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Abstract The unitary isobar model MAID2007 has been used to analyze the recent data of pion electropro-

duction. The model contains all four-star resonances in the region below W = 2 GeV and both single-Q2 and

Q2 dependent transition form factors could be obtained for the Delta, Roper, D13(1520), S11(1535), S31(1620),

S11(1650), D15(1675), F15(1680) and P13(1720). From the complete world data base, including also π
− data

on the neutron, also Q2 dependent neutron form factors are obtained. For all transition form factors we also

give convenient numerical parameterizations that can be used in other reactions. Furthermore, we show how

the transition form factors can be used to obtain empirical transverse charge densities and our first results are

given for the Roper, the S11 and D13 resonances.
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1 Introduction

Our knowledge about the excitation spectrum of

the nucleon was originally provided by elastic pion-

nucleon scattering. All the resonances listed in the

Particle Data Tables[1] have been identified by partial-

wave analyses of this process with both Breit-Wigner

and pole extraction techniques. From such analyses

we know the resonance masses, widths, and branch-

ing ratios into the πN and ππN channels. These

are reliable parameters for the four-star resonances,

with only few exceptions. In particular, there remains

some doubt about the structure of two prominent res-

onances, the Roper P11(1440), which appears unusu-

ally broad, and the S11(1535), where the pole can not

be uniquely determined, because it lies close to the

ηN threshold.

On the basis of these relatively firm grounds, ad-

ditional information can be obtained for the elec-

tromagnetic (e.m.) γNN∗ couplings through pion

photo- and electroproduction. These couplings are

described by electric, magnetic, and charge transition

form factors (FFs), G∗

E(Q2), G∗

M(Q2), and G∗

C(Q2), or

by linear combinations thereof as helicity amplitudes

A1/2(Q
2), A3/2(Q

2), and S1/2(Q
2). So far we have

some reasonable knowledge of the transverse ampli-

tudes A1/2 and A3/2 at the real photon point, which

are tabulated in the Particle Data Tables. For finite

Q2 the information found in the literature is scarce

and until recently practically nonexistent for the lon-

gitudinal amplitudes S1/2.

A big step forward was done during the last

decade by the experiments at JLab, where electro-

production of π
0 and π

+ have been measured on the

proton. Most of these experiments did not use po-

larization degrees of freedom, but the virtual photon

in electroproduction always carries longitudinal and

transverse polarizations which are accessible in exper-

iments with large azimuthal angle coverage. In addi-

tion, also some experiments, especially in the ∆(1232)

region were performed with polarized electrons, po-

larized target and even an almost complete experi-

ment was done in Hall A with 16 unpolarized and

recoil polarization observables at Q2 = 1.0 GeV2.

With our unitary isobar model MAID we have an-

alyzed the electroproduction data and have obtained

transition form factors for all 13 four-star resonances

below W = 2 GeV. For the proton target in most cases

we could obtain both single-Q2 and Q2-dependent

transition form factors, for the neutron target we pa-

rameterized the Q2 dependence in a simpler form as

far as the existing data from the world data base
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allows.

Furthermore, the precise e.m. FF data, extracted

from experiment, allow us to map out the quark

charge densities in a baryon. It was shown possible to

define a proper density interpretation of the form fac-

tor data by viewing the baryon in a light-front frame.

This yields information on the spatial distribution of

the quark charge in the plane transverse to the line-

of-sight. In this way, the quark transverse charge den-

sities were mapped out in the nucleon[2, 3], and in the

deuteron[4] based on empirical FF data. To under-

stand the e.m. structure of a nucleon resonance, it is

of interest to use the precise transition FF data to re-

veal the spatial distribution of the quark charges that

induce such a transition. In this way, using the empir-

ical information on the N→N∗ transition form factors

from the MAID analysis[5], the N → ∆(1232) transi-

tion charge densities have been mapped out in Ref. [3]

and the N → N∗(1440) in Ref. [6]. In this work, we

will extend this method to map out the quark transi-

tion charge densities inducing the N→S11(1535) and

N→D13(1520) e.m. excitations.

