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B→0+(1+)+ missing energy in unparticle physics *
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Abstract We examine the effects of an unparticle U as a possible source of missing energy in the p-wave

decays of a B meson. The dependence of the differential branching ratio on the K∗
0 (K1) – meson’s energy is

discussed in the presence of scalar and vector unparticle operators and significant deviation from the standard

model value is found after addition of these operators. Finally, we have shown the dependence of the branching

ratio for the above-mentioned decays on the parameters of unparticle stuff like effective couplings, cutoff scale

ΛU and the scale dimensions dU .
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1 Introduction

Flavor changing neutral current (FCNC) pro-

cesses induced by b → s transitions are not allowed

at tree level in the Standard Model (SM), but are

generated at loop level and are further suppressed by

the CKM factors. Therefore, these decays are very

sensitive to the physics beyond the SM via the in-

fluence of new particles in the loop. Though the

branching ratios of FCNC decays are small in the SM,

quite interesting results are obtained from the experi-

ments both for the inclusive B→Xsl
+l−[1] and exclu-

sive decay modes B→Kl+l−[2—4] and B→K∗l+l−[5].

These results are in good agreement with theoretical

estimates[6—8].

Among different semileptonic decays induced by

b → s transitions, b → sνν̄ decays are of

particular interest, because of absence of a pho-

tonic penguin contribution and hadronic long dis-

tance effects gives much smaller theoretical uncer-

tainties. But experimentally, it is too difficult to

measure the inclusive decay modes B → Xsνν̄ as

one has to sum over all the Xs’s. Therefore, ex-

clusive B → K(K∗)νν̄ decays play a peculiar role

both from the experimental and theoretical points

of view. The theoretical estimates of the branch-

ing ratio of these decays are Br (B→Kνν̄∼ 10−5)

and Br (B→K∗
νν̄∼ 10−6)[9] whereas the experimen-

tal bounds given by the B-factories, BELLE and

BaBar, on these decays are[10, 11]:

Br (B→Kνν̄) < 1.4×10−5,

Br (B→K∗
νν̄) < 1.4×10−4.

(1)

These processes, based on b → sνν̄, are very sen-

sitive to new physics and have been studied exten-

sively in the literature in the context of large ex-

tra dimension model and Z′ models[12, 13]. Any new

physics model which can provide a relatively light new

source of missing energy (which is attributed to neu-

trinos in the SM) can potentially enhance the ob-

served rates of B → K(K∗)+ missing energy. Re-

cently, H. Georgi proposed one such model of un-

particles, which is one of the tantalizing issues these

days[14]. The main idea of Georgi’s model is that at

a very high energy our theory contains the fields of

the standard model and the fields of a theory with

a nontrivial infrared fixed point, which he called BZ

(Banks-Zaks) fields[15]. The interaction among the

two sets is through the exchange of particles with a

large mass scale MU . The coupling between the SM

fields and BZ fields are nonrenormalizable below this
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scale and are suppressed by the powers of MU . The

renormalizable couplings of the BZ fields then pro-

duce dimensional transmutation and the scale invari-

ant unparticle emerges below an energy scale ΛU . In

the effective theory below the scale ΛU the BZ opera-

tors match unparticle operators, and the renormal-

izable interaction matched a new set of interactions

between the standard model and the unparticle fields.

The outcome of this model is the collection of unpar-

ticle stuff with scale dimension dU , which is just like

a non-integral number of invisible massless particles,

whose production might be detectable in missing en-

ergy and momentum distributions[16].

This idea has promoted a lot of interest in unpar-

ticle physics and its signatures have been discussed

at colliders[16—20], in low energy physics[21], Lepton

Flavor Violation[22], unparticle physics effects in Bs

mixing[23], and also in cosmology and astrophysics[24].

