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Least square fitting of low resolution gamma ray

spectra with cubic B-spline basis functions *
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Abstract In this paper, the least square fitting method with the cubic B-spline basis functions is derived

to reduce the influence of statistical fluctuations in the gamma ray spectra. The derived procedure is simple

and automatic. The results show that this method is better than the convolution method with a sufficient

reduction of statistical fluctuation.
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1 Introduction

In general, the gamma ray spectra obtained by

NaI detector always contains statistical fluctuations.

The spectra can be considered to be a linear sum of

two components: F (x) = S(x)+N(x), where S(x) is

the spectra information and N(x) is the fluctuations

which can be considered as high frequency noise. The

objective of analyzing gamma-ray spectra is to ex-

tract the useful information S(x) from the measured

data while minimizing the influence of fluctuations

N(x) which can cause error on both nuclide recogni-

tion and quantitative analysis. Up to know, a number

of mathematical procedures have been developed for

processing detected data, for example, the polyno-

mial fitting[1—4], the Fourier transformation[5—9] and

the convolution method[1, 10—17]. Among these meth-

ods, the convolution operation, as described by Sav-

itsky and Golay[1], is considered as the most widely

used approach in which each data point is in effect

replaced by the convolution value of a filter with a

small number of adjacent data points.

However, applications of these methods are not

always efficacious, especially in the case of inten-

sive noised spectra as Fig. 1. The polynomial fitting

method applied to remove the statistical fluctuation

always comes along with some problems, for exam-

ple, spectral distortion, weak peaks easily lost and

false peaks generated that can rise calculation error

in background determination, peak searching, fitting,

etc. The Fast Fourier Transform (FFT) methods have

no intrinsic advantage in the application of this area

because of little energy information reserved in the

transformed data[18].

Fig. 1. Gamma ray spectra of 137Cs (NaI).

In the convolution method, some math filters,

such as [−3,12,17,12, −3]/35 for five-point smooth-

ing, [−2,3,6,7,3,−2]/21 for seven-point smoothing de-

scribed by Savitsky and Golay[1], Gaussian smooth-

ing function and Lorentzian smoothing function de-

scribed by Evans and Hiorns[10], are widely used to

eliminate fluctuation[19]. Better result will be ob-

tained while the width of math filter is approximated
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to the average FWHM (in channels) of the peaks in

the spectra to be smoothed. However, this better

result is based on the fact that fluctuation N(x) and

spectra S(x) have different frequency and in the prac-

tical application, it is quite difficult to decide the av-

erage FWHM before calculating. Sophisticated value

used in the processing always gives uncompleted or

distorted elimination and cannot be fit for different

spectra.

Recently, smoothing by spline function is used

widely, because it leads to a very simple algorithm for

the construction of the function and gives in general

satisfactory results. In this paper, the least square

method with Cubic B-spline basis functions is in-

troduced to fit the gamma ray spectra without re-

processing. The description of this method and its

application is divided into four sections. In Section

2, the B-spline basis functions and least square are

described briefly. In Section 3, the noisy data are

used to test this method with some discussion. Con-

clusions will be given in the last section.

2 Description of method

The Cubic B-spline basis functions is defined as

a piecewise function which is non-zero only over four

adjacent intervals between knots,
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Because it is a spline and therefore has the appropri-

ate continuity at given knots, its value of the first and

second derivatives are zero at two end knots[20].

To define the full set of cubic B-splines which

are required for our purpose in the range of inter-

est channels a 6 x 6 b, where x is the channel

number, firstly, it is necessary to select five chan-

nels x0,x1,x2,x3,x4 with equal interval that satisfy

a 6 x0 < x1 < x2 < x3 < x4 6 b. With this set

of channels as center knots, we define, as above, the

fundamental splines φj(x) respectively, as shown in

Fig. 2, where j = 0,1, · · · ,4. Then the general cubic

B-splines fitting curve with channels x0,x1,x2,x3,x4

has the unique representation in the range a 6 x 6 b

of the form

S(x) =

4
∑

j=0

cjφj . (2)

The method of least square assumes that the best-fit

S∗(x) curve with selected channels has the minimal

sum of the least square error from the measured spec-

tra F (x).

