
CPC(HEP & NP), 2009, 33(6): 463—468 Chinese Physics C Vol. 33, No. 6, Jun., 2009

Next-to-leading-order calculation in kT factorization *

LI Hsiang-Nan(o��)1)

(Institute of Physics, Academia Sinica, Taipei 115, China)

Abstract We explain the framework for calculating next-to-leading-order (NLO) corrections to exclusive

processes in the kT factorization theorem, taking πγ
∗
→γ as an example. Partons off-shell by k

2
T are considered

in both the quark diagrams from full QCD and the effective diagrams for the pion wave function. The gauge

dependences in the above two sets of diagrams cancel, when deriving the kT-dependent hard kernel as their

difference. The light-cone singularities in the kT-dependent pion wave function are regularized by rotating the

Wilson lines away from the light cone. Both the large double logarithms ln2
kT and ln2

x, x being a parton

momentum fraction, arise from the loop correction to the virtual photon vertex, the former being absorbed

into the pion wave function, and the latter into a jet function.

Key words kT factorization, radiative correction, meson wave function

PACS 12.38.Bx, 12.38.Cy, 12.39.St

1 Introduction

The kT factorization theorem[1—6], as a funda-

mental tool of perturbative QCD (PQCD), has been

widely applied to inclusive and exclusive processes. It

has been pointed out that the kT factorization theo-

rem is appropriate for processes dominated by contri-

butions from small parton momentum fractions x[7].

Its application to exclusive B meson decays has led to

the PQCD approach[8—12], which is free of the singu-

larities from the end-point regions of x that usually

appear in collinear factorization theorem[13—18]. The

current application of the kT factorization theorem to

exclusive processes is mainly made at leading order

(LO) in the strong coupling constant αs
[19]: the im-

portant logarithms in the hadron wave functions have

been organized to all orders, but hard kernels are still

evaluated at tree level. To demonstrate that the kT

factorization theorem is a systematical tool, higher-

order calculations of hard kernels are demanded.

In this talk we shall elucidate the framework

for higher-order calculations, deriving the next-to-

leading-order (NLO) hard kernel for the scattering

process πγ
∗ →γ as an example. The point is that par-

tons in both the quark diagrams from full QCD and

the effective diagrams for the pion wave function are

off mass shell by k2
T. The difference between the two

sets of diagrams defines the hard kernel in the kT fac-

torization theorem, a procedure similar to the deriva-

tion of Wilson coefficients in an effective field theory.

This is the way to obtain a kT-dependent hard kernel

without breaking gauge invariance, since the gauge

dependences cancel between the above two sets of di-

agrams. A physical quantity is expressed as a con-

volution of a hard kernel with model wave functions,

which are determined by methods beyond a pertur-

bation theory, such as lattice QCD and QCD sum

rules, or extracted from experimental data. A gauge-

invariant hard kernel then leads to gauge-invariant

predictions from the kT factorization theorem.

We stress that the light-cone singularities [20] in

the naive definition for kT-dependent hadron wave

functions must be regularized. These singularities,

not present in the quark diagrams, are not physical. If

not regularized, higher-order hard kernels, computed

as the difference of the quark diagrams and the effec-

tive diagrams, will be divergent. We shall adopt the

modified definition, in which the Wilson lines involved

in the nonlocal matrix elements for hadron wave func-

tions are rotated away from the light cone. After

the subtraction of the singularities, a hard kernel
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depends unavoidably on the regularization schemes,

which can, nevertheless, be regarded as part of the

factorization-scheme dependence. This dependence,

usually minimized by adhering to a fixed prescription

for deriving hard kernels, does not cause a trouble.

The removal of the light-cone singularities from wave

functions and the gauge invariance of hard kernels

are the two essential ingredients for making physical

predictions from the kT factorization theorem.

