0ω) ≈ 1

2
Γ (J/ψ→

f0φ), f0(980) → ππ is not OZI suppressed relative to

a0(980)→πη, indicating that f0(980) is not purely an

ss̄ state, but a mixture of ss̄ and nn̄≡ (uū+dd̄)/
√

2:

|f0(980)〉= |ss̄〉cosθ+ |nn̄〉sinθ , (1)

where θ is the mixing angle. According to Ref. [12],

θ lies in the ranges of 25◦ < θ < 40◦ or 140◦ < θ <
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165◦. Because of our poor knowledge about the non-

perturbative dynamics of QCD, we still can not dis-

tinguish between the four-quark and two-quark model

assignment at present. Some authors, on the other

hand, have shown that the scalar mesons with masses

above 1 GeV can be identified as conventional qq̄

states with a high probability[13, 14]. This conclusion

was obtained by calculating the masses and the decay

constants of these scalar mesons composed of quark-

antiquark pairs based on the QCD sum rule. We here

work in the two-quark model and identify f0(980) as

the mixture of ss̄ and nn̄, in order to give quantitative

predictions.

In the two-quark model, the decay constants for

scalar meson f0(980) are defined by:

〈f0(p)|q̄2γµq1|0〉= 0, 〈f0(p)|q̄2q1|0〉= mSf̄S, (2)

and

〈fn
0 |d̄d|0〉= 〈fn

0 |ūu|0〉=
1√
2
mf0 f̃

n
f0

, 〈f s
0 |̄ss|0〉= mf0 f̃

s
f0
,

(3)

where fn
0 and f s

0 represent the quark flavor states of

f0(980). Using the QCD sum rules method, one can

find that the scale-dependent scalar decay constants

fn
f0

and f s
f0

are very close[1, 11]. So one usually assumes

f̃n
f0

= f̃ s
f0

and denotes them as f̄f0 in the following.

The twist-2 and twist-3 light-cone distribution

amplitudes (LCDAs) for different components of

scalar meson f0(980) are defined by:

〈f0(p)|q̄(z)lq(0)j|0〉=
1√
2Nc

∫1

0

dxeixp·z ×
{

p/Φf0(x)+mf0Φ
S
f0

(x)+mf0 (n/+n/−−1)ΦT
f0

(x)
}

jl
.

(4)

Here we assume that fn
0 (p) and f s

0(p) have the same

form and are denoted as f0(p), and n+ = (1,0,0T) and

n− = (0,1,0T) are the light-like vectors.

The twist-2 LCDA Φf(x,µ) can be expanded as

the Gegenbauer polynomials:

Φf(x,µ) =
1

2
√

2Nc

f̄f(µ)6x(1−x)×

∞
∑

m=1

Bm(µ)C3/2
m (2x−1), (5)

where the values for Gegenbauer moments are taken

at scale µ = 1 GeV: B1 = −0.78± 0.08, B2 = 0 and

B3 = 0.02±0.07.

As for the twist-3 distribution amplitudes Φs
f and

ΦT
f , we adopt the asymptotic form:

ΦS
f =

1

2
√

2Nc

f̄f , ΦT
f =

1

2
√

2Nc

f̄f(1−2x). (6)

The B meson is treated as a heavy-light system.

We here use the same B meson wave function as in

Refs. [15, 16]. For the η-η′ system, we use the quark-

flavor basis with ηq = (uū + dd̄)/
√

2 and ηs = ss̄,

employ the same wave function, the identical distri-

bution amplitudes φA,P,T
ηq,s

, and use the same values

for other relevant input parameters, such as fq =

(1.07±0.02)fπ, fs = (1.34±0.06)fπ, φ = 39.3◦±1.0◦,

etc., as given in Ref. [17]. From these currently known

studies[15, 16, 18] we believe that there is not much

room left for the contribution due to the gluonic com-

ponent of η(′), and therefore neglect the possible glu-

onic component in both the η and η′ mesons.

