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Study of various charged ρ-meson masses in

asymmetric nuclear matter *

YAO Hai-Bo(�°Å)1) WU Shi-Shu(ÇªÍ)2)

(Center for Theoretical Physics and School of Physics, Jilin University, Changchun 130023, China)

Abstract We study the effective masses of ρ-mesons for different charged states in asymmetric nuclear matter

(ANM) using the Quantum Hadrodynamics II model. The closed form analytical results are presented for the

effective masses of ρ-mesons. We have shown that the different charged ρ-mesons have mass splitting similar

to various charged pions. The effect of the Dirac sea is also examined, and it is found that this effect is very

important and leads to a reduction of the different charged ρ-meson masses in ANM.
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1 Introduction

As is well known, pions and ρ-mesons are both

iso-vector mesons. The two introduced meson fields

have an obvious contribution to ANM. Only by con-

sidering them can one explain the electromagnetic

characteristic of finite nuclei. In recent years, pion

and ρ-meson properties have attracted great interest.

The experimental data of CERN [1, 2] and TAGX [3]

seem to support the reduction of the ρ-meson mass

in a dense medium; the latter ones in particular also

give a quantitative result when the density of the nu-

cleon medium equals 0.7ρ0, ρ0 is the saturation den-

sity, and the mass of a neutral ρ-meson reduces to

610 MeV. Subsequently, more efforts have been de-

voted to studying the effective mass of the ρ-meson

in a dense medium. There have been many published

papers[4—8] which employ different models and dif-

ferent methods for giving a reasonable explanation

of experiments. Refs. [4—7] also pointed out that

the Dirac vacuum gave an important correction to

the self-energy of the ρ-meson and led to a reduction

of the ρ-meson mass in dense matter. Recently in

Ref. [9], it was found that the masses split for the var-

ious charged states of the pion in ANM. Such mode

splitting is, in fact, a generic feature of all the isovec-

tor mesons. Therefore in this paper we study different

charged ρ-meson mass splitting cases in ANM and ex-

amine the effects of the Dirac sea on different charged

ρ-meson masses.

2 Theory

The Lagrangian density of the QHD-/ model is

given[10]

L = ψ̄(iγµ ∂µ−M)ψ− 1

2
gρψ̄γµ(τ •Φµ

ρ
)ψ+gsψ̄Φsψ−

gωψ̄γµΦ
µ
ω
ψ− igπψ̄γ5(τ •Φπ)ψ+

1

2
(∂µΦs ∂µ

Φs−m2
sΦ

2
s )+

1

2
(∂µ Φπ−gρΦρµ×Φπ) •

(∂µ
Φπ−gρΦ

µ
ρ
×Φπ)−1

2
m2

π
Φ2

π
+

1

2
gΦπmsΦsΦ

2
π
−

1

4
GµνG

µν − 1

4
Bµν

•Bµν +
1

2
m2

ω
ΦωµΦ

µ
ω

+

1

2
m2

ρ
Φρµ

•Φµ
ρ
, (1)

where

Gµν = ∂µΦων −∂ν Φωµ , (2)

Bµν = ∂µ Φρν −∂ν Φρµ−gρΦρµ
•Φρν . (3)

Here, ψ, Φπ, Φs, Φρ, and Φω represent the nucleon, π,

σ, ρ, and ω fields, respectively, and their masses are
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denoted by M , mπ, ms, mρ, and mω. This model is a

successful relativistic model for describing the prop-

erties of both nuclear matter and finite nuclei[11].

Fig. 1. One-loop self-energy diagrams for the ρ-mesons.

In this model, the ρ-N dynamics is described by

LρN =−1

2
gρψ̄γµ(τ •Φµ

ρ
)ψ . (4)

where gρ is the ρ-N coupling constant. At the self-

energy level, Eq. (4) will generate the exchange di-

agram, as shown in Fig. 1(a), and that will involve

various combinations of neutron (n) and proton (p)

for the various charged states of ρ-mesons, as shown

in Fig. 1(b, c). According to the Feynman rules , the

self-energy of the ρ-mesons reads

Π∗µν(q) =−i

∫
d4k

2π4
Tr[iΓ µiGi(k+q)iΓ ν iGj(k)] , (5)

where the subscripts i and j denote either p or n.