‖δi‖
2 =

m
∑

x=1

[S∗

i (x)−F (x)]
2
= min

m
∑

x=1

[Si(x)−F (x)]
2
,

(3)

Si(x) = Ci,0φ0(x)+Ci,1φ1(x)+ · · ·+Ci,nφn(x), n 6 m.

(4)

Fig. 2. The 5-fundamental splines (ci=1).

Where m is the number of the channels of the

spectra in the interval [a,b], and n is the number of

the selected channels. Then, new channels are se-

lected as knots in the middle of each interval and the

process is repeated until the interval is equal to 1 in

which the fitting curve is the same as the measured

spectra F (x). Using the least square method, the

best-fit function S∗

i (x) with selected channels will be

obtained at each time, which can form a set of fit-

ting curves about the measured spectra F (x). With

this set of curves, however, as described by Naoki

Saitou[21], the criterion of choosing the curve that

gets the minimal ‖δi‖
2 as resultant curve is not exact,

since this value is to decrease to zero as the number of

knots increases and the minimum value of ‖δi‖
2 gives

the interpolated value, that is, no smoothing effect is

obtained.

With the finite set, comparing two adjacent fit-

ting curves S∗

i (x) and S∗

i+1(x), the Residual Sum of

Square (RSS) is calculated

‖εi‖
2 =

m
∑

x=1

[

S∗

i+1(x)−S∗

i (x)
]2

, (5)

which can be considered as the bias error of S∗

i (x)

relative to S∗

i+1(x). The lower this value, the closer

these two adjacent curves. This value can also indi-

cate that the curve S∗

i+1(x) contains more complex

components than S∗

i (x) which can be considered to

have more noise in S∗

i+1(x). Since the noise in the

Fourier domain is in frequency order, hence, S∗

i (x)

can represent the measured spectra approximately if

‖εi‖
2 gets minimal value. However, as the number

of selected channels increases, we find that the num-

ber of minimal value in the set of ‖εi‖
2 is not unique,

sometimes, that is, some fitting curves are all satis-

fied with this condition. In this case, according to



26 Chinese Physics C (HEP & NP) Vol. 33

Reinsch[22], the smoothest spline curve is character-

ized in such a way as to obtain the minimum value of∫ b

a

[(S∗

i )′′(x)]2dx in the interval [a,b]. Calculating the

value of

∫ b

a

[(S∗

j )′′(x)]2dx where ‖εj‖
2 gets the mini-

mum value in the set of ‖εi‖
2, the resultant curve can

be chosen according to the minimum value of ‖εj‖
2

and

∫b

a

[(S∗

j )′′(x)]2dx.

3 Test and discussion

As a test of this method, some noisy data (both

synthetic and experimental) are investigated in this

section. Synthetic noisy data S using two gaussian

functions with σ2
1 = 12 and σ2

2 = 10 is shown as the

solid line in Fig. 3(a). The data are sampled at 129

evenly-spaced points in the given interval with the su-

perimposed random noise varied as a function of the

square root of the counts per channel.

According to the method described above, the val-

ues of ‖εi‖
2 are calculated as shown in Fig. 3(b). Be-

cause the selected channel number is 5 in the first fit-

ting compared with 129 in the last fitting, the range

of ‖εi‖
2 is from ‖ε2‖

2 to ‖ε6‖
2 which corresponds to

the channels selected (2i+1+1).

In this sub-figure, the results clearly indicate that

the minimum value is unique where i = 4 in the set

of ‖εi‖
2, which means that the curve S∗

4 (x) can ap-

proximate to the noisy data well. The fitting result

S∗

4 (x) is also shown in Fig. 3(a), respectively. The

residual between the fitting curve using the cubic B

spline basis function and the noise-free curve is shown

in Fig. 3(c). It can be seen that the residual is mild

and less than ±1 in most cases, that is, the fitting

curve has a small difference with the noise-free curve

that can estimate the noise-free curve approximately.