2 O(αs)kT factorization

We first set up the framework for computing the

hard kernel for the pion transition form factor in the

kT factorization theorem. The momentum P1 of the

pion and the momentum P2 of the out-going on-shell

photon are chosen as

P1 = (P +
1 ,0,0T) , P2 = (0,P−

2 ,0T) . (1)

The LO quark diagram, in which the anti-quark

q̄ carries the on-shell fractional momentum k =

(xP+
1 ,0,0T) and the internal quark carries P2 − k,

leads to the amplitude

G(0)(x,Q2) =
tr[6 ε(6P2− 6k)γµ 6P1γ5]

(P2−k)2
=

−
tr[6ε 6P2γµ 6P1γ5]

xQ2
, (2)

with the leading spin structure 6P1γ5 of the pion and

Q2 ≡ 2P1
•P2. We have suppressed other constant

factors, such as the electric charge, the color number,

and the pion decay constant, which are irrelevant in

the following discussion.

The trivial factorization of Eq. (2) reads [7],

G(0)(x,Q2) =

∫
dx′d2k′

TΦ(0)(x;x′,k′
T)×

H(0)(x′,Q2,k′
T) ,

Φ(0)(x;x′,k′
T) = δ(x−x′)δ(k′

T) , (3)

H(0)(x,Q2,kT) = −
tr[6ε 6P2γµ 6P1γ

5]

xQ2 +k2
T

.

Once we concentrate on the small x region, the

treatment of the parton kT differs from that in the

collinear factorization theorem: k2
T in the denomina-

tor of Eq. (3) is not small compared to xQ2, and the

internal quark propagator should not be expanded

into a power series in k2
T

[21, 22]. kT in the numerator,

being power-suppressed by 1/Q, is combined with the

three-parton meson wave functions to form a gauge-

invariant set of higher-twist contributions as in the

collinear factorization theorem. This special treat-

ment of the parton kT characterizes the distinction

between kT and collinear factorizations[19]. Because

of the zeroth-order wave function Φ(0) ∝ δ(k′
T), the

LO hard kernel H (0) does actually not depend on the

parton transverse momentum.

The O(αs) quark diagrams corresponding to

Eq. (2) from full QCD are displayed in Fig. 1, in

which the upper line represents the q quark. The

factorization of the collinear divergences from these

radiative corrections is Ref. [7]:

G(1)(x,Q2) =

∫
dx′d2k′

T

[

Φ(1)(x;x′,k′
T)×

H(0)(x′,Q2,k′
T)+

Φ(0)(x;x′,k′
T)H(1)(x′,Q2,k′

T)
]

, (4)

where the O(αs) effective diagrams Φ(1) are defined

by the leading-twist quark-level wave function[7, 23]

Φ(x;x′,k′
T) =

∫
dy−

2πi

d2yT

(2π)2
e−ix′P

+
1

y−+ik′

T·yT ×

〈0|q̄(y)Wy(n)†In;y,0W0(n)×

6n−γ5q(0)|q(P1−k)q̄(k)〉 , (5)

with y = (0,y−,yT) being the coordinate of the anti-

quark field q̄, n− = (0,1,0T) a null vector along P2,

and |q(P1−k)q̄(k)〉 the leading Fock state of the pion.

The factor Wy(n) with n2 6=0 denotes the Wilson

line operator,

Wy(n) = P exp

[

−ig

∫∞

0

dλn • A(y+λn)

]

. (6)

The two Wilson lines Wy(n) and W0(n) are connected

by a link In;y,0 at infinity in this case[7, 24]. Eq. (5)

contains additional collinear divergences from the re-

gion with a loop momentum parallel to n−, as the

Wilson line direction approaches the light cone, ie.,

as n → n−
[20]. It will be shown that n2 serves as

an infrared regulator for the light-cone singularities,

and that the wave function depends on the additional

scale ζ2 ≡ 4(n·P1)
2/|n2|, ie., on the external kinematic

variable. Besides, Φ also depends on the factoriza-

tion scale µf , which is not shown explicitly. Note

that Eq. (5) does not directly reduce to the distribu-

tion amplitude in the collinear factorization theorem,

when integrated over kT, but to a convolution of a

hard kernel with the distribution amplitude[25].