Γ µ = − 1

2
gργµ is the interaction vertex.

The propagator of a nucleon is

Gi(k) =GF
i (k)+GD

i (k) , (6)

where

GF
i (k) =

6 k+M∗

i

k2−M∗2
i +iε

, (7)

GD
i (k) =

iπ(6 k+M∗

i )

E∗
i

δ(k0−E∗

i )θ(kF
i −|k|) . (8)

Here, GF
i (k) and GD

i (k) represent the free and den-

sity dependent parts of the propagator. In Eq. (8) kF
i

denotes either the proton or neutron Fermi momenta,

M∗

i is the effective nucleon mass, its numerical result

has been given in Ref. [12] under the one-loop ap-

proximation and mean field. The two approximate

results are very close in lower density, while as the

nuclear density increases, the result of the one-loop

approximation will be a little lower than that of the

mean field. In this paper, for the purpose of revealing

the Dirac sea effect qualitatively and preliminarily, we

adopt the result under the mean field[11]:

M∗

i =Mi−
g2
s

m2
s

(ρs
p +ρs

n) , (9)

ρs
i =

M∗

i

2π2

[

E∗

i ki−M∗2
i ln

(

E∗

i +ki

M∗
i

)]

. (10)

In Eq. (9), it is easily seen that the modification of

nucleon masses does not distinguish between p and

n. Therefore, for the moment, we can neglect the ex-

plicit symmetry breaking (p, n mass difference), i.e.,

M∗

p =M∗

n =M∗.

Because of the self-energy correction, the propa-

gator of the ρ-meson in a dense medium reads

Dµν
ρ

(q) =− P µν
L

q2−m2
ρ
−Πρ

L

− P µν
T

q2−m2
ρ
−Πρ

T

, (11)

where P µν
L and P µν

T are the projection tensors. Πρ

T

and Πρ

L are the longitudinal and the transverse com-

ponents of the ρ-meson self-energy, respectively. In

the limit q→ 0, it can be proven that[6, 13]

Πρ

L(q0,q→ 0) =Πρ

T (q0,q→ 0) =−1

3
Πρ

µ

µ
(q0,q→ 0).

(12)

The effective mass of the ρ meson is defined as the

pole of the propagatorDµν
ρ

(q) in the limit q→ 0. Now

let us calculate Πρ

µ

µ
(q) for the purpose of this paper.

Substituting Eq. (6) into Eq. (5), the expression for

ρ-meson self-energy takes the form

Π∗µ
µ(q) = −i

g2
ρ

4

∫
d4k

2π
4T

FF +T FD+DF +TDD =

Π∗FF (q)+Π∗DF+FD(q)+Π∗DD(q) .

(13)

For ρ
± the coupling constant gρ is replaced by

√
2gρ.

T ∗∗ is the trace factor, whose expressions will be dis-

cussed later. As described in Ref. [8], the term TDD

contains the product of two δ functions [ΓGD(k +

q)ΓGD(k)]. This means that the ρ-meson can decay

into a nucleon-antinucleon pair which happens only

in the high momentum limit. Therefore, TDD is ne-

glected in the present calculation. Thus, Eq. (13) can

now be written as

Π∗µ

µ(q) =Π∗FF (q)+Π∗DF+FD(q) . (14)

The first term of Eq. (13) is the same for the different

charged states of ρ-mesons.

T FF =2Tr
[

γµGF (k+q)γµG
F (k)

]

=

16

[

2M∗2−(k+q) •k

(k2−M∗2)((k+q)2−M∗2)

]

. (15)

where the factor 2 follows from isospin symmetry for

M∗

n = M∗

p . Substituting Eq. (15) into Eq. (13), it
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is observed that Π∗FF (q) is quadratically divergent.