The pQCD factorization approach has been used

to study the B→ f0(980)K decays[2, 3]. Following the

same procedure of Ref. [3], we here would like to study

B→ f0(980)π and f0(980)η(′) decays by employing the

pQCD approach at the leading order.

Since the b quark is rather heavy we consider the

B meson at rest for simplicity. By using the light-

cone coordinates the B meson and the two final state

meson’s momenta can be written as

PB =
MB√

2
(1,1,0T), P2 =

MB√
2

(1,0,0T),

P3 =
MB√

2
(0,1,0T), (7)

where the meson masses have been neglected.

Putting the anti-quark momenta in B, P and S

mesons as k1, k2, and k3, respectively, we can choose

k1 = (x1P
+
1 ,0,k1T),

k2 = (x2P
+
2 ,0,k2T), (8)

k3 = (0,x3P
−

3 ,k3T).

In the pQCD approach, the decay amplitude

A(B→Pf0) can be written conceptually as

A(B→Pf0) ∼
∫
d4k1d

4k2d
4k3 Tr[C(t)ΦB(k1)ΦP(k2)×

Φf0(k3)H(k1,k2,k3, t)],∼∫
dx1dx2dx3b1db1b2db2b3db3×

Tr[C(t)ΦB(x1, b1)ΦP (x2, b2)×

Φf0(x3, b3)H(xi, bi, t)St(xi)e−S(t)], (9)

where the term “Tr” denotes the trace over Dirac

and color indices. C(t) is the Wilson coefficient. The

function H(xi, bi, t) is the hard part and can be calcu-

lated perturbatively, while bi is the conjugate space

coordinate of kiT, and t is the largest energy scale in

the hard function. The function ΦM is the wave func-

tion which describes hadronization of the quark and

anti-quark to the meson M. The threshold function
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St(xi) smears the end-point singularities on xi. The

last term, e−S(t), is the Sudakov form factor which

suppresses the soft dynamics effectively.

For our considered decays, the relevant weak ef-

fective Hamiltonian Heff can be written as

Heff =
GF√

2

∑

q=u,c

VqbV
∗

qd

{

[C1(µ)Oq
1(µ)+C2(µ)Oq

2(µ)]+

10
∑

i=3

Ci(µ)Oi(µ)
}

, (10)

where the Fermi constant GF = 1.16639×10−5 GeV−2,

Vij is the Cabbibo-Kobayashi-Maskawa (CKM) ma-

trix elements, Ci(µ) are Wilson coefficients at the

renormalization scale µ and Oi are the four-fermion

operators for the case of b→ d transition.

In the pQCD approach, the typical Feynman di-

agrams contributing to the B̄0 → f0(980)π0, B− →
f0(980)π− and B̄0 → f0(980)η(′) decays at the leading

order are illustrated in Fig. 1. By analytical calcula-

tions of the relevant Feynman diagrams, one can find

the total decay amplitudes for the considered decays:

M(f0π
0) =

ξu√
2

[

(−Meπ +Maπ +Mef +Maf)C2 +(Faπ +Fef +Faf)a2

]

F1(θ)+
ξt√
2

{[

FP2
eπ

(

a6−
1

2
a8

)

+

Meπ

(

C3 +2C4−
1

2
C9 +

1

2
C10

)

+MP2
eπ

(

2C6 +
1

2
C8

)

+(MP1
eπ

+MP1
aπ

+MP1
ef +MP1

af )

(

C5−
1

2
C7

)

+

(Maπ +Mef +Maf)

(

C3−
3

2
a10

)

−(MP2
aπ

+MP2
ef +MP2

af )
3

2
C8−

(Faπ +Fef +Faf)

(

−a4−
3

2
a7 +

3

2
a9 +

1

2
a10

)

+(F P2
aπ

+F P2
ef +F P2

af )

(

a6−
1

2
a8

)]