With one-gluon exchange, the outgoing partons

from Φ(1), ie., the partons participating in the hard

scattering, carry the transverse momenta, so that

H(0) in Eq. (4) depends on k′
T nontrivially in the first-

order factorization. Being convoluted with Φ(0), the

partons entering the NLO hard kernel H (1) are still

on-shell. To acquire the nontrivialc kT dependence,

H(1) must be convoluted with the higher-order wave
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functions Φ(i), i > 1: the gluon exchanges in Φ(i) ren-

der the incoming partons of H (1), ie., the incoming

partons of the quark diagrams G(1) and the effec-

tive diagrams Φ(1) off-shell by k2
T

[7]. We thus derive

H(1)(x,Q2,kT) according to the formula

H(1)(x,Q2,kT) = G(1)(x,Q2,kT)−

∫
dx′d2k′

TΦ(1)×

(x,kT;x′,k′
T)H(0)(x′,Q2,k′

T) , (7)

where Φ(1)(x,kT;x′,k′
T) is defined by Eq. (5) but with

the q̄ quark momentum k = (xP +
1 ,0,kT). As stated

in the Introduction, the gauge dependences of G(1)

and Φ(1) cancel in the above expression, such that

H(1)(x,Q2,kT) turns out to be gauge-invariant.

3 O(αs) quark diagrams

The loop integrals associated with the O(αs)

quark diagrams in Figs. 1(a)—(f) in the Feynman

gauge, where the q̄ quark carries the momentum

k = (xP +
1 ,0,kT), are Ref. [26]. The results for the

self-energy corrections are

G(1)
a (x,Q2,kT) = −

αs

8π
CF

(

1

ε
+ln

4πµ2

k2
TeγE

+2

)

×

H(0)(x,Q2,kT) , (8)

G(1)
b (x,Q2,kT) = −

αs

8π
CF

(

1

ε
+ln

4πµ2

k2
TeγE

+2

)

×

H(0)(x,Q2,kT) , (9)

G(1)
c (x,Q2,kT) = −

αs

4π
CF

(

1

ε
+ln

4πµ2e−γE

xQ2 +k2
T

+2

)

×

H(0)(x,Q2,kT) , (10)

where 1/ε denotes the ultraviolet pole, CF is a color

factor, µ the renormalization scale, and γE the Euler

constant. Since the external partons are off-shell by

k2
T, the collinear divergences in Figs. 1(a) and 1(b)

are represented by the infrared logarithms lnk2
T in

Eqs. (8) and (9), respectively. The internal quark in

Fig. 1(c) is off-shell by the invariant mass squared

xQ2+k2
T, which then replaces the argument k2

T in the

infrared logarithm.

In the small x region we drop terms suppressed

by powers of x or k2
T/Q2. The loop correction to the

virtual photon vertex gives

G(1)
d (x,Q2,kT) =

αs

4π
CF

(

1

ε
+ln

4πµ2

k2
TeγE

−

2ln
Q2

k2
T

ln
Q2

xQ2 +k2
T

+2ln
Q2

xQ2 +k2
T

+

ln
Q2

k2
T

−
2π

2

3
+

3

2

)

H(0)(x,Q2,kT) . (11)

At small x the q quark in Fig. 1(d) is energetic,

implying the existence of the collinear logarithmic

enhancement ln(Q2/k2
T), and the internal quark is

close to the mass shell, implying the soft enhance-

ment ln[Q2/(xQ2 +k2
T)]. Their overlap then leads to

the double logarithm ln(Q2/k2
T) ln[Q2/(xQ2 +k2

T)] in

Eq. (11). This double logarithm can be reexpressed

as

−2ln
Q2

k2
T

ln
Q2

xQ2 +k2
T

=

− ln2 Q2

k2
T

− ln2 Q2

xQ2 +k2
T

+ln2 xQ2 +k2
T

k2
T

. (12)

The first term is known as the Sudakov

logarithm[4, 27], which will be absorbed into the pion

wave function. The second term exists even in the

collinear factorization theorem without taking into

account kT
[28, 29], ln[Q2/(xQ2 + k2

T)] ∼ ln2 x, which

can be factorized into a jet function associated with

the internal quark[30].

