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Measurement of the astrophysical S factor for

the low energy 2H(d,γ)4He reaction
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Abstract The γ-rays and protons from an Ed = 20 keV deuteron beam incident on a D—Ti target were

measured. A branching ratio of the 2H(d,γ)4He reaction versus the 2H(d,p)3H reaction of Γγ/Γp = (1.06±

0.34)×10−7 has been obtained, and the astrophysical S factor of the 2H(d,γ)4He reaction at the center of mass

energy Ecm ≈ 7 keV of (6.0±2.4)×10−6 keV·b was deduced.
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1 Introduction

In the energy range of 10—100 keV, the 2H(d,

γ)4He reaction is of fundamental importance for the

determination of deuteron burning and the 4He abun-

dance in astro-nuclear processes[1]. Besides this, the

cross section of this reaction below 100 keV is cru-

cial in ascerting the temperature of deuterium– deu-

terium plasma[2, 3] and in evaluating the production

of heat in cold fusion experiments[4]. Investigation of

the 2H(d,γ)4He reaction can provide significant infor-

mation for the understanding of the reaction mecha-

nism among light charged particles and the ground

state structure of α particles[5—9]. So the study

of the 2H(d,γ)4He reaction has been an interesting

topic since the first measurement by Zurmühle and

Stephens[10].

The 2H(d,γ)4He reaction is involved in both pri-

mordial and stellar nucleosynthesis [7, 11, 12]. The ob-

servation that the astrophysical S factor, S(Ecm) =

σ(Ecm)Ecm exp(2πη), where η is the Sommerfield pa-

rameter, decreases steeply with decreasing energy and

that the angular distributions [5, 10, 13] are of the form

sin2 θ cos2 θ for Ecm >0.4 MeV confirms that the re-

action mainly proceeds via an E2 transition from the
1D2 component in the entrance channel to the 1S0

component of the 4He ground state. However, later

work [7] has indicated that at Ecm <80 keV the S(E)

factor clearly deviates from the trend at high ener-

gies and suggested an initial 5S2 state, which could

lead to a determination of the 4He D-state admixture,

as well as a 32 times higher S(0) value than previ-

ously adopted for astrophysical work[11]. Although

it has been pointed out that the 2H(d,γ)4He rate

does not change the previously drawn conclusions

from standard big bang nucleosynthesis models[14],

the altered S(0) value may be significant in inhomoge-

neous big bang nucleosynthesis models with regions of

high neutron density[15]. In the present work, we ex-

tended the measurement of the branching ratio of the
2H(d,γ)4He reactions versus the 2H(d,p)3H reactions

to a deuteron beam energy of 20 keV, and deduced

the astrophysical S factor down to an effective center

of mass energy of 7 keV.

2 Experiment

The experimental arrangement and some prelim-

inary results have been briefly reported in Ref. [16].

A deuteron beam of 20 keV was produced by the low-

energy acceleration facility (LEAF) at the China In-

stitute of Atomic Energy. This facility is composed

of a microwave ion source, a solenoidal lens, an ana-

lyzing magnet and acceleration and deceleration sec-
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tions. The deuterium-loaded titanium targets on Mo

backings were about 0.5 mg/cm2 thick. The atomic

ratio of deuterium to tritium was 1.7:1. The beam

intensity was about 5—8 mA and the size of the

beam spot on the target was 10 mm×20 mm. Cir-

culating cold water was used to cool the target. A

sketch of the experimental arrangement is shown in

Fig. 1. The γ-rays were detected with a 20 cm×20 cm

NaI(Tl) detector, which was surrounded by a 10 cm

thick plastic scintillator detector with another 10 cm

thick plastic scintillator detector in front as an anti-

coincidence shield for rejecting the cosmic ray back-

ground. Outside of the surrounding plastic scintilla-

tor, a shield composed of 10 cm of lead and 38 cm

of lithium carbonated paraffin was used to reduce the

background γ-rays and neutrons. By carefully adjust-

ing the electronics, 96% of the cosmic ray background

detected by the NaI(Tl) detector was rejected in the

20—25 MeV energy range (see Fig. 2). The axis of the

γ-ray detector assembly was at 8.5◦ to the beam. The

protons produced from the 2H(d,p)3H reactions were

detected with a φ8 GM type Au-Si surface barrier

semiconductor detector placed at the end of a 100 cm

long tube, which was perpendicular to the beam line.

