Dynamically generated resonances from the vector octet－baryon decuplet interaction and their radiative decays into γ－baryon decuplet ${ }^{*}$

SUN Bao－Xi（孙宝正）$)^{1,2 ; 1}$ ）Sourav Sarkar ${ }^{3}$ E．Oset ${ }^{2}$ M．J．Vicente Vacas ${ }^{2}$
1 （Institute of Theoretical Physics，College of Applied Sciences，Beijing University of Technology，Beijing 100124，China）
2 （Departamento de Física Teórica and IFIC，Centro Mixto Universidad de Valencia－CSIC， Institutos de Investigación de Paterna，Aptdo．22085， 46071 Valencia，Spain）
3 （Variable Energy Cyclotron Centre，1／AF，Bidhannagar，Kolkata 700064，India）

Abstract

The dynamically generated resonances from vector meson－baryon decuplet are studied using La－ grangians of the hidden gauge theory for vector interactions．One shows that some of the generated states can be associated with some known baryon resonances in the PDG data，while others are predictions for new states．Furthermore，we calculate the radiative decay widths of these resonances into a photon and a baryon decuplet．

Key words dynamically generated resonances，chiral dynamics，hidden gauge formalism for vector meson interaction

PACS 13．75．Lb，12．40．Vv，14．40Cs

1 Introduction

The chiral unitary approach has been broadly used in the study of pseudoscalar－pseudoscalar and pseudoscalar－baryon interactions，where it is shown to generate many mesonic and baryonic resonances， respectively ${ }^{[1-5]}$ ．From the hidden gauge symmetry formalism，the vector meson interaction is included in the Lagrangian，and then the resonances generated in the vector－vector meson interaction and vector－ baryon interaction are obtained ${ }^{[6-10]}$ ．In this talk， we will introduce our recent work on how to generate resonances dynamically from the vector octet－baryon decuplet interaction，and then we will discuss the ra－ diative decay into γ－baryon decuplet of these dynam－ ically generated resonances ${ }^{[9,11]}$ ．

2 Formalism

The interacting Lagrangian of three vector mesons
in the hidden gauge formalism can be written as ${ }^{[12]}$

$$
\begin{align*}
\mathcal{L}_{V V V}= & \mathrm{i} \frac{M_{V}}{2 f}\left\langle\left(\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}\right) V^{\mu} V^{\nu}\right\rangle= \\
& \mathrm{i} \frac{M_{V}}{2 f}\left\langle\left(V^{\nu} \partial_{\mu} V_{\nu}-\partial_{\mu} V_{\nu} V^{\nu}\right) V^{\mu}\right\rangle, \tag{1}
\end{align*}
$$

with M_{V} the vector meson mass and $f=93 \mathrm{MeV}$ the pion decay constant．

The coupling of two pseudoscalar mesons and a vector meson takes the the similar form of

$$
\begin{equation*}
\mathcal{L}_{V P P}=-\mathrm{i} \frac{M_{V}}{2 f}\left\langle\left(\phi \partial_{\mu} \phi-\partial_{\mu} \phi \phi\right) V^{\mu}\right\rangle . \tag{2}
\end{equation*}
$$

The ϕ and V_{μ} matrices are the usual $S U(3)$ matri－ ces containing the pseudoscalar mesons and vector mesons respectively

$$
\phi \equiv\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & \pi^{+} & \mathrm{K}^{+} \tag{3}\\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & \mathrm{~K}^{0} \\
\mathrm{~K}^{-} & \overline{\mathrm{K}}^{0} & -\frac{2}{\sqrt{6}} \eta_{8}
\end{array}\right)
$$

[^0]and
\[

V_{\mu} \equiv\left($$
\begin{array}{ccc}
\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & \rho^{+} & \mathrm{K}^{*+} \tag{4}\\
\rho^{-} & -\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & \mathrm{~K}^{* 0} \\
\mathrm{~K}^{*-} & & \overline{\mathrm{K}}^{* 0}
\end{array}
$${ }_{\mu} .\right.
\]

Therefore, the same approximations that we make for the vector mesons as in Fig. 1, neglecting the the three-momentum versus their mass, are also done for the baryons and then all the amplitudes take the form

$$
\begin{equation*}
V_{i j}=-C_{i j} \frac{1}{4 f^{2}}\left(k^{0}+k^{00}\right) \vec{\epsilon} \cdot \overrightarrow{\epsilon^{\prime}} \tag{5}
\end{equation*}
$$

where $k^{0}, k^{\prime 0}$ are the energies of the incoming and outgoing vector meson respectively. The amplitudes are thus exactly the ones for $\mathrm{PB} \rightarrow \mathrm{PB}$ apart for the factor $\vec{\epsilon} \cdot \overrightarrow{\epsilon^{\prime}}$.