Aliev et al. have studied B→K(K∗)+ missing energy

in unparticle physics[25]. They studied the effects of

an unparticle U as a possible source of missing energy

in these decays. They found the dependence of the

differential branching ratio on the K(K∗) -meson’s

energy in the presence of scalar and vector unparti-

cle operators and then, using the upper bounds on

these decays, they put stringent constraints on the

parameters of the unparticle stuff.

The studies are even more complete if similar

studies for the p-wave decays of a B meson such

as B → K∗

0 (1430) + /E (/E is missing energy) and

B → K1 (1270)+ /E , where K∗

0 (1430) and K1 (1270)

are the pseudoscalar and axial vector mesons respec-

tively, are carried out. In this paper, we have studied

these p-wave decays of B mesons in unparticle physics

using the framework of Aliev et al.[25] We have con-

sidered the decay B→K∗

0 (K1)νν̄ in the SM although

for these modes no signals have been observed so far,

but in future B-factories where enough data are ex-

pected, these decays will be observed. These Super

B-factories will measure these processes by analyz-

ing the spectra of the final state hadrons. In doing

this measurement a cut at high momentum on the

hadron is imposed, in order to suppress the back-

ground. Therefore, the unparticle would give us a

unique distribution of the high energy hadrons in the

final state, such that in future B-factories one will be

able to distinguish the presence of an unparticle by

observing the spectrum of the final state hadrons in

B→ (K, K∗, K∗

0, K1)+/E [25].

This work is organized as follows. In section 2,

after giving the expression for the effective Hamil-

tonian for the decay b → sνν̄, we define the scalar

and vector unparticle physics operators for b → sU .

Then using these expressions we calculate the various

contributions to the decay rates of B → K∗

0 (K1)+/E

both from the SM and unparticle theory in Section

3. Recently, Grinstein et al. made comments on the

unparticle[26], mentioning that Mack’s unitarity con-

straint lowers the bounds on CFT operator dimen-

sions, e.g dU > 3 for primary, gauge invariant, vector

unparticle operators. To account for this they have

corrected the results in the literature, and modified

the propagator of vector and tensor unparticles. We

will also give the expressions for the decay rate using

these modified vector operators in the same section.

Finally, section 4 contains our numerical results and

conclusions.

2 Effective Hamiltonian in the SM

and unparticle operators

The flavor changing neutral current b → sνν̄ is

of particular interest both from the theoretical and

experimental point of view. One of the main reasons

of interest is the absence of long distance contribu-

tions related to four-quark operators in the effective

Hamiltonian. In this respect, the transition to the

neutrino represents a clean process even in compari-

son with b→ sγ decay, where long-distance contribu-

tions, though small, are expected to be present [27].

In the Standard Model these processes are governed

by the effective Hamiltonian

Heff =
GF√

2

α

2π

VtbV
∗

tsC10s̄γ
µ (1−γ5)bν̄γµ (1−γ5)ν,

(2)

where VtbV
∗

ts are the elements of the Cabbibo-

Kobayashi Maskawa Matrix and C10 is obtained from

the Z0 penguin and box diagrams where the dominant

contribution corresponds to a top quark intermediate

state and it is

C10 =
D (xt)

sin2 θw

. (3)

θw is the Weinberg angle and D (xt) is the usual

Inami-Lim function, given by

D (xt) =
xt

8

{

xt +2

xt−1
+

3xt−6

(xt−1)2
ln (xt)

}

, (4)

with xt = m2
t/m2

W.

The unparticle transition at the quark level can

be described by b → sU , where one can consider the

following operators.