Fig. 1. O(αs) quark diagrams for πγ
∗
→γ with

× representing the virtual photon vertex.

The loop correction to the out-going on-shell pho-

ton vertex is written as

G(1)
e (x,Q2,kT) =

αs

4π
CF

(

1

ε
+ln

4πµ2

k2
TeγE

+

ln
xQ2 +k2

T

k2
T

+
3

2

)

H(0)(x,Q2,kT) ,

(13)

which does not contain a double logarithm for the

following reason. In the large x region the internal

quark is off-shell by O(Q2), and the soft enhance-

ment disappears. In the small x region the q̄ quark

becomes soft, and the associated collinear enhance-

ment is diminished by the limited phase space for the

loop momentum. Therefore, there is a lack of overlap

of the collinear and soft enhancements, and only the

O(1) single logarithm exists.

At last, the evaluation of the box diagram Fig. 1(f)

is simple, giving a power-suppressed contribution at
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small x. In the region with x ∼ O(1), ie., k+ ∼

O(Q), the internal quark in Fig. 1(f) is off-shell by

1/[P2 · (k− l)] ∼ 1/Q2 for either a collinear loop mo-

mentum l+ ∼O(Q) or an ultraviolet loop momentum

lµ ∼ O(Q), the same as 1/(P2 ·k) ∼ 1/Q2 in the LO

amplitude. Namely, the radiative correction from the

box diagram does not change the LO power-law be-

havior, and its contribution is finite. In the region

with small x ∼ O(Λ), Λ being a hadronic scale, the

LO amplitude scales like 1/(P2 · k) ∼ 1/(QΛ), while

the internal quark in Fig. 1(f) remains off-shell by

1/[P2 ·(k−l)]∼ 1/Q2 for either collinear or ultraviolet

l. Thus the contribution from the box diagram be-

comes power-suppressed and negligible, and we have

G(1)
f (x,Q2,kT) = 0 at leading power.

The sum of the radiative corrections from the

quark diagrams Figs. 1(a)—(f) gives

G(1)(x,Q2,kT) =

f
∑

i=a

G(1)
i (x,Q2,kT) =

−
αs

4π
CF

(

2ln
Q2

k2
T

ln
Q2

xQ2 +k2
T

−3ln
Q2

k2
T

+1+
2π

2

3

)

×

H(0)(x,Q2,kT) . (14)

It is observed that all the ultraviolet poles cancel

and the µ dependence disappears completely, a conse-

quence of the conservation of the current that defines

the pion transition form factor. It will be demon-

strated in the next section that the effective diagrams

for the pion wave function generate the same infrared

logarithms lnk2
T.

4 O(αs) effective diagrams

The explicit expressions for the O(αs) effective di-

agrams displayed in Fig. 2(a)—(g) are also Ref. [26].

We compute the convolution of Φ(1) with the LO hard

kernel H (0) in Eq. (4) over the integration variables

Fig. 2. O(αs) effective diagrams for the pion

wave function.

x′ and k′
T, denoted by ⊗ below:

Φ(1)
i ⊗H(0) ≡

∫
dx′d2k′

TΦ(1)
i (x,kT;x′,k′

T)×

H(0)(x′,Q2,k′
T) . (15)

The self-energy corrections in Figs. 2(a) and 2(b) are

similar to the quark diagrams in Figs. 1(a) and 1(b),

respectively, and the results are

Φ(1)
a ⊗H(0) = −

αs

8π
CF

(

1

ε
+ln

4πµ2
f

k2
TeγE

+2

)

×

H(0)(x,Q2,kT) , (16)

Φ(1)
b ⊗H(0) = −

αs

8π
CF

(

1

ε
+ln

4πµ2
f

k2
TeγE

+2

)

×

H(0)(x,Q2,kT) . (17)

The contribution from the box diagram Fig. 2(c) is

power-suppressed in the small x region as explained

before, and we have Φ(1)
c ⊗H(0) = 0.