There were two anti-scattering diaphragms to prevent

the scattered protons from hitting the detector and

a 3.03 mm collimator to define the solid angle. The

proton detector was covered with aluminum foil 2 µm

in thickness to stop the scattered protons and other

charged particles. Energy calibration of the γ-ray de-

tector was made using 0.662 MeV γ-rays of 137Cs,

1.33 MeV γ-rays of 60Co and 6.13 MeV γ-rays from a

Pu-C neutron source. Energy calibration of the pro-

ton detector was made using 5.24 MeV α particles

of a 239Pu source. The signals of the NaI(Tl) detec-

tor were sent to a multichannel pulse-height analyzer

Fig. 1. Experimental arrangement.

gated by the anti-coincidence signals from the plastic

scintillators. Simultaneously, the charged particle sig-

nals from the semiconductor detector were analyzed

by another multichannel pulse-height analyzer.

Fig. 2. Cosmic ray background spectra from

the γ-ray channel without (a) and with (b)

anti-coincidences.

The γ-ray detection efficiency of the NaI(Tl) de-

tector in the shield was simulated with the MCNP

code. In the simulation an isotropic angular distribu-

tion of the γ-rays was assumed, because at low ener-

gies such as 75 keV and below, E2 transition from a
5S2 scattering state to the 5D0 component of the 4He

ground state becomes the dominant mode[7]. Since

the main process of the interactions is pair produc-

tion and the Compton scattering cross section is one

order of magnitude smaller than that for pair pro-

duction for the γ-rays of 23.8 MeV, the efficiency was

integrated from 22.6 MeV to 24.0 MeV in the simula-

tion. Thus, the full energy, single escape and double

escape peaks were all included. The simulated ef-

ficiency is 7.5× 10−2 with an estimated uncertainty

of ±20%. The proton detection efficiency was deter-

mined by the solid angle and the angular distribution

of the protons, which was adopted from the differen-

tial cross section of the 2H(d,p)3H reaction at Ed =

19.944 keV from Ref. [17].

The measurements were performed over 126 h

with the beam on and over 1024 h with the beam off

to measure the radiation background, which is mainly

composed of the remaining cosmic ray background,

and was fitted with a function of exp (P0+P1x+P2x
2).
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Fig. 3(a) shows the raw spectra of the γ-ray chan-

nel both with beam on and beam off. One can see

that there is a peak near channel 145 in the beam-on

spectrum. Fig. 3(b) shows the same spectrum with

the fitted beam-off spectrum subtracted. However,

some background still exists, mostly due to neutron-

induced reactions. This background was fitted with a

function of P0+P1x+P2x
2+P3 exp (−0.5×((x−P4)/P5)

2

and subtracted from the spectrum in Fig. 3(b). Then

a clean γ-ray peak shows up in Fig. 3(c). This peak

corresponds to 23.8 MeV according to the calibration.

Fig. 3. (a) The γ-ray spectrum with Ed(lab) =

20 keV beam-on (dotted) and beam-off spec-

trum (solid) with fit (dashed line), (b) the

same spectrum as (a) but with the fitted

beam-off spectrum subtracted, and neutron-

induced background with fit (dashed line), (c)

the γ-ray spectrum with neutron background

subtracted from (b). Near channel 145 is the

23.8 MeV γ-ray peak.

Figure 4 shows a typical proton spectrum (in one

run) from the 2H(d,p)3H reaction.

Fig. 4. A typical proton spectrum from the
2H(d, p)3H reaction at Ed(lab) = 20 keV.

3 Results

By integrating the simultaneously measured

23.8 MeV γ-ray peak and proton peak, the ratio

Yγ/Yp can be obtained.