Fig. 3. Synthetic noisy data fitting.
(a) Synthetic noisy data, original curve, B-spline function fitting curve and convolution curve; (b) The
logarithm of ‖εi‖

2 with i from 2 to 6; (c) The residual of cubic B-spline fitting curve with noise-free curve;
(d) The residual of convolution method curve with noise-free curve.

Compared with this method, the noisy data are

also processed by the convolution method with 9-

point width filter estimated according to the value

of σ. The result is shown in Fig. 3(a) with the resid-

ual shown in Fig. 3(d). As can be seen from the

residual obtained by the convolution method, the dif-

ference is shaped shrilly and more than ±1 in most

cases compared with mild shape and less than ±1 in

most case while using the cubic B-spline method. It

means that, the fitting curve obtained by the cubic

B-spline method can give a more approximation to

the noise-free curve than the curve obtained by the

convolution method.

We then examine the effect of smoothing. In gen-

eral, the elegant way to characterize the effect of

smoothing of a curve is to analyze its spectrum in

the Fourier domain. The curve with better smooth-

ing effect will reserve the values for the Fourier co-
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efficients corresponding to the low frequencies and

get lower values for the high frequencies coefficients.

Hence, in order to compare the effect of smoothing,

the Fourier Transform result curves by the cubic B-

spline method and the convolution method are ob-

tained as shown in Fig. 4. It can be seen from this fig-

ure, the low frequency components are reserved sat-

isfactorily with both the cubic B-spline method and

the convolution method(below coefficient 8). How-

ever, the convolution method becomes helpless in the

case that the noise and noise-free curves have approx-

imate frequency, as shown in the range from 8 to 10.

In this range, the noise components can not be re-

duced with the convolution method which may ap-

pear as ripples in the curve. By contrast with this,

the cubic B-spline method can remove the noise com-

ponents sufficiently. In the middle frequency region

between 10 and 25, the Fourier amplitude value of the

cubic B-spline method approaches more to the ampli-

tude value of noise-free than that of the convolution

method, that is, the noise components in the range

of these frequencies, are removed more sufficiently by

the cubic B-spline method. With the increase of fre-

quency, this value varies slightly and keeps a lesser

value with the cubic B-spline method, which gives a

smoother profile of the fitting curve.

The most important characteristic of the method

described in this paper is that it can obtain the best

fitting curve and determine the smoothing end con-

dition automatically without any initial input value.

The least square method described in this paper,

gives the fitting curve minimal sum of the least square

error from the noisy data at each time and with the

increase of channels selected, all the fitting curves ob-

tained by the least square with the cubic B-spline ba-

sis function form a finite set. Anyone from this set

is the best fitting curve corresponding to the selected

channels and the result curve determined with the

criterion described as above is chosen from this set,

so the result curve is the best fitting curve.

Fig. 4. The Fourier transform result curves ob-
tained by the cubic B-spline method and the
convolution method.

Herein, as described by Naoki Saitou[21], we don’t

recommend the minimum RSS of fitting curve with

noisy data as the criterion to determine the best fit-

ting curve, because RSS decreases to zero as the num-

ber of selected channels increase and the minimum

value gives interpolated result without smoothing ef-

fect.

The criterion used in this paper is based on the

idea of Reinsch[22]. In order to show the method

clearly, the Reinsch’s criterion is described briefly as

follows. In the interval [a,b] with m channels, the

smoothing function S(x) to be constructed shall min-

imize the value of

∫ b

a

[(S∗(x))′′(x)]2dx among all func-

tions S∗(x) such that

m
∑

x=1

[

S∗(x)−F (x)

Wx

]2

6 C ,

where Wx is the weight assigned to channel x, and C

is a smoothing parameter which controls the extent

of smoothing. When C = 0, no smoothing is carried

out and the noisy data are interpolated and as C in-

creases, the degree of smoothing increases. However,

it should be noted that this condition has little mean-

ing in the noise elimination especially in the reduction

of statistical noise, since the degree of smoothing re-

quired in the statistical noise elimination of spectra

is far greater than that is normally required and the

values of C and Wx are difficult to be determined

before calculating.