To eliminate these divergences, we need to renormal-

ize Π∗FF (q). Here we adopt Feynman’s parametriza-

tion and dimensional regularization technique[14—16]

to regularize Π∗FF (q) with the following results (the

details are discussed in the Appendix).

Π∗R(q) =
g2

ρ

2π2

[

1

2
(M 2−M∗2) −

3

2

∫ 1

0

dxq2x(1−x) ln M∗2−q2x(1−x)
M 2−mρ

2x(1−x)+

(q2−m2
ρ
)

∫ 1

0

dx
3m2

ρ
x(1−x)

2[m2
ρ
x(1−x)−M 2]

]

. (16)

If we consider that (M ∗−M) is small enough, then

Eq. (16) can be approximatively written as

Π∗R(q)'−A+Bq2 , (17)

where

A=
g2

ρ

4π2

[

(M∗2−M 2)+

∫ 1

0

dx
3m4

ρ
x(1−x)

m2
ρ
x(1−x)−M 2

]

,

B=
g2

ρ

4π2

3m2
ρ
x(1−x)

m2
ρ
x(1−x)−M 2

. (18)

The Π∗(FD+DF )(q) part of self-energy Eq. (14) is

different for the different charged states of ρ-mesons.

For a ρ
0-meson (see Fig. 1(c))

T 0(FD+DF ) =Tr
[

γµGF
p (k+q)γµG

D
p (k) +

γµGD
p (k+q)γµG

F
p (k)+p→ n

]

. (19)

Substituting Eq. (19) into Eq. (13), we can get

Π∗0(FD+DF )(q) = 2g2
ρ

∫
d3k

(2π)3E∗
S. (20)

where

S =

[

M∗2q2 +2(k •q)2

q4−4(k •q)2

]

(θp +θn) . (21)

In the long wavelength limit, we neglect the term q4

compared with the term 4(k •q)2 from the denomina-

tor of S in Eq. (21). After a straightforward calcula-

tion, we get

Π∗0(FD+DF )(q) =− g2
ρ

4π2

[

kpE
∗

p −
M∗2c0

2
ln

∣

∣

∣

∣

c0 +vp

c0−vp

∣

∣

∣

∣

+

knE
∗

n −
M∗2c0

2
ln

∣

∣

∣

∣

c0 +vn

c0−vn

∣

∣

∣

∣

]

, (22)

where vp,n = kF
p,n/E

∗

p,n, E
∗

p,n =
√

M∗2 +kF2
p,n, and

c0 = q0/|q|. By using the power series expansion

method, the approximate results of Eq. (22) are given

below:

Π∗0(FD+DF )(q)'C
q2

q2
0

+D , (23)

where

C =− g2
ρ
M∗2

12π2

(

k3
p

E∗3
p

+
k3

n

E∗3
n

)

,

D=− g2
ρ

4π2

(

kpE
∗

p −
kp

E∗
p

M∗2− k3
p

3E∗3
p

M∗2 +

knE
∗

n −
kn

E∗
n

M∗2− k3
n

3E∗3
n

M∗2

)

. (24)

For a ρ
+-meson (see Fig. 1(b))

T+(FD+DF ) =Tr[γµGF
p (k+q)γµG

D
n (k)+

γµGD
p (k+q)γµG

F
n (k)]. (25)

Substituting Eq. (25) into Eq. (13), we can get

Π∗+(FD+DF )(q) =2g2
ρ

∫
d3k

(2π)3E∗
[S +dS]=

Π∗0(FD+DF )(q)+δΠ∗(FD+DF )(q) ,

(26)

where

dS =

[

(2M∗2 +q2)(k •q)

q4−4(k •q)2

]

(θp−θn). (27)

With the same consideration as Eq. (20), we get

dΠ∗(FD+DF )(q) =− g2
ρ

4π2

(q2 +2M∗2)

|q| ×

[

1

2
E∗

p ln

∣

∣

∣

∣

c0 +vp

c0−vp

∣

∣

∣

∣

− M∗

√

c20−1
arctan

(

kp

√

c20−1

c0M∗

)

]

'

E
q2

q0
+F

1

q0
, (28)

where

E= − g2
ρ

12π2

k3
p−k3

n

M∗2
,

F = − g2
ρ

6π2

(

k3
p−k3

n

)

.