F1(θ)+

[

Meπ

(

C4−
1

2
C10

)

+MP2
eπ

(

C6−
1

2
C8

)]

F2(θ)

}

, (11)

M(f0π
−) = ξu

[

MeπC2 +(Maπ +Mef +Maf)C1 +(Faπ +Fef +Faf)a1

]

F1(θ)−ξt

{[

FP2
eπ

(

a6−
1

2
a8

)

+

Meπ

(

C3 +2C4−
1

2
C9 +

1

2
C10

)

+MP1
eπ

(

C5−
1

2
C7

)

+(MP1
aπ

+MP1
ef +MP1

af )(C5 +C7)−

(Maπ +Mef +Maf)(C3 +C9)+(Faπ +Fef +Faf)(a4 +a10)+(F P2
aπ

+F P2
ef +F P2

af )

(

a6−
1

2
a8

)]

F1(θ)+

[

Meπ

(

C4−
1

2
C10

)

+MP2
eπ

(

C6−
1

2
C8

)]

F2(θ)

}

, (12)

M(f0 η) = ξu

{

[(Meη +Maη +Mef +Maf)C2 +(Faη +Faf)a2]+Fefa2fq

}

F1(θ)F1(φ)−ξt

{[

FP2
eη

(

a6−
1

2
a8

)

+

(Meη +Maη +Mef +Maf)

(

C3 +2C4−
1

2
C9 +

1

2
C10

)

+(MP1
eη

+MP1
aη

+MP1
ef +MP1

af )

(

C5−
1

2
C7

)

+

(MP2
eη

+MP2
aη

+MP2
ef +MP2

af )

(

2C6 +
1

2
C8

)

+(Faη +Feffq +Faf)

(

2a3 +a4−2a5−
1

2
a7 +

1

2
a9−

1

2
a10

)

+

(FP2
aη

+F P2
ef +F P2

af )

(

a6−
1

2
a8

)]

F1(θ)F1(φ)+

[

(Faη +Feffs +Faf)

(

a3−a5 +
1

2
a7−

1

2
a9

)

+

(Meη +Maη +Mef +Maf)

(

C4−
1

2
C10

)

+(MP2
eη

MP2
aη

+MP2
ef +MP2

af )

(

C6−
1

2
C8

)]

F2(θ)F2(φ)}, (13)

where ξu = V ∗

ubVud, ξt = V ∗

tbVtd, F1(θ) = sinθ/
√

2 and

F2(θ) = cosθ are the mixing factors for the f0(980) me-

son, while F1(φ) = cosφ/
√

2 and F2(φ) = −sinφ are

the mixing factors for the η-η′ system. For the B→
f0(980)η′ decay, the corresponding decay amplitude

M(B̄0 → f0 η
′) can be obtained from M(B̄0 → f0 η) in

Eq. (13) by replacements of F1(φ) → F ′

1 = sinφ/
√

2

and F2(φ)→F ′

2 = cosφ.

The Wilson coefficients ai in Eqs. (11)—(13) are

the combinations of the ordinary Wilson coefficients
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Ci(µ),

a1 = C2 +
C1

3
, a2 = C1 +

C2

3
,

ai = Ci +
Ci+1

3
, for i = 3,5,7,9, (14)

ai = Ci +
Ci−1

3
, for i = 4,6,8,10.

The non-zero individual decay amplitudes in

Eqs. (11)—(13), such as F P2
eπ

, Meπ, MP1
eπ

, MP2
eπ

, · · · ,
are obtained by evaluating analytically the different

Feynman diagrams in Fig. 1. For B̄0 → f0(980)π0 and

B− → f0(980)π− decays, we have

Fig. 1. Typical Feynman diagrams contributing to the B→ f0(980)π(η
(′)) decays at the leading order.