1) Scalar unparticle operator

Cs

1

ΛdU

U

s̄γµb∂µ
OU +CP

1

ΛdU

U

s̄γµγ5b∂µ
OU . (5)
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2) Vector unparticle operator

CV

1

ΛdU

U

s̄γµbOµ
U

+CA

1

ΛdU

U

s̄γµγ5bO
µ
U

. (6)

The propagator for the scalar unparticle field can

be written as[14, 16, 17]

∫
d4xeiP ·x 〈0 |TOU (x)OU (0)|0〉=

i
Ad

U

2sin(d
U
π)

(−P 2)
d
U
−2

(7)

with

Ad
U

=
16π

5/2

(2π)2d
U

Γ (d
U

+1/2)

Γ (d
U
−1)Γ (2d

U
)
. (8)

3 Differential decay widths

In the Standard Model the decay B→K∗

0 (K1)+/E

is described by the decay B → K∗

0 (K1)νν̄. At quark

level this process is governed by the effective Hamil-

tonian defined in Eq. (2) which when sandwiched be-

tween B and K∗

0 (K1) involves the hadronic matrix el-

ements for the exclusive decay B→K∗

0 (K1)νν̄. They

can be parameterized by the form factors and the

non-vanishing matrix elements for B→K∗

0
[27]:

〈K∗

0 (p′) |s̄γµγ5b|B (p)〉=

−i
[

f+ (q2) (p+p′)
µ
+f− (q2)qµ

]

, (9)

where qµ = (p+p′)µ. Using the above definition and

taking into account the three species of neutrinos in

the Standard Model, the differential decay width as

a function of K∗

0 energy
(

EK∗
0

)

can be written as[27]:

dΓ SM

dEK∗
0

=
G2

Fα2

27
π

5M 2
B

|VtbV
∗

ts|2 |C10|2 f 2
+ (q2)×

√

λ3

(

M 2
B,M 2

K∗
0

, q2

)

(10)

with λ(a,b,c) = a2 + b2 + c2 − 2ab − 2bc − 2ca and

q2 = M 2
B+M 2

K∗

0

−2MBEK∗

0
. Here f+ (q2) and f− (q2) are

the form factors which are non-perturbative quanti-

ties and can be calculated using some models. The

model used here was calculated by using the Light

Front Quark Model (LFQR) by Cheng et al.[27] and

can be parameterized as:

F (q2) =
F (0)

1−aq2/M 2
B +b(q2/M 2

B)2
.

The fitted parameters are given in Table 1.

Table 1. Parameters for the B→K∗

0 form factors.

F (0) a b

f+ −0.26 1.36 0.86

f− 0.21 1.26 0.93

Similarly, for the B → K1 transition the matrix

elements can be parameterized as[28]

〈K1(k,ε) |Vµ|B(p)〉= iε∗

µ (MB +MK1
)V1(q

2)−

(p+k)µ (ε∗ ·q) V2(q
2)

MB +MK1

−

qµ (ε ·q) 2MK1

s
[V3(q

2)−V0(q
2)] , (11)

〈K1(k,ε) |Aµ|B(p)〉=
2iεµναβ

MB +MK1

ε∗νpαkβA(q2), (12)

where Vµ = s̄γµb and Aµ = s̄γµγ5b are the vector and

axial vector currents respectively and ε∗

µ is the polari-

zation vector for the final state axial vector meson. In

this case we have used the form factors that were cal-

culated by Paracha et al.[28] and the corresponding

expressions are:

A(s) =
A(0)

(1−s/M 2
B)(1−s/M ′2

B )
,

V1(s) =
V1(0)

(

1−s/M 2
B∗

A

)(

1−s/M ′2
B∗

A

) ×

(

1− s

M 2
B−M 2

K1

)

,

V2(s) =
Ṽ2(0)

(

1−s/M 2
B∗

A

)(

1−s/M ′2
B∗

A

) −

2MK1

MB−MK1

V0(0)

(1−s/M 2
B) (1−s/M ′2

B )
(13)

with

A(0) = −(0.52±0.05),

V1(0) = −(0.24±0.02), (14)

Ṽ2(0) = −(0.39±0.03).