(29)

For a ρ
−-meson (see Fig. 1(b))

T−(FD+DF ) =Tr
[

γµGF
n (k+q)γµG

D
p (k)+

γµGD
n (k+q)γµG

F
p (k)

]

, (30)

Π∗−(FD+DF )(q) = 2g2
ρ

∫
d3k

(2π)2E∗
[S−dS] =

Π∗0(FD+DF )(q)−δΠ∗(FD+DF )(q) .

(31)

According to the definition of effective mass[6] and

Eq. (14), we can get the effective masses of ρ
0,± with-
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out the Dirac sea

m∗2
ρ0 'm2

ρ0 − C+D

3
, (32)

m∗2
ρ± '

m2
ρ± − C+D±F/mρ±

3

1± E

3mρ±

, (33)

and the effective masses with the Dirac sea

m∗2
ρ0 '

m2
ρ0 −

C+D−A
3

1+
B

3

, (34)

m∗2
ρ± '

m2
ρ± − C+D−A±F/mρ±

3

1+
B

3
± E

3mρ±

. (35)

From Eq. (29), it can easily be shown that E and F

are vanishing in symmetric nuclear matter, but not in

ANM. They are responsible for the masses splitting

for the different charged states of ρ-mesons.

3 Results and discussion

Typical values of the ρ-meson mass shifts at nor-

mal nuclear density (ρ0 = 0.17 fm−1) for Pb-like nu-

clei (α = 0.2) are ∆mρ0 = m∗

ρ0 −mρ0 = −0.968,

∆mρ+ = −0.974, and ∆mρ− = −0.962 fm−1 with

Dirac vacuum correction, and the corresponding val-

ues are 0.062, 0.055, and 0.069 fm−1 without Dirac

vacuum correction.

The numerical results of the effective masses

which depend on the nuclear density ρ and asym-

metry parameter α for the various charged states

of ρ-mesons are shown in Fig. 2 and Fig. 3, where

we choose the parameters as M = 4.7585 fm−1,

mρ = 3.902 fm−1, ms = 2.7872 fm−1, g2
ρ

= 36.8195,

and g2
s = 91.6088. We see from Fig. 2 that the

various charged states of ρ-mesons have mass split-

ting phenomena. Ref. [9] notes that the π
− meson

mass increases in nuclear matter, while the π
+ me-

son mass decreases at higher density, the π
− meson

mass is obviously higher than the π
+ and π

0 me-

son mass (for PV coupling). Compared with pions,

all of the ρ-meson masses grow with nuclear den-

sity without Dirac vacuum correction. When taking

the Dirac sea effect into account, the effective masses

of ρ-mesons for the various charged states decrease

with nuclear density, which agrees with the experi-

mental data; moreover the mass splitting phenomena

become obscure. Fig. 3 depicts the variation relation

of ρ
−, ρ

0, ρ
+ meson masses along with the asymmetry

parameter α at normal nuclear density. Obviously,

Fig. 2. Nuclear density (ρ) dependent effec-

tive ρ-meson masses at α=0.2. The dotted,

dashed, and solid curves, respectively, repre-

sent ρ
−, ρ

+, and ρ
0 without (upper panel) and

with (lower panel) the Dirac sea effect.