Comparing Eq. (1) and Eq. (2), we can obtain the coupling constants for the reaction $\mathrm{B}+\mathrm{V} \rightarrow \mathrm{B}^{\prime}+\mathrm{V}^{\prime}$ similarly to the baryon decuplet-pseudoscalar meson coupling constants in Ref. [5].

Fig. 1. Diagrams contributing to the pseudo-scalar-baryon (a) or vector- baryon (b) interaction via the exchange of a vector meson leading to the effective vector-baryon contact interaction which is used in the Bethe-Salpeter equation

The anomalous term on the process $\rho \Delta \rightarrow \rho \Delta$ is depicted in Fig. 2, where an intermediate $\omega \mathrm{N}$ state is included. The contributions of the anomalous term to the $\rho \Delta \rightarrow \rho \Delta$ amplitude compared to V are shown in Fig. 3. It is apparent that the contribution of the anomalous term is reasonably smaller than the dominant one of vector meson exchange, hence, in the following calculation, all contributions from anomalous terms are neglected.

Fig. 2. Term with intermediate $\omega \mathrm{N}$ in the $\rho \Delta \rightarrow \rho \Delta$ interaction, involving the anomalous $\rho \omega \pi$ coupling and pion exchange.

Fig. 3. The real and imaginary parts of the anomalous $T_{\rho \Delta \rightarrow \rho \Delta}$ with a intermediate $\omega \mathrm{N}$ state compared to V as a function of \sqrt{s} for $q_{\text {max }}=770 \mathrm{MeV}$.
Having thus obtained the matrix V of Eq. (5), it is used as the kernel of the Bethe Salpeter equation to obtain the transition matrix fulfilling exact unitarity in coupled channels. This leads us to the matrix equation

$$
\begin{equation*}
T=(1-V G)^{-1} V . \tag{6}
\end{equation*}
$$

In Eq. (6), V factorizes on shell and the diagonal matrix G stands for the loop function of a vector meson and a baryon. Since we calculate the inverse of the matrix $1-V G$ in the program directly, the self-consistency of Bethe-Salpeter is realized automatically.

3 Results

A summary is presented in Table 1 where the 10 dynamically generated states have been listed along with their possible PDG counterparts including their present status and properties. We found the states are furthermore degenerate in $J^{P}=1 / 2^{-}, 3 / 2^{-}, 5 / 2^{-}$.

With the interaction Lagrangian between the vector meson and the photon ${ }^{[12]}$

$$
\begin{equation*}
\mathcal{L}_{V \gamma}=-M_{V}^{2} \frac{e}{\tilde{g}} A_{\mu}\left\langle V^{\mu} Q\right\rangle \tag{7}
\end{equation*}
$$

the radiative decay width can be calculated as ${ }^{[11]}$

$$
\begin{equation*}
\Gamma_{\gamma}=\frac{1}{2 \pi} \frac{2}{3} \frac{M_{B}}{M_{R}} q\left|t_{\gamma}\right|^{2} . \tag{8}
\end{equation*}
$$

The radiative decay widths for the 10 dynamically generated resonances into a photon and a baryon decuplet for the different strangeness and isospin are listed in Table 2. It can be seen that the radiative decay widths are of the order of 1 MeV . Moreover, we found the radiative decay widths are different about one order of magnitude between the widths for different charge states of the same resonance, which should justify efforts for a systematic measurement of these observables.

Table 1. The properties of the 10 dynamically generated resonances and their possible PDG counterparts ${ }^{[13]}$.
We also include the N^{*} bump around 2270 MeV and the Δ^{*} bump around 2200 MeV .

S, I	theory			PDG data				
	pole position	real axis		name	J^{P}	status	mass	width
		mass	width					
0,1/2	$1850+i 5$	1850	11	$\mathrm{N}(2090)$	$1 / 2^{-}$	\star	1880-2180	95-414
				$\mathrm{N}(2080)$	$3 / 2^{-}$	**	1804-2081	180-450
		2270(bump)		$\mathrm{N}(2200)$	$5 / 2^{-}$	$\star \star$	1900-2228	130-400
0,3/2	$1972+i 49$	1971	52	Δ (1900)	$1 / 2^{-}$	**	1850-1950	140-240
				Δ (1940)	$3 / 2^{-}$	\star	1940-2057	198-460
				Δ (1930)	$5 / 2^{-}$	$\star \star \star$	1900-2020	220-500
		2200 (bump)		$\Delta(2150)$	$1 / 2^{-}$	\star	2050-2200	120-200
$-1,0$	$2052+i 10$	2050	19	$\Lambda(2000)$??	\star	1935-2030	73-180
$-1,1$	$1987+i 1$	1985	10	$\Sigma(1940)$	$3 / 2^{-}$	$\star \star \star$	1900-1950	150-300
	$2145+i 58$	2144	57	$\Sigma(2000)$	$1 / 2^{-}$	\star	1944-2004	116-413
	$2383+i 73$	2370	99	$\Sigma(2250)$??	$\star \star \star$	2210-2280	60-150
				$\Sigma(2455)$??	**	2455 ± 10	100-140
$-2,1 / 2$	$2214+i 4$	2215	9	$\Xi(2250)$??	$\star \star$	2189-2295	30-130
	$2305+i 66$	2308	66	$\Xi(2370)$??	**	2356-2392	75-80
	$2522+i 38$	2512	60	$\Xi(2500)$??	\star	2430-2505	59-150
$-3,0$	$2449+i 7$	2445	13	$\Omega(2470)$??	**	2474 ± 12	72 ± 33