The differential decay rate can be calculated as[25]:

dΓ SM

dEK1

=
G2

Fα2

29
π

5M 2
B

|VtbV
∗

ts|2 |C10|2 λ1/2 |MSM|2 (15)

where

|MSM|2 =
8q2λ |A(q2)|2

(MB +MK1
)
2 +

1

M 2
K1

[

λ2 |V2 (q2)|2

(MB +MK1
)
2 +

(MB +MK1
)
2
(

λ+12M 2
K1

q2
)

|V1 (q2)|2−

λ
(

M 2
B−M 2

K1
−q2

)

Re(V ∗

1 (q2)V2 (q2)+

V ∗

2 (q2)V1 (q2))

]

(16)

and λ = λ
(

M 2
B,M 2

K1
, q2

)

with q2 = M 2
B + M 2

K1
−

2MBEK1
.

Now in the decay mode B→K∗

0 (K1)+/E , the miss-

ing energy /E can also be attributed to the unparti-
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cle and hence the unparticle can also contribute to

these decay modes. Therefore, the signature of the

two decay modes B→K∗

0 (K1)νν̄ and B→K∗

0 (K1)U
should be similar to that for B → K(K∗)νν̄ and

B→K(K∗)U given in Ref. [25].

3.1 The scalar unparticle operator

Using the scalar unparticle operator defined in

Eq. (5) the matrix element for B→K∗

0U can be writ-

ten as

MSU
K∗

0

=
1

ΛdU

〈K∗

0 (p′) |s̄γµ (CS +CPγ5)b|B (p)〉∂µ
OU =

1

ΛdU

CP[f+ (q2)
(

M 2
B−M 2

K∗
0

)

+f− (q2)q2]OU .

(17)

Now the decay rate for B→K∗

0U can be evaluated to

be:

dΓ SU

dEK∗
0

=
1

8π
2mB

√

E2
K∗

0

−M 2
K∗

0

∣

∣MSU
∣

∣

2
, (18)

where

∣

∣MSU
∣

∣

2
= |CP|2

AdU

Λ
2dU

(

M 2
B +M 2

K∗
0

−2MBEK∗
0

)dU−2

×
[

f+ (q2)
(

M 2
B−M 2

K∗
0

)

+

f− (q2)
(

M 2
B +M 2

K∗
0

−2MBEK∗
0

)

]2

. (19)

Following the same lines, the corresponding matrix

element for B→K1U is

MSU
K1

=
1

ΛdU

〈K1 (p′) |s̄γµ (CS +CPγ5)b|B (p)〉∂µ
OU =

i

ΛdU

CS (ε∗ ·q)
[

(MB +MK1
)V1 (q2)−

(MB−MK1
)V2 (q2)−

2MK1
(V3 (q2)−V0 (q2))

]

OU , (20)

and the differential decay rate is

dΓ SU

dEK1

=
MB

2π
2

AdU

Λ
2dU

|CS|2 |V0 (q2)|2
(

E2
K1

−M 2
K1

)3/2×
(

M 2
B +M 2

K1
−2MBEK1

)dU−2
. (21)

One can see from Eq. (18) and Eq. (21) that the

scalar unparticle contribution to the decay rate de-

pends on CP, CS, dU and ΛU . Therefore one can see

the behavior of the decay rates for the said decays

on these parameters, for which we hope to get con-

straints once experimental data for these decays be-

come available. This we will do in a separate section.

3.2 The vector unparticle operator

The matrix element for B→K∗

0U using the vector

unparticle operator defined in Eq. (6) and the def-

inition of the form factors given in Eq. (9) can be

calculated as:

MVU

K∗

0

=
1

ΛdU−1
〈K∗

0 (p′) |s̄γµ (CV +CAγ5)b|B (p)〉Oµ
U

=

1

ΛdU−1
CA[f+ (q2)(p+p′)

µ
+f− (q2)qµ]Oµ

U
.