2 The MAID ansatz

In the spirit of a dynamical approach to pion

photo- and electroproduction, the T -matrix of the

unitary isobar model is set up with the following

ansatz

tγπ(W ) = tB
γπ

(W )+ tR
γπ

(W ) (1)

of a background and a resonance T -matrix, where

each of them is individually unitary. This is a very

important starting point that will allow us later to

clearly separate resonance and background ampli-

tudes within a Breit-Wigner concept.

For a specific partial wave the background T -

matrix is set-up by a potential multiplied by pion

nucleon scattering amplitudes in accordance with the

K-matrix approximation,

tB,α
γπ

(W,Q2) = vB,α
γπ

(W,Q2) [1+itα

πN(W )] , (2)

where only the on-shell part of the pion nucleon

rescattering is maintained and the off-shell part from

pion loop contributions is neglected. At threshold

it is well known that this is a bad approximation for

γ,π0 production, however in the resonance region it is

well justified as the main contribution from pion loop

effects is absorbed by the nucleon resonance dressing.

The background potential vB,α
γπ

(W,Q2) is de-

scribed by Born terms obtained with an energy de-

pendent mixing of pseudovector-pseudoscalar πNN

coupling and t-channel vector meson exchanges. The

mixing parameters and coupling constants were de-

termined from an analysis of nonresonant multipoles

in the appropriate energy regions. In the latest ver-

sion, MAID2007, the S, P , D and F waves of the

background contributions are unitarized as explained

above, where the pion-nucleon elastic scattering am-

plitudes, tα

πN = [ηα exp(2iδα)−1]/2i, are described by

the phase shifts δα and the inelasticity parameters ηα

taken from the GWU/SAID analysis[7].

For the resonance contributions we follow Ref. [8]

and assume Breit-Wigner forms for the resonance

shape,

tR,α
γπ

(W,Q2) =

ĀR
α
(W,Q2)

fγN(W )Γtot MR fπN(W )

M 2
R−W 2− iMR Γtot

eiφR , (3)

where fπN is the usual Breit-Wigner factor describing

the decay of a resonance R with total width Γtot(W )

and physical mass MR. The expressions for fγN, fπN

and Γtot are given in Ref. [8]. The phase φR(W )

in Eq. (3) is introduced to adjust the total phase

such that the Fermi-Watson theorem is fulfilled be-

low two-pion threshold. For the S- and P -wave mul-

tipoles we extend this unitarization procedure up to

W = 1400 MeV. Because of a lack of further infor-

mation, we assume that the phases φR are constant

at the higher energies. In particular we note that

the phase φR for the P33(1232) excitation vanishes at

W = MR = 1232 MeV for all values of Q2. For this

multipole we may even apply the Fermi-Watson the-

orem up to W ≈ 1600 MeV because the inelasticity

parameter ηα remains close to 1. For the D- and F -

wave resonances, the phases φR are assumed to be

constant and determined from the best fit.

While in the original version of MAID only

the 7 most important nucleon resonances were in-

cluded with mostly only transverse e.m. cou-

plings, in our new version all 13 four-star reso-

nances below W = 2 GeV are included. These

are P33(1232), P11(1440), D13(1520), S11(1535),

S31(1620), S11(1650), D15(1675), F15(1680),

D33(1700), P13(1720), F35(1905), P31(1910) and

F37(1950).

3 Transition form factors

The resonance couplings ĀR
α
(W,Q2) in most cases

are independent of the total energy and depend

only on Q2. A typical energy dependence occurs in

MAID2007 e.g. for the ∆(1232) resonance in terms

of the virtual photon three-momentum k(W,Q2). For

all other resonances which are discussed here, how-
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ever, we can assume a simple Q2 dependence, Āα(Q2).