FP2
eπ

= −16πCFm4
Brf f̄f

∫1

0

dx1dx3

∫
∞

0

b1db1 b3db3 ΦB(x1, b1)

{

[ΦA
π
(x3)+rπx3(Φ

P
π
(x3)−ΦT

π
(x3))+

2rπΦP
π
(x3)]Eei(t)he(x1,x3, b1, b3)+2rπΦP

π
(x3)Eei(t

′)he(x3,x1, b3, b1)

}

, (15)

Meπ = 32πCFm4
B/

√

2NC

∫1

0

dx1dx2dx3

∫
∞

0

b1db1 b2db2 ΦB(x1, b1)Φf(x2)×

{

[(1−x2)Φπ(x3)−rπx3(Φ
P
π
(x3)−ΦT

π
(x3))]E

′

ei(t)hn(x1, x̄2,x3, b1, b2)−

[(x2 +x3)Φπ(x3)−rπx3(Φ
P
π
(x3)+ΦT

π
(x3))]E

′

ei(t
′)hn(xi, b1, b2)

}

, (16)

MP1
eπ

=
32√
6
πCFm4

Brf

∫1

0

dx1dx2dx3

∫
∞

0

b1db1 b2db2 ΦB(x1, b1)

{

E′

ei(t)hn(x1, x̄2,x3, b1, b2)×

[

(x2−1)ΦA
π
(x3)(Φ

S
f (x2)+ΦT

f (x2))+rπ(x2−1)(ΦP
π
(x3)−ΦT

π
(x3))(Φ

S
f (x2)+ΦT

f (x2))−

rπx3(Φ
P
π
(x3)+ΦT

π
(x3))(Φ

S
f (x2)−ΦT

f (x2))
]

+E′

ei(t
′)hn(xi, b1, b2)×

[

x2Φ
A
π
(x3)(Φ

S
f (x2)−ΦT

f (x2))+rπx2(Φ
P
π
(x3)−ΦT

π
(x3))(Φ

S
f (x2)−ΦT

f (x2))+

rπx3(Φ
P
π
(x3)+ΦT

π
(x3))(Φ

S
f (x2)+ΦT

f (x2))
]

}

, (17)

MP2
eπ

= − 32√
6
πCFm4

B

∫1

0

dx1dx2dx3

∫
∞

0

b1db1 b2db2 ΦB(x1, b1)Φf(x2)

{

[

(x2−x3−1)ΦA
π
(x3)+

rπx3(Φ
P
π
(x3)+ΦT

π
(x3))

]

E′

ei(t)hn(x1, x̄2,x3, b1, b2)+

[

x2Φ
A
π
(x3)−rKx3(Φ

P
K(x3)−ΦT

K(x3))
]

E′

ei(t
′)hn(xi, b1, b2)

}

, (18)
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Maπ =
32√
6
πCFm4

B

∫1

0

dx1dx2dx3

∫
∞

0

b1db1 b2db2 ΦB(x1, b1)
{

[

−x2Φ
A
π
(x3)Φf(x2)+

rπrfΦ
T
f (x2)

(

(x2 +x3−1)ΦP
π
(x3)+(−x2 +x3 +1)ΦT

π
(x3)

)

+rπrfΦ
S
f (x2)

(

(x2−x3 +3)ΦP
π
(x3)−

(x2 +x3−1)ΦT
π
(x3)

)]

E′

ai(t)hna(x1,x2,x3, b1, b2)−E′

ai(t
′)h′

na(x1,x2,x3, b1, b2)×
[

(x3−1)ΦA
π
(x3)Φf(x2)+rπrfΦ

S
f (x2)

(

(x2−x3 +1)ΦP
π
(x3)−(x2 +x3−1)ΦT

π
(x3)

)

+

rπrfΦ
T
f (x2)

(

(x2 +x3−1)ΦP
π
(x3)−(1+x2−x3)Φ

T
π
(x2)

)]

}

, (19)