(22)

The differential decay rate is then

dΓVU

dEK∗
0

=
1

8π
2mB

AdU

Λ
2dU−2

|CA|2 |f+ (q2)|2×

(

M 2
B +M 2

K∗
0

−2MBEK∗
0

)dU−2√

E2
K∗

0

−M 2
K∗

0

×
{

−
(

M 2
B +M 2

K∗
0

+2MBEK∗
0

)

+

(

M 2
B−M 2

K∗
0

)2

(

M 2
B +M 2

K∗
0

−2MBEK∗

0

)

}

. (23)

For B→K1 case the matrix element for B→K1U is

MVU

K1
=

1

ΛdU−1
〈K1 (p′) |s̄γµ (CV +CAγ5)b|B (p)〉Oµ

U
=

[ CV

ΛdU−1
(iε∗

µ (MB +MK1
)V1 (q2)−

i (p+p′)
µ
(ε∗ ·q) V2 (q2)

MB +MK1

−

iqµ (ε∗ ·q) 2MK1

q2
(V3 (q2)−V0 (q2)))+

CA

ΛdU−1

(

2A(q2)

MB +MK1

εµναβεν∗pαp′β

)]

Oµ
U

(24)

and the differential decay rate will be:

dΓVU

dEK1

=
1

8π
2mB

AdU

Λ
2dU−2

√

E2
K1

−M 2
K1

(q2)
dU−2×

[

8 |CA|2 M 2
B

(

E2
K1

−M 2
K1

) A(q2)

(MB +MK1
)2 +

|CV|2
1

M 2
K1

(MB +MK1
)
2
q2

×
[

(MB +MK1
)
4
(3M 4

K1
+2M 2

BM 2
K1

−

6MBM 2
K1

EK1
+M 2

BE2
K1

) |V1 (q2)|2 +

2M 4
B

(

E2
K1
−M 2

K1

)

|V2 (q2)|2+4(MB+MK1
)
2×

(

MBEK1
−M 2

K1

)(

M 2
K1

−E2
K1

)

×

M 2
B (V1V

∗

2 +V2V
∗

1 )

]]

. (25)
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The total decay width can be obtained if we inte-

grate over the energy of the final state meson in the

range MK(K1) < EK(K1) <
(

M 2
B +M 2

K(K1)

)

/2MB for

B→K(K1)+/E .

Recently, Grinstein et al. have made a comment

on the unparticle[26] in which they mentions that

Mack’s unitarity constraint lower the bounds on the

CFT operator dimensions, e.g. dU > 3 for primary,

gauge invariant, vector unparticle operators. To ac-

count for this they have corrected the results in the

literature, and modified the propagator of vector and

tensor unparticles. The modified vector propagator

is ∫
d4xeiPx 〈0 |T (Oµ

U
(x)Oν

U
(x))|0〉=

AdU
(−gµν +aP µP ν/P 2)(P 2)

dU−2
. (26)

Here P is the momentum of the unparticle, AdU
is

defined in Eq. (8) and a 6= 1 (in contrast to the value

a = 1 which was considered by Georgi[14]) but is de-

fined as:

a =
2(dU −2)

(dU −1)
. (27)

By incorporating this factor a in the vector unparti-

cle operator Eqs. (23) and (25) are modified and the

modified result of the decay rate for B→K∗

0U is

dΓVU

dEK∗
0

=
1

8π
2mB

AdU

Λ
2dU−2

|CA|2 |f+ (q2)|2×

(

M 2
B +M 2

K∗
0

−2MBEK∗
0

)dU−2√

E2
K∗

0

−M 2
K∗

0

×
[

|f+ (q2)|2
(

−
(

M 2
B +M 2

K∗
0

+2MBEK∗
0

)

+

a
(

M 2
B−M 2

K∗

0

)2

(

M 2
B +M 2

K∗
0

−2MBEK∗
0

)

)

+

|f− (q2)|2 (a−1)
(

M 2
B +M 2

K∗

0

−2MBEK∗

0

)

+

2(a−1)(f+ (q2)f− (q2))
(

M 2
B−M 2

K∗
0

)

]

.