They can be taken as constants in a single-Q2 anal-

ysis, e.g. in photoproduction, where Q2 = 0 but also

at any fixed Q2, where enough data with W and θ

variation is available, see Table 1. Alternatively they

can also be parameterized as functions of Q2 in an

ansatz like

Āα(Q2) = Āα(0)(1+a1Q
2+a2Q

4+a3Q
8)e−b1Q2

. (4)

With such an ansatz it is possible to determine the

parameters Āα(0) from a fit to the world database of

photoproduction, while the parameters ai and b1 can

be obtained from a combined fitting of all electropro-

duction data at different Q2. The latter procedure we

call the “superglobal fit”. In MAID the photon cou-

plings Āα are direct input parameters. They are di-

rectly related to the helicity couplings A1/2,A3/2 and

S1/2 of nucleon resonance excitation. For further de-

tails see Ref.[5].

In Tables 2, 3 and 4 we give the numerical values

of the parameters for our Q2 dependent, “superglobal

fits”. Our parametrization of the ∆(1232) form fac-

tors are more complicated, in particular due to build-

in requirements from low energy theorems in the long

wavelength limit, details are discussed in Ref. [5].

Table 1. Database of pion electroproduction for

energies above the ∆ resonance up to W =

1.7 GeV, used in our single-Q2 transition form

factor analysis.

reference year reaction Q2/GeV2

Joo et al.[9] 2002 pπ
0 0.4−1.8

Joo et al.[10] 2004 nπ
+ 0.4−0.65

Laveissiere et al.[11] 2004 pπ
0 1.0

Egiyan et al.[12] 2006 nπ
+ 0.3−0.6

Ungaro et al.[13] 2006 pπ
0 3.0−6.0

Park et al.[14] 2008 nπ
+ 1.7−4.5

Table 2. New parameterizations of our transition form factors, Eq. (4), for proton targets.

N∗, ∆∗ Āα(0) (10−3GeV−1/2) a1/GeV−2 a2/GeV−4 a3/GeV−8 b1/GeV−2

P11(1440)p A1/2 −61.4 0.871 −3.516 −0.158 1.36

S1/2 4.2 40. 0 1.50 1.75

D13(1520)p A1/2 −27.4 8.580 −0.252 0.357 1.20

A3/2 160.6 −0.820 0.541 −0.016 1.06

S1/2 −63.5 4.19 0 0 3.40

D15(1675)p A1/2 15.3 0.10 0 0 2.00

A3/2 21.6 1.91 0.18 0 0.69

S1/2 1.1 0 0 0 2.00

F15(1680)p A1/2 −25.1 3.780 −0.292 0.080 1.25

A3/2 134.3 1.016 0.222 0.237 2.41

S1/2 −44.0 3.783 0 0 1.85

D33(1700) A1/2 226. 1.91 0 0 1.77

A3/2 210. 0.88 1.71 0 2.02

S1/2 2.1 0 0 0 2.00

P13(1720)p A1/2 73.0 1.89 0 0 1.55

A3/2 −11.5 10.83 −0.66 0 0.43

S1/2 −53.0 2.46 0 0 1.55

Table 3. Maid2007 parameterizations, Eq. (4),

for proton targets (a2 = a3 =0).

N∗, ∆∗ Āα(0) a1 b1

S11(1535)p A1/2 66.4 1.608 0.70

S1/2 −2.0 23.9 0.81

S31(1620) A1/2 65.6 1.86 2.50

S1/2 16.2 2.83 2.00

S11(1650)p A1/2 33.3 1.45 0.62

S1/2 −3.5 2.88 0.76

For all other resonances the parameters are listed

in the three tables. Due to the 2008 π
+ data that

have been recently included in our database, we find

differences compared to our MAID2007 parametriza-

tion for the following 6 proton transition form fac-

tors to P11(1440), D13(1520), D33(1440), D15(1675),

F15(1680) and P13(1720).

Above the third resonance region there is an en-

ergy gap between 1800—1900 MeV, where no four-

star resonance can be found. Beyond this gap and up

to 2 GeV three more four-star resonances, F35(1905),

P31(1910) and F37(1950) are reported by the PDG,

which are also included in MAID. In electroproduc-

tion nothing is practically known about these states



1072 Chinese Physics C (HEP & NP) Vol. 33

and we have just introduced their reported photon

couplings, multiplied with a simple gaussian form fac-

tor, exp(−2.0Q2/GeV2). In MAID their main role is

to define a global high-energy behavior that is needed

for applications with dispersion relations and sum

rules. Future experiments in this region will give us

the necessary information to map out these form fac-

tors in more details.