Choosing n+ < 0, ie., n2 < 0 as in [5, 8, 11, 12],

Fig. 2(d) leads, in the small x region, to

Φ(1)
d ⊗H(0) =

αs

4π
CF

(

1

ε
+ln

4πµ2
f

k2
TeγE

− ln2 ζ2

k2
T

+

ln
ζ2

k2
T

+2−
π

2

3

)

H(0)(x,Q2,kT) , (18)

which reproduces the Sudakov logarithm ln2(Q2/k2
T)

from Fig. 1(d) in Eq. (12), noticing the scale ζ2 =

|n−/n+|Q2. The light-cone divergences are regular-

ized at the price that the universality of the wave

function is lost, for it depends on the external kine-

matic variable through ζ2. This problem can be

alleviated by extracting the evolution in ζ2 from

Eq. (5)[20], ie., by resumming ln2(ζ2/k2
T) in Eq. (18)

into the Sudakov factor[27, 31]. The initial condition

of the evolution is universal, like a distribution ampli-

tude in the collinear factorization theorem. We stress

that the Sudakov resummation, accurate up to fixed

loops, does not remove the ζ2 dependence of a wave

function completely. That is, nonfactorizability may

occur at subleading level in the kT factorization of

the pion transition form factor.

The hard kernel associated with Φ(1)
e demands the

physical range of l+ to be −k̄+ 6 l+ 6 k+, which

corresponds to the range of the parton momentum

fraction 1 > x′ > 0. When computing the convolu-

tion of Φ(1)
e with H(0), this fact should be taken into

account. Moreover, we assume ζ2 ∼ Q2 by choosing

|n+| ∼ n− to avoid creating the additional large log-

arithm ln(ζ2/Q2). The leading-power expression for
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Fig. 2(e) is then in the small x region given by

Φ(1)
e ⊗H(0) =

αs

4π
CF ln2 ζ2(xQ2 +k2

T)

Q2k2
T

×

H(0)(x,Q2,kT) , (19)

where terms vanishing with k2
T → 0 have been

dropped. It is found that Fig. 2(e) does not generate

a large double logarithm with ζ2 ∼Q2.

The result from Fig. 2(f) is the same as that of

Fig. 2(d), but with the replacement of P1−k≈P1 by

k, ie., ζ by xζ. Keeping terms which do not vanish

with k2
T → 0, we have

Φ(1)
f ⊗H(0) =

αs

4π
CF

(

1

ε
+ln

4πµ2
f

k2
TeγE

− ln2 x2ζ2

k2
T

+

ln
x2ζ2

k2
T

+2−
π

2

3

)

H(0)(x,Q2,kT) ,

(20)

where the double logarithm, being large in the region

of x ∼ O(1), attenuates with the decrease of x. It

should disappear, after combined with the contribu-

tion from Fig. 2(g), since such a double logarithm is

absent in the corresponding quark diagram Fig. 1(e)

in any region of x. The same variable transforma-

tion relating Φ
(1)
f to Φ

(1)
d is not applicable to Φ(1)

g ,

because the latter involves the nontrivial convolution

with H(0). Hence, Φ(1)
g ⊗H(0) is expected to have an

expression different from Φ(1)
e ⊗H(0). Retaining terms

which are finite as kT → 0, Fig. 2(g) leads in the small

x region with xQ2 �x2ζ2 to

Φ(1)
g ⊗H(0) =

αs

4π
CF ln2 x2ζ2

k2
T

H(0)(x,Q2,kT) . (21)

The cancellation of the double logarithms in the sum-

mation of Eqs. (20) and (21) is obvious.

Summing all the above O(αs) quark-level wave

functions, we derive

Φ(1)⊗H(0) =

g
∑

i=a

Φ(1)
i ⊗H(0) =

αs

4π
CF

(

1

ε
+ln

4πµ2
f

k2
TeγE

−

ln2 ζ2

k2
T

+ln2 ζ2(xQ2 +k2
T)

Q2k2
T

+ln
ζ2

k2
T

+

ln
x2ζ2

k2
T

+2−
2π

2

3

)

H(0)(x,Q2,kT) . (22)

In contrast to Eq. (14), which is independent of the

renormalization scale µ, the above expression depends

on the factorizations scale µf . The Sudakov resum-

mation and the renormalization-group method can

be applied to organize the logarithms ln2(ζ2/k2
T) and

ln(µ2
f /k2

T) to all orders, respectively[8].