MP1
aπ

=
32√
6
πCFm4

B

∫1

0

dx1dx2dx3

∫
∞

0

b1db1 b2db2 ΦB(x1, b1)
{

[

rπ(1+x3)Φf(x2)(Φ
T
π
(x3)−ΦP

π
(x3))+

rf(x2−2)Φπ(x3)(Φ
S
f (x2)+ΦT

f (x2))
]

E′

ai(t)hna(x1,x2,x3, b1, b2)−
[

rπ(x3−1)Φf(x2)(Φ
T
π
(x3)−

ΦP
π
(x3))+rfx2Φπ(x3)(Φ

S
f (x2)+ΦT

f (x2))
]

E′

ai(t
′)h′

na(x1,x2,x3, b1, b2)
}

, (20)

MP2
aπ

= − 32√
6
πCFm4

B

∫1

0

dx1dx2dx3

∫
∞

0

b1db1 b2db2 ΦB(x1, b1)

{

[

(x3−1)Φf(x2)Φ
A
π
(x3)+4rπrfΦ

S
f (x2)Φ

P
π
(x3)+

rπrf((x2−x3−1)(ΦP
π
(x3)Φ

S
f (x2)−ΦT

π
(x3)Φ

T
f (x2))−(x2 +x3−1)(ΦP

π
(x3)Φ

T
f (x2)−ΦT

π
(x3)Φ

S
f (x2))

]

×

E′

ai(t)hna(x1,x2,x3, b1, b2)+[x2Φf(x2)Φ
A
π
(x3)−x2rπrf(Φ

S
f (x2)+ΦT

f (x2))(Φ
P
π
(x3)−ΦT

π
(x3))−

rπrf(1−x3)(Φ
S
f (x2)−ΦT

f (x2))(Φ
P
π
(x3)+ΦT

π
(x3))]E

′

ai(t
′)h′

na(x1,x2,x3, b1, b2)

}

, (21)

Faπ = −F P1
aπ

= 8πCFm4
BfB

∫1

0

dx2dx3

∫
∞

0

b2db2 b3db3

{

[

(x3−1)ΦA
π
(x3)Φf(x2)−2rπrf(x3−2)ΦP

π
(x3)Φ

S
f (x2)+

2rπrfx3Φ
T
π
(x3)Φ

S
f (x2)

]

Eai(t)ha(x2,1−x3, b2, b3)+[x2Φ
A
π
(x3)Φf(x2)−2rπrfΦ

P
π
(x3)((x2 +1)ΦS

f (x2)+

(x2−1)ΦT
f )]Eai(t

′)ha(1−x3,x2, b3, b2)

}

, (22)

FP2
aπ

= −16πCFm4
BfB

∫1

0

dx2dx3

∫
∞

0

b2db2 b3db3

{

[rπ(x3−1)Φf(x2)(Φ
P
π
(x3)+ΦT

π
(x3))+2rfΦπ(x3)Φ

S
f (x2)]×

Eai(t)ha(x2, x̄3, b2, b3)− [2rπΦP
π
(x3)Φf(x2)+rfx2Φ

A
K(x3)(Φ

T
f (x2)−

ΦS
f (x2))]Eai(t

′)ha(x̄3,x2, b3, b2)

}

, (23)

Fef = F P1
ef = 8πCFm4

Bfπ

∫1

0

dx1dx2

∫
∞

0

b1db1 b2db2 ΦB(x1, b1)

{

[(1+x2)Φf(x2)−rf (1−2x2)(Φ
S
f (x2)+ΦT

f (x2))]×

Eei(t)he(x1,x2, b1, b2)−2rfΦ
S
f (x2)Eei(t

′)he(x2,x1, b2, b1)

}

, (24)

FP2
ef = 16πCFm4

Bfπrπ

∫1

0

dx1dx2

∫
∞

0

b1db1 b2db2 ΦB(x1, b1)

{

− [Φf(x2)+rf(x2Φ
T
f (x2)−(x2 +2)ΦS

f (x2))]×

Eei(t)he(x1,x2, b1, b2)+2rfΦ
S
f (x2)Eei(t

′)he(x2,x1, b2, b1)