Table 4. Same as Table 3 for neutron targets.

N∗ Āα(0) a1 b1

P11(1440)n A1/2 54.1 0.95 1.77

S1/2 −41.5 2.98 1.55

D13(1520)n A1/2 −76.5 −0.53 1.55

A3/2 −154. 0.58 1.75

S1/2 13.6 15.7 1.57

S11(1535)n A1/2 −50.7 4.75 1.69

S1/2 28.5 0.36 1.55

S11(1650)n A1/2 9.3 0.13 1.55

S1/2 10. −0.50 1.55

D15(1675)n A1/2 −61.7 0.01 2.00

A3/2 −83.7 0.01 2.00

S1/2 0 0 0

F15(1680)n A1/2 27.9 0 1.20

A3/2 −38.4 4.09 1.75

S1/2 0 0 0

P13(1720)n A1/2 −2.9 12.70 1.55

A3/2 −31.0 5.00 1.55

S1/2 0 0 0

3.1 First resonance region

The ∆(1232)P33 is the only nucleon resonance

with a well-defined Breit-Wigner resonance position,

MR = 1232 MeV, because it is an ideal single-channel

resonance, where the Breit-Wigner position is iden-

tical to the K-matrix pole position. Therefore, and

due to the Watson theorem, the Nucleon to ∆(1232)

transition is the only case, where we can obtain the

form factors in a practically model independent way.

Results for the ∆(1232) transitions have been dis-

cussed very often in recent years. The magnetic form

factor is very well known up to high momentum trans-

fer of Q2 = 10 GeV2 and can be parameterized in a

surprisingly simple form

G∗

M(Q2) = 3GD(Q2)e−0.21Q2/GeV2

(5)

with the standard dipole form factor GD. The electric

and Coulomb form factors are much smaller and are

usually given as ratios to the magnetic form factor.

While there is agreement between different analyses

on the E/M ratio, which is practically constant at a

few percent with a negative sign the S/M ratio is also

negative, but reaches large magnitudes of around 25%

at the Q2 ≈ 6 GeV2 in the JLab analysis, whereas in

the MAID analysis the magnitude is only around 10%

with an asymptotically almost zero slope as predicted

in calculations by Buchmann[15] and Ji et al.[16].

3.2 Second resonance region

Above the two-pion threshold, we can no longer

apply the two-channel unitarity and consequently the

Watson theorem does not hold anymore. Therefore,

the background amplitude of the partial waves does

not vanish at resonance as this was the case for the

∆(1232) resonance. As an immediate consequence

the resonance-background separation becomes model-

dependent. In MAID2007 we choose to separate the

background and resonance contributions according to

the K-matrix approximation, Eqs. (2), (3). Further-

more, we recall that the absolute values of the he-

licity amplitudes are correlated with the values used

for the total resonance width ΓR and the single-pion

branching ratio βπ, giving rise to additional uncer-

tainties from these hadronic resonance parameters.

On the experimental side, the data at the higher en-

ergies are no longer as abundant as in the ∆ region.

However, the large data set recently obtained mainly

by the CLAS collaboration (see Table 1) enabled us

to determine the transverse and longitudinal helicity

couplings as functions of Q2 for all the four-star reso-

nances below 1800 MeV. These data are available in

the kinematical region of 1100 MeV < W < 1680 MeV

and 0.4 GeV2 < Q2 < 1.8 GeV2.