Table 2. The predicted radiative decay widths of the 10 dynamically generated resonances for different isospin projection I_{3}. Their possible PDG counterparts are also listed ${ }^{[13]}$. Note that the $\Sigma(2000)$ could be the spin parter of the $\Sigma(1940)$, in which case the radiative decay widths would be those of the $\Sigma(1940)$.

S, I	theory	PDG data		Predicted width (keV) for I_{3}						
	pole position/ MeV	name	J^{P}	-3/2	-1	-1/2	0	$1 / 2$	1	$3 / 2$
0,1/2	$1850+i 5$	N(2090)	$1 / 2^{-}$			722		722		
		$\mathrm{N}(2080)$	$3 / 2^{-}$							
0,3/2	$1972+i 49$	$\Delta(1900)$	$1 / 2^{-}$	1582		203		143		1402
		$\Delta(1940)$	$3 / 2^{-}$							
		$\Delta(1930)$	$5 / 2^{-}$							
$-1,0$	$2052+i 10$	$\Lambda(2000)$? ${ }^{\text {a }}$				583			
$-1,1$	$1987+i 1$	$\Sigma(1940)$	$3 / 2^{-}$		20		199		561	
	$2145+i 58$	$\Sigma(2000)$	$1 / 2^{-}$		2029		206		399	
	$2383+i 73$	$\Sigma(2250)$??		537		277		182	
		$\Sigma(2455)$? ${ }^{\text {? }}$							
$-2,1 / 2$	$2214+i 4$	$\Xi(2250)$??			54		815		
	$2305+i 66$	$\Xi(2370)$??			1902		320		
	$2522+i 38$	$\Xi(2500)$??			165		44		
$-3,0$	$2449+i 7$	$\Omega(2470)$?				330			

References

1 Oller J A, Oset E. Nucl. Phys. A, 1997, 620: 438; [Erratumibid. A, 1999, 652: 407] [arXiv:hep-ph/9702314]
2 Oller J A, Oset E, Pelaez J R. Phys. Rev. D, 1999, 59: 074001; [Erratum-ibid. D, 60: 099906 (1999 ERRAT, D75, 099903.2007)] [arXiv:hep-ph/9804209]

3 Oset E, Ramos A. Nucl. Phys. A, 1998, 635: 99
4 Inoue T, Oset E, Vicente Vacas M J. Phys. Rev. C, 2002, 65: 035204; [arXiv:hep-ph/0110333]
5 Sarkar S, Oset E, Vicente Vacas M J. Nucl. Phys. A, 2005, 750: 294 [Erratum-ibid. A, 2006, 780: 78]
6 Molina R, Nicmorus D, Oset E. Phys. Rev. D, 2008, 78:

114018; arXiv:0809.2233 [hep-ph]
7 GENG L S, Oset E. Phys. Rev. D, 2009, 79: 074009; arXiv:0812.1199 [hep-ph]
8 Gonzalez P, Oset E, Vijande J. Phys. Rev. C, 2009, 79: 025209; [arXiv:0812.3368 [hep-ph]]
9 Sarkar S, SUN B X, Oset E, Vacas M J V. arXiv:0902.3150 [hep-ph]
10 Oset E, Ramos A. arXiv:0905.0973 [hep-ph]
11 SUN B X, Oset E. arXiv:0903.5138 [hep-ph]
12 Nagahiro H, Roca L, Hosaka A, Oset E. Phys. Rev. D, 2009, 79: 014015; arXiv:0809.0943 [hep-ph]
13 Amsler C et al (Particle Data Group). Phys. Lett. B, 2008, 667: 1

[^0]: Received 7 August 2009
 ＊Supported by DGICYT contract number FIS2006－03438．This research is part of the EU Integrated Infrastructure Initiative Hadron Physics Project under contract number RII3－CT－2004－506078．B．X．Sun acknowledges support from the National Natural Science Foundation of China under grant number 10775012

 1）E－mail：sunbx＠bjut．edu．cn
 ©2009 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