Fig. 3. Asymmetry parameter (α) dependent

effective ρ-meson masses at ρ = ρ0. The dot-

ted, dashed, and solid curves, respectively,

represent ρ
−, ρ

+, and ρ
0 without (upper

panel) and with (lower panel) the Dirac sea

effect.
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Fig. 4. Asymmetry parameter (α) dependent

effective ρ-meson masses at ρ = 2ρ0. The

dotted, dashed, and solid curves, respectively,

represent ρ
−, ρ

+, and ρ
0 without (upper

panel) and with (lower panel) the Dirac sea

effect.

the ρ-mass splitting which depends on the asymmetry

parameter is clear. Here, the ρ
− meson mass increases

with α, the ρ
0 meson mass almost remains invariable,

and the ρ
+ meson mass decreases with α. These phe-

nomena are very similar to π
−, π

0, π
+ mesons (for

PV coupling)[9]. In Fig. 4, when the nuclear den-

sity is twice the normal density, the trend of ρ
− and

ρ
+ meson mass along with the asymmetry parameter

will change obviously taking the Dirac sea effect into

account.

In summary, using the QHD-II model, we have

studied the effective masses for the various charged

states of ρ-mesons in ANM. It is found that various

charged states of ρ-mesons have mass splitting similar

to pion[9]. This is a generic feature of all the isovec-

tor mesons. We also have examined the effects of the

Dirac sea on the effective masses of ρ-mesons. We

have shown that the contributions of the Dirac sea to

the masses of the ρ-mesons are very important and

lead to a reduction of the different charged ρ-meson

masses in ANM.

4 Appendix

Using Feynman’s parametrization and dimen-

sional regularization technique, the Π∗FF (q) can be

written as

Π∗FF =

∫
dNk

(2π)N

−i4g2
ρ
[2M∗2−(k+q) •k]

[(k+q)2−M∗2)(k2−M∗2)]
=

∫
dNk

(2π)N

∫ 1

0

−i4g2
ρ
[2M∗2−(k+q) •k]

[(k+qx)2 +q2x(1−x)−M∗2]
2 =

g2
ρ

2π2

∫ 1

0

{

K2

[

2

ε
− ln(πK2)+

1

2
−γE

]

+

(

q2x(1−x)
2

+M∗2

)[

2

ε
− ln(πK2)−γE

]}

,

(36)

where N = 4−ε, ε→ 0, K2 = q2x(1−x)−M∗2 and γE

is the Euler-Mascheroni constant.

The diverging part of Eq. (36) is

D(q) =
g2

ρ

2π2

∫ 1

0

[

K2 +
q2x(1−x)

2
+M∗2

]

2

ε
. (37)

To remove the divergence, we need to add the

counterterms[17] in the original Lagrangian interac-

tion.

LCT =−1

2
β1Φρ

•(∂2
+m2

ρ
) •Φρ +

1

2
β2Φ

2
ρ
. (38)

The values of the counterterms β1 and β2 are deter-

mined by imposing the appropriate renormalization

conditions, that is,

β1 =
∂Π∗FF (q)

∂q2

∣

∣

∣

∣

q2=m2
ρ

,M∗→M

, (39)

β2 =Π∗FF (q)
∣

∣

q2=m2
ρ

,M∗→M
. (40)

Here β1 and β2 are the wave function and ρ-

meson mass renormalization counterterms, respec-

tively. Then we get

β1 =
3g2

ρ

2π2

∫ 1

0

dx

{

x(1−x)
2

[

2

ε
− ln[π(m2

ρ
x(1−x)−M 2)]−γE

]

+
x(1−x)

6
− m2

ρ
x(1−x)

2 [mρ2x(1−x)−M 2]

}

,

β2 =
3g2

ρ

2π2

∫ 1

0

dx

{

x(1−x)
2

[

2

ε
− ln[π(m2

ρ
x(1−x)−M 2)]−γE

]

+
m2

ρ
x(1−x)−M 2

6

}

. (41)
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The renormalized Π∗FF (q) is

Π∗R(q) =Π∗FF (q)−β1

(

q2−m2
ρ

)

−β2 =

−3g2
ρ

2π2

{∫ 1

0

dx

[

q2x(1−x)
2

ln

[

q2x(1−x)−M∗2

m2
ρ
x(1−x)−M 2

]

−
(q2−m2

ρ
)m2

ρ
x(1−x)

2[m2
ρ
x(1−x)−M 2]

]

−M 2−M∗2

6

}

. (42)
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