}

, (25)
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Mef =
32√
6
πCFm4

B

∫1

0

dx1dx2dx3

∫
∞

0

b1db1 b2db2 ΦB(x1, b1)Φ
A
π
(x3)

{

− [(x3−1)Φf(x2)−rfx2(Φ
S
f (x2)−ΦT

f (x2))]×

E′

ei(t)hn(x1,1−x3,x2, b1, b3)+[−(x2 +x3)Φf(x2)−rfx2(Φ
S
f (x2)+ΦT

f (x2))]E
′

ei(t
′)hn(x1,x3,x2, b1, b3)

}

,

(26)

MP1
ef =

32√
6
πCFm4

Brπ

∫1

0

dx1dx2dx3

∫
∞

0

b1db1 b3db3 ΦB(x1, b1)

{

E′

ei(t)hn(x1,1−x3,x2, b1, b3)×

[(x3−1)Φf(x2)(Φ
P
π
(x3)+ΦT

π
(x3))+rfΦ

T
f (x2)((x2 +x3−1)ΦP

π
(x3)+(−x2 +x3−1)ΦT

π
(x3))+

rfΦ
S
f (x2)((x2 −x3 +1)ΦP

π
(x3)−(x2 +x3−1)ΦT

π
(x3))]+[−x3Φf(x2)(Φ

T
π
(x3)−ΦP

π
(x3))−rfx3(Φ

S
f (x2)−

ΦT
f (x2))(Φ

P
π
(x3)−ΦT

π
(x3))−rfx2(Φ

S
f (x2)+ΦT

f (x2))(Φ
P
π
(x3)+ΦT

π
(x3))]E

′

ei(t
′)hn(x1,x3,x2, b1, b3)

}

, (27)

MP2
ef = − 32√

6
πCFm4

B

∫1

0

dx1dx2dx3

∫
∞

0

b1db1 b2db2 ΦB(x1, b1)Φ
A
π
(x3)

{

[(x3−x2−1)Φf(x2)−

rfx2(Φ
S
f (x2)+ΦT

f (x2))]E
′

ei(t)hn(x1,1−x2,x3, b1, b2)+[x2Φf(x2)+rfx2(Φ
S
f (x2)−ΦT

f (x2))]×

E′

ei(t
′)hn(x1,x3,x2, b1, b2)

}

, (28)

Ma = − 32√
6
πCFm4

B

∫1

0

dx1dx2dx3

∫
∞

0

b1db1 b3db3 ΦB(x1, b1)

{

[x3Φ
A
π
(x3)Φf(x2)+rπrfΦ

T
f (x2)×

((x2−x3 +1)ΦT
π
(x3)−(x2 +x3−1)ΦP

π
(x3))+rπrfΦ

S
f (x2)((−x2 +x3 +3)ΦP

π
(x3)+(x2 +x3−1)ΦT

π
(x3))]×

E′

ai(t)hna(x1,x3,x2, b1, b3)+E′

ai(t
′)h′

na(x1,x3,x2, b1, b3)[(x2−1)ΦA
π
(x3)Φf(x2)+

rπrfΦ
T
f (x2)((−x2 +x3 +1)ΦT

π
(x3)−(x2 +x3−1)ΦP

π
(x3))+

rπrfΦ
S
f (x2)((x2−x3−1)ΦP

π
(x3)+(x2 +x3−1)ΦT

π
(x3))]

}

, (29)

MP1
af =

32√
6
πCFm4

B

∫1

0

dx1dx2dx3

∫
∞

0

b1db1 b3db3 ΦB(x1, b1)