The detected γ-ray yield per incident deuteron of

energy E0 is expressed by

Yγ = εγ(Eγ)

∫ 0

E0

Γγ

Γtot

σtot(E)

dE(E)
dn

f(E)dE . (1)

Similarly, the proton yield is

Yp = εp(Ep)

∫ 0

E0

Γp

Γtot

σtot(E)

dE(E)
dn

f(E)dE . (2)

In the above two equations εγ(Eγ) and εp(Ep) are

the detection efficiencies, Γγ/Γtot and Γp/Γtot are the

γ to total and proton to total branching ratios, re-

spectively, σtot(E) is the total cross section for the

D+D reaction, dE(E)/dn is the stopping power, and

f(E) is the fractional density of deuterium atoms in

the target at an incident deuteron energy depth. As-

suming that Γγ/Γtot and Γp/Γtot are independent of

energy[6], then the ratio Γγ/Γp is related to the yield

of the γ-rays and that of the protons as follows:

Γγ

Γp

=
Yγ

Yp

εp(Ep)

εγ(Eγ)
. (3)

By integrating the net γ-ray peak area, we ob-

tained the number of detected γ-rays to be 208. Af-

ter the efficiency correction we have Yγ/εγ(Eγ) =

(1.60±0.49)×104. Similarly, we have Yp/εp =

(1.51±0.12)×1011. In the calculation of εp, we used

the angular distribution data from Ref. [17]. Then

from equation (3) the branching ratio is calculated to

be Γγ/Γp = (1.06± 0.34)× 10−7. The error mainly

comes from the efficiency calculation of the γ-ray de-

tector and the particle detector. Fig. 5 shows the

measured Γγ/Γp ratios from the present work (solid

circle) and from Refs. [4, 6]. It should be pointed out,

that the energy loss calculation shows that the 20 keV

incident deuterons will stop in the 0.5 mg/cm2 thick

D—Ti target, and the center of mass energy Ecm lies

in fact in the range of 10 to 0 keV. According to the

theoretical calculation[18] of the energy dependence of

the cross sections, the average cross section is equal

to the cross section at Ecm = 7 keV. So, the branching

ratio Γγ/Γp, which we measured in the experiment,

corresponds to the effective center of mass energy of

∼7 keV.
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Fig. 5. The Γγ/Γp ratios in the Ecm(D-D) =

7—80 keV energy range. The solid circle is

from the present work, open triangles are from

Ref. [4] and open squares are from Ref. [6].

Fig. 6. The S(E) factor of 2H(d,γ)4He reac-

tions. The solid circle is from the present

work, the open squares are from Ref. [7].

To deduce the S factor of the 2H(d,γ)4He reac-

tion by using a linear least-squares fit, we extrap-

olated the S factor of the 2H(d,p)3H reaction[17] to

7 keV. Then using the Γγ/Γp branching ratio from

the present experiment we derived the astrophysical

S factor of the 2H(d,γ)4He reaction at the center of

mass energy ∼7 keV to be S = (6.0±2.4)×10−6 keV·b.

This value is comparable with Barnes’ results at the

effective center of mass energy 36 keV ((5.5±1.8)×10−6

keV·b), 52 keV ((5.1±0.7)×10−6 keV·b) and 123 keV

(6.4±1.8)×10−6 keV·b[7] (see Fig. 6). By linear Ex-

trapolation of the S values from the three lowest en-

ergies in Fig. 6, we obtained S(0) = 6.2±2.5×10−6

keV·b.

4 Conclusion

We extended the measurement of the branch-

ing ratio for the 2H(d,γ)4He reaction versus the
2H(d,p)3H reaction to 20 keV deuteron beam en-

ergy. The present result Γγ/Γp = (1.06±0.34)×10−7,

together with the earlier work[4, 6], shows that below a

center of mass energy of 80 keV the branching ratio is

roughly constant. This behavior can not be explained

by a purely electric quadrupole capture (E2) process.

An admixture of magnetic dipole capture might exist

(see Fig. 5 in Ref. [6]). The branching ratio at very

low energies can be used in estimating whether sig-

nificant heat production is possible from cold (D-D)

fusion reactions in the absence of enormous quantities

of escaping hazardous. We also extracted the astro-

physical S factor for the 2H(d,γ)4He reaction at the

effective center of mass energy ∼7 keV. Compared

with earlier results[7], the present result means that

from Ecm = 123 keV to 7 keV the S value is almost

energy independent, and that the extrapolated S(0)

value should be about 30 times larger than that esti-

mated previously[11].

We thank Jiang Weisheng and Cui Baoqun for
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