The helicity amplitudes for the Roper resonance

P11(1440) are shown in Fig. 1. Our latest super-

global solution (solid lines) is in reasonable agree-

ment with the single-Q2 analysis. The figure shows

a zero crossing of the transverse helicity amplitude

at Q2 ≈ 0.7 GeV2 and a maximum at the relatively

large momentum transfer Q2 ≈ 2.0 GeV2. The longi-

tudinal Roper excitation rises to large values around

Q2 ≈ 0.5 GeV2 and in fact produces one of the

strongest longitudinal amplitude we can find in our

analysis. This answers the question raised by Li and

Burkert[17] whether the Roper resonance is a radi-

ally excited 3-quark state or a quark-gluon hybrid,

because in the latter case the longitudinal coupling

should vanish completely.

Figure 2 shows our results for the S11(1535) reso-

nance. The red single-Q2 data points show our 2007

analysis, while the black triangles are the 2008 analy-

sis of Ref. [18]. Our Q2 dependent analysis describes

all data points quite well, except for the longitudinal

form factor in the region around Q2 = 2 GeV2.
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Fig. 1. Transverse and longitudinal form fac-

tors of the P11(1440) Roper resonance. The

red circles are the MAID analysis of 2007
[5]

and 2008, and the black triangles are the

2008 JLab analysis
[18]

. The data point of the

transverse form factor at Q2 = 0 is the PDG

value
[1]

.

Fig. 2. Transverse and longitudinal form fac-

tors of the S11(1535) resonance. Notation as

in Fig. 1.

While the inclusion of the 2008 Park π
+ data[14]

did not modify our 2007 solution for the S11 res-

onance, we find some significant deviations for the

D13(1520) resonance, see Fig. 3. Also for this reso-

nance the JLab partial wave analysis of 2008 agrees

well with the MAID analysis for most cases, however

a significant deviation remains for A1/2 in the region

of Q2 = 2 GeV2.

Fig. 3. Transverse and longitudinal form fac-

tors of the D13(1520) resonance. Notation as

in Fig. 1.

3.3 Third resonance region

The S31(1620) is rather weakly excited by the elec-

tromagnetic probe. The PDG A1/2 value at the pho-

ton point is only (27±11) ·10−3 GeV−1/2 and below

Q2 = 2 GeV2 we obtain similar values, at higher Q2 it

is consistent with zero, same as for the longitudinal

form factor S1/2.

Also for the second S11 resonance the longitudi-

nal coupling is practically zero, but for the transverse

form factor we find a solution shown in Fig. 4, which

has the same shape as the first S11 resonance.

Fig. 4. Transverse form factors of the S11(1650)

resonance. Notation as in Fig. 1.

A similar situation as for the D13 resonance we

obtain for the F15(1680), shown in Fig. 5.
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Fig. 5. Transverse and longitudinal form fac-

tors of the F15(1680) resonance. Notation as

in Fig. 1.

For both resonances the helicity non-conserving

amplitude A3/2 dominates for real photons and with

increasing values of Q2, A3/2 drops faster than the he-

licity conserving amplitude A1/2. As a consequence

the asymmetry

A(Q2) =
|A1/2 |2 − |A3/2 |2
|A1/2 |2 + |A3/2 |2

(6)

changes rapidly from values close to −1 to values near

+1 over a small Q2 range. As a comparison, the asym-

metry A for the ∆(1232) resonance is practically con-

stant over this Q2 range with a value ≈ −0.5. This

again shows the special role of the ∆ resonance, where

the helicity conservation is not observed.

Finally, in Figs. 6 and 7 we show the situation for

the D15(1675) and P13(1720) resonances, both with-

out a significant longitudinal coupling. Unlike the

situation discussed before, these two resonances have

dominantly helicity 3/2 transitions, whereas the A1/2

transition is consistent with zero. As for the ∆(1232)

these are further examples for which the pQCD pre-

diction for helicity conservation does not hold in the

Q2 region below 5 GeV2.

Fig. 6. Transverse form factor of the D15(1675)

resonance. Notation as in Fig. 1.

Fig. 7. Transverse form factor of the P13(1720)

resonance. Notation as in Fig. 1.