{

[rf(x2 +1)ΦA
π
(x3)(Φ

S
f (x2)−ΦT

f (x2))+

rπ(x3−2)Φf(x2)(Φ
P
π
(x3)+ΦT

π
(x3))]E

′

ai(t)hna(x1,x3,x2, b1, b3)− [rf(x2−1)ΦA
π
(x3)(Φ

S
f (x3)−

ΦT
f (x3))+rπx3Φf(x2)(Φ

P
π
(x3)+ΦT

π
(x3))]E

′

ai(t
′)h′

na(x1,x3,x2, b1, b3)

}

. (30)

Faf = F P1
af = 8πCFm4

BfB

∫1

0

dx2dx3

∫
∞

0

b2db2 b3db3

{

[(x2−1)ΦA
π
(x3)Φf(x2)+2rπrf(x2−2)ΦP

π
(x3)Φ

S
f (x2)−

2rπrfx2Φ
P
π
(x3)Φ

T
f (x2)]Eai(t)ha(x3,1−x2, b3, b2)+[x3Φ

A
π
(x3)Φf(x2)+2rπrfΦ

S
f (x2)((x3 +1)ΦP

π
(x3)+

(x3−1)ΦT
π
(x3))]Eai(t

′)ha(1−x2,x3, b2, b3)}, (31)

FP2
af = 16πCFm4

BfB

∫1

0

dx2dx3

∫
∞

0

b2db2 b3db3

{

[rf(x2−1)ΦA
π
(x3)(Φ

S
f (x2)+ΦT

f (x2))−2rπΦP
π
(x3)Φf(x2)]×

Eai(t)ha(x3, x̄2, b2, b3)− [2rfΦ
A
K(x3)Φ

S
f (x2)+rπx3Φf(x2)(Φ

P
π
(x3)−ΦT

π
(x3))]×

Eai(t
′)ha(1−x2,x3, b2, b3)

}

, (32)
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where rf = mf/mB and rπ = mπ

0/mB. The explicit ex-

pressions of hard functions E(′)
ei,ai(t) and he,a(xi, bj), · · ·

can be found for example in Ref. [16]. For B̄0 →
f0(980)η(′) decays, one can find the corresponding de-

cay amplitudes from those given in Eqs. (15)—(32)

by simple replacements.

3 Numerical results and discussions

For numerical calculation, we will use the follow-

ing input parameters:

m(f0(980)) = 0.98 GeV, mπ = 0.14 GeV,

mη = 547.5 MeV, mη′ = 957.8 MeV,

MB = 5.28 GeV, mπ

0 = 1.4 GeV,

MW = 80.42 GeV, f̄f0 = (0.37±0.02) GeV

fB = 0.19 GeV, fπ = 0.13 GeV,

τB± = 1.671 ps, τB0 = 1.536 ps,

Vtb = 0.9997, |Vtd|= 0.0082,

Vud = 0.974, |Vub|= 0.00367, (33)

with the CKM angle β = 21.6◦ and γ = 60◦.

It is straightforward to calculate the branching ra-

tios of the considered decays. If f0(980) is purely com-

posed of n̄n, the pQCD predictions for the branching

ratios are

B(B̄0 → f0(980)π0) = (0.89+0.10+0.16+0.05
−0.08−0.13−0.03)×10−6,

B(B− → f0(980)π−) = (16.4+1.7+1.1+0.8
−1.6−1.2−0.9)×10−6,

B(B̄0 → f0(980)η) = (2.0+0.2+0.4+0.1
−0.2−0.3−0.1)×10−6,

B(B̄0 → f0(980)η′) = (1.3+0.2+0.3+0.0
−0.1−0.2−0.1)×10−6, (34)

where the theoretical uncertainties are from the de-

cay constant of f̄f0 = 0.37±0.02 GeV, the Gegenbauer

moments B1 = −0.78±0.08 and B3 = 0.02±0.07. If

f0(980) is purely composed of s̄s, the branching ratios

will be

B(B̄0 → f0(980)π0) = (4.66+0.52+1.01+0.10
−0.49−0.90−0.06)×10−8,

B(B− → f0(980)π−) = (8.56+1.80+2.77+0.96
−0.21−1.04−0.00)×10−8,

B(B̄0 → f0(980)η) = (0.24+0.02+0.02+0.05
−0.03−0.03−0.03)×10−6,

B(B̄0 → f0(980)η′) = (0.38+0.05+0.04+0.04
−0.04−0.03−0.03)×10−6,

(35)

where the theoretical uncertainties are from the same

hadron parameters as above.