5 O(αs) hard kernel

We renormalize Eq. (22) in the modified minimal

subtraction scheme, and then take the difference of

Eqs. (14) and (22) to obtain the O(αs) hard ker-

nel for the pion transition form factor. It is easy to

find that the hard kernels H (1)
a,b ≡ G(1)

a,b −Φ(1)
a,b ⊗H(0),

H(1)
c ≡G(1)

c , H(1)
d ≡G(1)

d − (Φ(1)
d +Φ(1)

e )⊗H(0), H(1)
e ≡

G(1)
e −(Φ(1)

f +Φ(1)
g )⊗H(0), and H(1)

f ≡G(1)
f −Φ(1)

c ⊗H(0) = 0

associated with Figs. 1(a)—(f) are all free of the in-

frared logarithms lnk2
T as claimed before. Compared

to Ref. [32], we do not need the additional soft func-

tion S to achieve this cancellation. The difference is

that the self-energy corrections to the Wilson lines

have been included into the set of effective diagrams

for the pion wave function in Ref. [32]. Hence, S must

be introduced to remove these artificially included

infrared divergences. We stress that the self-energy

corrections to the Wilson lines do not exist, because

such diagrams are not generated in the derivation

of the factorization theorem using the diagrammatic

approach[7]. This observation is consistent with the

postulation that the gauge fields appearing in the

Wilson lines in Eq. (6) are regarded as bare fields[20].

After subtracting the effective diagrams from the

quark diagrams, the resultant hard kernel depends

on the factorization scheme that defines the renor-

malization of Eq. (22). The quark diagrams do not

have such a scheme dependence as shown in Eq. (14).

When making a physical prediction from the factor-

ization theorem, one convolutes the hard kernel with

a model for the pion wave function (not with the ef-

fective diagrams), so that the scheme dependence in

the hard kernel remains. As stated in the Introduc-

tion, the scheme dependence of physical predictions

is usually minimized by adhering to a fixed prescrip-

tion for deriving hard kernels. The sum of the O(αs)

hard kernels is written as

H(1)(x,Q2,kT) =

f
∑

i=a

H(1)
i (x,Q2,kT) =

αs

4π
CF

(

− ln
µ2

f

xQ2 +k2
T

+2ln
ζ2

Q2
ln

Q2

xQ2 +k2
T

−

ln2 Q2

xQ2 +k2
T

+2ln
Q2

xζ2
+ln

Q2

xQ2 +k2
T

−3

)

×

H(0)(x,Q2,kT) . (23)

The Sudakov logarithm ln2(Q2/k2
T) in Eq. (12) for

G(1)
d has been cancelled by that in Eq. (18) for Φ(1)

d ⊗

H(0), but the threshold logarithm ln2[Q2/(xQ2+k2
T)]

remains in H (1). The large threshold logarithm can be

absorbed into a jet function[30], so that the pertuba-
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tive expansion of the hard kernel is further improved.

6 Conclusion

In this talk we have elucidated the framework for

the higher-order calculations in the kT factorization

theorem, which is appropriate for QCD processes

dominated by contributions from small momentum

fractions. The gauge invariance of a hard kernel and

the removal of the light-cone singularities are the

two essential ingredients for making physical predic-

tions from the kT factorization theorem. We have

calculated the NLO kT-dependent hard kernel for

πγ
∗ →γ in the region with a large momentum trans-

fer Q2 and a small momentum fraction x. We have

demonstrated that the infrared logarithms lnk2
T, re-

flecting the collinear divergences, cancel between the

quark diagrams and the effective diagrams exactly.

The quark diagrams generate the double logarithms

ln2(Q2/k2
T) and ln2 x from the loop correction to the

virtual photon vertex. It has been shown that the

former is absorbed into the pion wave function, and

the latter into the jet function, confirming the obser-

vations made in our previous works[8, 30].
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