4 Empirical transverse charge transi-

tion densities

In the following, we will consider the e.m. N →
N∗ transition when viewed from a light front mov-

ing towards the baryon. Equivalently, this corre-

sponds with a frame where the baryons have a large

momentum-component along the z-axis chosen along

the direction of P = (p + p′)/2, where p (p′) are

the initial (final) baryon four-momenta. We indicate

the baryon light-front + component by P + (defining

a± ≡ a0±a3). We can furthermore choose a symmet-

ric frame where the virtual photon four-momentum

q has q+ = 0, and has a transverse component (ly-

ing in the xy-plane) indicated by the transverse vec-

tor ~q⊥, satisfying q2 = −~q 2
⊥
≡ −Q2. In such a sym-

metric frame, the virtual photon only couples to for-

ward moving partons and the + component of the

electromagnetic current J+ has the interpretation of

the quark charge density operator. It is given by

J+(0) = +2/3 ū(0)γ+u(0)−1/3 d̄(0)γ+d(0), consider-

ing only u and d quarks. Each term in the expression

is a positive operator since q̄γ+q∝ |γ+q|2.
We define a transition charge density for the un-

polarized N→N∗ transition by the Fourier transform

ρNN∗

0 (~b) ≡
∫

d2~q⊥
(2π)2

e−i ~q⊥·~b 1

2P +
×

〈

P+,
~q⊥
2

,λ |J+(0) |P +,−~q⊥
2

,λ

〉

, (7)
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where λ denotes the nucleon and N∗ light-front he-

licities, ~q⊥ = Q(cosφqêx + sinφqêy), and where the

2-dimensional vector ~b denotes the position (in the

xy-plane) from the transverse c.m. of the baryons.

First we will consider the case of j = 1/2 reso-

nances, as P11 and S11. These cases are very similar

to the nucleon and can be worked out in an analogous

way. The Fourier transform in Eq. (7) leads to

ρNN∗

0 (~b) =

∫
∞

0

dQ

2π
QJ0(bQ)F NN∗

1 (Q2), (8)

where Jn denotes the cylindrical Bessel function of

order n. Note that ρNN∗

0 only depends on b = |~b|.
It has the interpretation of the quark (transition)

charge density in the transverse plane which induces

the N→N∗ excitation.

The above unpolarized transition charge density

involves only one of the two independent N→N∗ e.m.

form factors. To extract the information encoded in

FNN∗

2 , we consider the transition charge densities for

a transversely polarized N and N∗. We denote this

transverse polarization direction by ~S⊥ = cosφSêx +

sinφSêy. The transverse spin state can be expressed

in terms of the light front helicity spinor states as
∣

∣

∣
s⊥ = +

1

2

〉

=

(

∣

∣

∣
λ = +

1

2

〉

+eiφS

∣

∣

∣
λ =−1

2

〉

)

/√
2, with

s⊥ the nucleon spin projection along the direction of
~S⊥.

We can then define a transition charge density for

a transversely polarized N and N∗, both along the

direction of ~S⊥ as

ρNN∗

T (~b) ≡
∫

d2~q⊥
(2π)2

e−i ~q⊥·~b 1

2P +
×

〈

P+,
~q⊥
2

,s′

⊥
|J+(0) |P +,−~q⊥

2
,s⊥

〉

. (9)

Using Eq. (8), the Fourier transform of Eq. (9) can

be worked out for the case s′

⊥
= s⊥ as

ρNN∗

T (~b) = ρNN∗

0 (b)+sin(φb −φS)×
∫
∞

0

dQ

2π

Q2

(M∗+MN)
J1(bQ)F NN∗

2 (Q2), (10)

where the second term, which describes the deviation

from the circular symmetric unpolarized charge den-

sity, depends on the orientation of ~b = b(cosφbêx +

sinφbêy). In the following we choose the transverse

spin along the x-axis (φS = 0).

In Fig. 8 we show the results for the N→P11(1440)

transition charge densities both for the unpolarized

case and for the case of transverse polarization in for

the proton and in Fig. 9 for the neutron. We use the

empirical information on the N→N∗(1440) transition

FFs as given in our parametrization of this work.