Table 1. The pQCD predictions (in unit of 10−6) for the branching ratios of B→ f0(980)π, f0(980)η
(′) decays.

channel θ1 = 32.5◦±7.5◦ θ2 =152.5◦±12.5◦ data[19] QCDF[11]

Br(B− → f0(980)π−) 2.5±1.0 1.6+1.8
−0.6 < 3.0 0.9

Br(B̄0 → f0(980)π0) 0.26±0.06 0.04+0.06
−0.02 0.03

Br(B̄0 → f0(980)η) 0.25±0.07 0.59±0.20 < 0.4

Br(B̄0 → f0(980)η′) 0.67±0.06 0.26±0.03 < 1.5

Table 2. The pQCD predictions (in units of 10−2) for the CP -violating asymmetries of B → f0(980)π,

f0(980)η
(′) decays.

Adir
CP Amix

CP
channel

θ1 = [25◦,40◦] θ2 =[140◦,165◦] θ1 = [25◦,40◦] θ2 = [140◦,165◦]

B− → f0(980)π− [50,64] [−39,7.0]

B̄0
→ f0(980)π0 [−7.5,−2.3] [−99,−56] ∼−69 [−25,7.1]

B̄0
→ f0(980)η [−43,−5.0] [−55,−30] [−72,12] [−63,−23]

B̄0
→ f0(980)η′ [−42,−28] [−29,8.5] [−57,−38] [−75,−38]

When f0(980) is treated as a mixing state of n̄n

and s̄s, the leading order pQCD predictions are listed

in Table 1, where the two ranges of the mixing angle θ,

θ1 = [25◦,40◦] and θ2 = [140◦,165◦], are taken into ac-

count. The QCDF predictions as given in Ref. [11] are

also listed in Table 1 as a comparison. The remain-

ing theoretical uncertainties induced by the errors of

other input parameters and the wave functions are

generally 30%—50%, and not shown here explicitly.

In Fig. 2, we show the θ-dependence of the central

values of the pQCD predictions for the branching ra-

tios of the four considered decays. One should note

that the large theoretical uncertainties of the pQCD

predictions are not shown here explicitly. The two

vertical bands show the two ranges of the mixing an-

gle θ preferred by the known experiments[12], while
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Fig. 2. The θ-dependence of the central val-

ues of the pQCD predictions for the branch-

ing ratios of (a) B→ f0(980)π decays, and (b)

B̄0
→ f0η

(′) decays.

the three horizontal solid or dots lines show the cor-

responding experimental upper limits[19] as listed in

Table 1. From the numerical results as shown in Ta-

ble 1 and Fig. 2, one can not distinguish two regions

of the mixing angle θ from currently available data, if

the still large theoretical uncertainties are taken into

account.

Now we turn to the evaluations of the CP -

violating asymmetries of B→ f0(980)π, f0(980)η(′) de-

cays in the pQCD approach. The pQCD predictions

for the direct CP -violating asymmetries of the four

considered decays are listed in Table 2. Although the

CP -violating asymmetries are large in size, it is still

difficult to measure them, since their branching ratios

are generally very small, say around 10−6—10−8.

In this paper, based on the assumption of a two-

quark structure of the scalar meson f0(980), we cal-

culated the branching ratios and CP -violating asym-

metries of the four B→ f0(980)π and B̄0 → f0(980)η(′)

decays by employing the leading order pQCD factor-

ization approach. The pQCD predictions are gener-

ally consistent with both the QCDF predictions and

the currently available experimental upper limits.
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