(28)

Similarly, for B→K1U the result becomes

dΓVU

dEK1

=
1

8π
2mB

AdU

Λ
2dU−2

√

E2
K1

−M 2
K1

(q2)
dU−2×

[

|M11|2 + |M22|2 + |M33|2 + |M44|2 +

|M23|2 + |M24|2 + |M34|2
]

(29)

with

|M11|2 = 8 |CA|2 M 2
B

(

E2
K1

−M 2
K1

) A(q2)

(MB +MK1
)
2 ,

|M22|2 = |CV|2
1

M 2
K1

(MB +MK1
)
2
q2

[

(MB +MK1
)
4
(

3M 2
K1

(

M 2
B +M 2

K1
−2MBEK1

)

−

a
(

M 2
BM 2

K1
−M 2

BE2
K1

)

)

|V1 (q2)|2
]

,

|M33|2 = |CV|2
1

M 2
K1

(MB +MK1
)
2
q2

[

M 2
B

(

E2
K1

−M 2
K1

)(

a
(

M 2
B−M 2

K1

)2
+(2MBEK1

)
2−

(

M 2
B +M 2

K1

)2 )

|V2 (q2)|2
]

,

|M44|2 = |CV|2
1

M 2
K1

(MB +MK1
)2 q2

[

4M 2
B (MB +MK1

)
2
(

E2
K1

−M 2
K1

)

(a−1)M 2
K1

|V3 (q2)−V0 (q2)|2
]

,

|M23|2 = |CV|2
1

M 2
K1

(MB +MK1
)
2
q2

[

M 2
B (MB +MK1

)2
(

E2
K1

−M 2
K1

)(

M 2
B +M 2

K1
−2MBEK1

−

a
(

M 2
B−M 2

K1

))

(V1 (q2)V ∗

2 (q2)+V2 (q2)V ∗

1 (q2))

]

,

|M24|2 = |CV|2
1

M 2
K1

(MB +MK1
)
2
q2

[

2MK1
(MB +MK1

)3
(

(1−a)M 2
B

(

E2
K1

−M 2
K1

))

×

(V1 (V3−V0)
∗
+(V3−V0)V

∗

1 )

]

,

|M34|2 = |CV|2
1

M 2
K1

(MB +MK1
)
2
q2

[

2MK1
(MB +MK1

)×

(

M 2
B−M 2

K1

)

M 2
B

(

E2
K1

−M 2
K1

)

(a−1)
(

V2 (V3−V0)
∗ +(V3−V0)V

∗

2

)

]

. (30)
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One can easily see that Eqs. (28) and (29) reduce to

Eqs. (23) and (25) respectively, if one sets a = 1.

4 Results and discussion

In this section we present our numerical study for

B→K∗

0 (K1)+/E where we try to distinguish unparticle

physics effects from those of the SM. In the Standard

Model /E , which is the missing energy, is attributed

to the neutrinos whereas in the case under considera-

tion, this is attributed to the unparticle. Therefore

the total decay rate can be written as

Γ = Γ SM +Γ U . (31)

Here Γ SM is the Standard Model contribution

(B→K∗

0 (K1)νν̄) whereas Γ U comes from the un-

particle (B→K∗

0 (K1)U) according B → K∗

0 (K1)+/E .

In Ref. [25] it is pointed out that the SM process

B → K(K∗)νν̄ provides a unique energy distribu-

tion spectrum of final state hadrons and gives exper-

imental limits for the branching ratio of these pro-

cesses that are about an order of magnitude below

the respective SM expectation values. The authors

of Ref. [25] have used an experimental upper limit on

the branching ratio of the B → K(K∗)νν̄ decay to

estimate the constraints on the unparticle properties.