It is seen that for the transition on a proton, which

is well constrained by data, there is an inner region

of positive quark charge concentrated within 0.5 fm,

accompanied by a relatively broad band of negative

charge extending out to about 1 fm.
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Fig. 8. Quark transverse charge density corre-

sponding to the p → P11(1440) e.m. transi-

tion. Left panel: When p and N∗ are un-

polarized (ρpN∗

0 ). Right panel: When p and

N∗ are polarized along the x-axis (ρpN∗

T ). The

light (dark) regions correspond with positive

(negative) densities. For the p → P11(1440)

e.m. transition FFs, we use the improved

MAID2008 fit of this work.
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Fig. 9. Quark transverse charge density corre-

sponding to the n → P11(1440) e.m. transi-

tion. Left panel: When n and N∗ are unpolar-

ized (ρnN∗

0 ). Right panel: When n and N∗ are

polarized along the x-axis (ρnN∗

T ). The light

(dark) regions correspond with positive (neg-

ative) densities. For the n → P11(1440) e.m.

transition FFs, we use the MAID2007 fit.

When polarizing the baryon in the transverse

plane, the large value of the magnetic transition

strength at the real photon point, yields a sizeable

shift of the charge distribution, inducing an elec-

tric dipole moment. For the neutron, which is not

very well constrained by data, the MAID2007 anal-

ysis yields charge distributions of opposite sign com-

pared to the proton, with active quarks spreading out

over even larger spatial distances.

Figure 10 shows the unpolarized and polarized

transition charge densities from the proton to the
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Fig. 10. Quark transverse charge density cor-

responding to the p → S11(1535) e.m. tran-

sition. Left panel: When p and S11 are in a

light-front helicity +1/2 state (ρpS11

0 ). Right

panel: When p and S11 are polarized along the

x-axis with opposite spin projections (ρpS11

T ),

i.e. s⊥ = −s′⊥ = +1/2. The light (dark) re-

gions correspond with positive (negative) den-

sities. For the p → S11(1535) e.m. transition

FFs, we use the MAID2007 fit.

Fig. 11. Quark transverse charge density cor-

responding to the p → D13(1520) e.m. tran-

sition. Left panel: When p and D13 are in a

light-front helicity +1/2 state (ρpD13

0 ). Right

panel: When p and D13 are polarized along

the x-axis with spin projections (ρpD13

T ) as in

Fig. 10. The light (dark) regions correspond

with positive (negative) densities. For the

p → D13(1520) e.m. transition FFs, we use

the improved MAID2008 fit of this work.

S11(1535) resonance. It can be compared to the cor-

responding Fig. 8 for the Roper. The up quarks are

not so strongly localized and also the ring of down

quarks is less pronounced, in particular for the den-

sity corresponding to F NN∗

2 in the second panel.

Finally, in Fig. 11 we show two transition densities

from the proton to the D13(1520) resonance. Similar

to the N∆(1232) transition, also here we have 3 FFs

leading to 3 densities.

The unpolarized density is similar to the Roper

with, however, more diffuse boundaries between up

and down quarks. In addition to the dipole transi-

tion density, in this case we also get a quadrupole

density which is shown in the second panel.

5 Summary and conclusions

Using the world data base of pion photo- and elec-

troproduction and recent data from Mainz, Bonn,

Bates and JLab we have made a first attempt to

extract all longitudinal and transverse helicity am-

plitudes of nucleon resonance excitation for four-star

resonances below W = 2 GeV. For this purpose we

have extended our unitary isobar model MAID and

have parameterized the Q2 dependence of the transi-

tion amplitudes. Comparisons between single-Q2 fits

and a Q2 dependent superglobal fit give us confidence

in the determination of the helicity couplings of the

P33(1232), P11(1440), S11(1535), D13(1520) and the

F15(1680) resonances, even though the model uncer-

tainty of these amplitudes can be as large as 50% for

the longitudinal amplitudes of the D13 and F15.

These form factors were used to extract the quark

transverse charge densities inducing these transitions.

The rings of up and down quarks in these two-

dimensional representations show very different struc-

tures for the Roper, the S11 and the D13 resonances.
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