In the case of B → K∗

0 (K1)νν̄ there is no experi-

mental limit on the branching ratio of these decays,

but these will be expected to be measured at future

Super B-factories where they will analyze the spec-

tra of the final state hadron by imposing a cutoff

on the high momentum of the hadron to reduce the

background. To calculate the numerical value of the

branching ratio for B→K∗

0 (K1)νν̄ in the SM we have

to integrate Eqs. (10) and (15) over the energy of the

final state hadron. Thus, after the integration, the

values of the branching ratios in the SM are:

Br (B→K∗

0νν̄) = 1.12×10−6,

Br (B→K1νν̄) = 1.77×10−6.
(32)

With these values at hand, we have plotted the dif-

ferential decay width for B → K∗

0 (K1)+/E as a func-

tion of the energy of the final state hadron EK∗
0
(EK1

)

and by fixing the parameters of the unparticle from

Ref. [25] in Fig. 1. One can easily see from the fig-

ure that the signatures of the unparticle operators

are very distinctive from the SM ones when plotted

as a function of the final state hadron’s energy. Just

as in the case of B → K(K∗)+/E the distribution of

the unparticle contribution is quite different if a vec-

tor operator (a = 1) for the high energetic final state

hadron is included. The issue of using other values

of a will be discussed separately. Thus the Super B-

factories will be able to clearly distinguish the pres-

ence of an unparticle by observing the spectrum of the

final state hadrons in B→K∗

0 (K1)+/E in complement

to B→K(K∗)+/E .

Fig. 1. The differential branching ratio for B→

K∗

0 (K1)+/E as a function of hadronic energy

EK∗
0
(EK1

) is plotted. The left panel is for

B→K∗

0+/E and the right one is for B→K1+/E .

The other parameters are dU = 1.9, ΛU = 1000

GeV, CP =CS =2×10−3 and CV = CA = 10−5.

Solid lines are for the SM, dashed lines for the

scalar operator and long-dashed lines are for

the vector operator.

In Fig. 2 and Fig. 3 we have shown the sensi-

tivity of the branching ratio on the scaling dimen-

sion dU for different values of the cutoff scale ΛU by

using the same values of CS, CP, CV and CA as in

Fig. 1. We can see from these figures that the branch-

ing ratio is very sensitive to the variable dU and ΛU .

The constraints on the vector operator are stronger

than those on the scalar operators and the constraints

for B → K∗

0 +/E are more suitable than those for the

B→K1 +/E decays.

Fig. 2. The branching ratio for B → K∗

0 +/E as

a function of dU for various values of ΛU . The

left panel is for the scalar operator and the

right one is for the vector operator. The val-

ues of the coupling constants are the same as

in Fig. 1. Solid lines correspond to ΛU = 1000

GeV, dashed lines to ΛU = 2000 GeV and the

long-dashed lines to ΛU = 5000 GeV. The hor-

izontal solid line represents the SM result.

After showing the dependence of the branching

ratio on dU and ΛU we show in Fig. 4 the sensitivity

of the branching ratio of B→K∗

0 +/E on the effective

coupling constants of the scalar and vector unpar-

ticle operators. One can see that “B → K∗

0+ scalar

unparticle operator” constrains the parameter CP and
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Fig. 3. The branching ratio for B → K1 + /E

as a function of dU for various values of ΛU .

Left panel: scalar operator, right panel: vec-

tor operator. The values for the coupling con-

stants are the same as in Fig. 1. Solid line:

ΛU = 1000 GeV, dashed line: ΛU =2000 GeV,

long-dashed line: ΛU = 5000 GeV. The hori-

zontal solid line is the SM result.

“B→K∗

0+ vector unparticle operator” constrains CA.

Thus observing this decay we can get some useful

constraints on CP and CA which provide us with

a signature of the unparticle physics. Similarly, we

have shown the dependence of the branching ratio of

B → K1 + /E on the effective coupling constants in

Fig. 5. It is seen that if we consider the scalar opera-

tor then the only dependence is on CS, whereas if the

vector operators are considered then the decay rate

depends on both CV and CA.

Fig. 4. The branching ratio for B → K∗
0 +/E as

a function of CP (left panel) and CA (right

panel). The cutoff scale has been taken to be

ΛU = 1000 GeV. Solid lines are for dU = 1.5,

dashed lines are for dU = 1.7 and long-dashed

lines are for dU =1.9. The horizontal solid line

is the SM result.

We have already mentioned that in a recent publi-

cation on the unparticle, Grinstein et al.[26] reported

that Mack’s unitarity constraint lowers the bounds

on the CFT operator dimensions, e.g., dU > 3 for pri-

mary, gauge invariant, vector unparticle operators.

To account for this they have corrected the results in

the literature, and modified the propagator of vector

and tensor unparticles. The modified expressions of

the decay rate for the processes under consideration

are given in Eq. (28) and Eq. (29). The results in-

corporating the modification in the vector unparticle

operator are shown in Fig. 6. There the fractional

error

∆≡

(

1

Γ

dΓ

dEK∗

0
(K1)

)

a=1

−
(

1

Γ

dΓ

dEK∗

0
(K1)

)

a
(

1

Γ

dΓ

dEK∗
0
(K1)

)

a=1

(33)

is depicted, defined as the difference between the

spectrum of B → K∗

0 (K1)U using the vector un-

particle operator with a = 1 and that with a =

2(dU −2)/(dU −1) with 3< dU < 3.9. It is clear from

the graph that with increasing unparticle scaling di-

mensions dU the contribution of the vector unparticle

operator to the decay rate decreases significantly be-

cause the increase is proportional to the inverse power

of the cutoff scale ΛU (see Eqs. (28) and (29)).

Fig. 5. The branching ratio for B → K1 +/E as

a function of CS (a), CA (b) and CV (c). The

cutoff scale has been taken to be ΛU = 1000

GeV. Solid lines are for dU =1.5, dashed lines

are for dU = 1.7 and long-dashed lines are for

dU = 1.9. The horizontal solid line is the SM

result.

Fig. 6. Fractional error ∆ in the spectrum for

the decay B → K∗

0 (K1)+ vector unparticle

operator as a function of energy of the final

state hadron. The left panel shows the val-

ues for B → K∗
0 and the right panel those for

B → K1. The values for the coupling con-

stants and cutoff scale are the same as in Fig.

1. Solid lines are for dU = 3.2, dashed lines are

for dU = 3.4 and dashed-double dotted lines

are for dU = 3.6.

In conclusion, the study of the considered p-wave

decays of B mesons will not only provide us with in-

formation on the SM but it may also indicate possible
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physics beyond it. In future, when enough data have

been accumulated from the Super B-factories, we be-

lieve that these decays will take us a step forward

to the study of the unparticle as a source of missing

energy in flavor physics.

The authors would like to thank W. Wang and

Yu-Ming Wang for useful discussions.
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WANG W, WANG Y M. Phys. Rev. D, 2007, 76: 077701:

arXiv: hep-ph/0705.2909

23 Lenz A. Phys. Rev. D, 2007, 76: 065006: arXiv: hep-

ph/0707.1535

24 Davoudiasl H. arXiv: hep-ph/0705.3636; Kikuchi T, Okada

N. arXiv: hep-ph/0711.1506

25 Aliev T M, Cornell A S, Gaur N. JHEP, 2007, 07: 072

[arXiv: hep-ph/07054542]

26 Grinstein B, Intrilligator K, Rothstein I Z. arXiv: hep-

ph/08011140

27 CHEN Chuan-Hung, GENG Chao-Qiang, LIH Chong-

Chung, LIU Chun-Chu. arXiv: hep-ph/0703106

28 Paracha M A, Ahmed I, Aslam M J. Eur. Phys. J. C, 2007,

52: 967—973