To avoid these problems, RSS of two adjacent fit-

ting curves S∗

i (x) and S∗

i+1(x) are calculated. Since

the noise in the Fourier domain is in frequency order

and the fitting curves in the fitting set are also in or-

der corresponding to the number of selected channels,

the complex components contained in curve S∗

i+1(x)

can be considered to have more noise than S∗

i (x).

Minimum RSS means that these two adjacent curves

have little difference and little noise S∗

i (x) contained

than S∗

i+1(x) which can estimate noisy data approx-

imately. However, with the fitting curve set, mini-

mum RSS is not unique sometimes, that corresponds

to more than one fitting curves. In this case, accord-

ing to Reinsch’s first condition that the smoothest

spline curve has minimum value of

∫ b

a

[(S∗

i )′′(x)]2dx in

the interval [a,b], the result curve is obtained. There

is no initial input parameter to be determined before

calculation while using the criterion described above

and trivial calculations are also avoided.

Another praiseworthy characteristic is that, the

cubic B-spline basis function fitting method can give

an explicit expression of the result curve that is con-

venient for calculating its derivative and area.
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Fig. 5. γ-ray spectrum of 137Cs (NaI) and its fitting result using B-spline basis functions and the convolution
method. (a) The logarithm of ‖εi‖

2 with i from 2 to 12; (b) The square integral values of (S∗

6 )′′(x) and
(S∗

8 )′′(x); (c) The fitting curve S
∗

6 (x) with the cubic B-spline basis function; (d) The fitting curve S
∗

8 (x) with
the cubic B-spline basis function.

Fig. 6. Gamma-ray spectrum of 60Co (NaI) and its fitting result using B-spline basis functions. (a) The
experimental spectra of 60Co source; (b) The logarithm of ‖εi‖

2 with i from 2 to 12; (c) The fitting curve
with i = 6; (d) The fitting curve with i = 9.
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Table 1. Least square error of corresponding best-fit curves.

source channels N∗ ‖ε2‖2 ‖ε3‖2 ‖ε4‖2 ‖ε5‖2 ‖ε6‖2 ‖ε7‖2 ‖ε8‖2 ‖ε9‖2 ‖ε10‖2 ‖ε11‖2 ‖ε12‖2

137Cs 8193 6 0.7167 0.6595 0.2324 0.1084 0.0079 0.0083 0.0048 0.0076 0.0178 0.0237 0.0238
60Co 8193 7 0.4346 0.1802 0.0263 0.0164 0.0035 0.0036 0.0026 0.0018 0.0038 0.0066 0.0066

mixture 8193 5 0.0038 0.0061 0.0057 0.0009 0.0001 0.0002 0.0004 0.0008 0.0017 7.1099 7.1099

N
∗ is magnitude of ‖εi‖

2.

Fig. 7. Mixed radiate source and its fitting result. (a) The experimental spectra of mixture source; (b) The
logarithm of ‖εi‖

2 with i from 2 to 12; (c) The fitting curve with i = 6.

The experimental data shown in Fig. 1 are mea-

sured from 137Cs source with 8193 channels by NaI

detector for more than 2 hours. According to the

method described in this paper, the values of ‖εi‖
2

are calculated as shown in Fig. 5(a) with detailed

value listed in Table 1. Because the selected channel

number is 5 in the first fitting compared with 8193

in the last fitting, the range of ‖εi‖
2 is from ‖ε2‖

2 to

‖ε12‖
2. What can be seen from this sub-figure is that

two minimum values about ‖ε‖2 satisfy the condition

where i=6 and i=8 in the fitting set. The curves

S∗

6 (x) corresponding to the minimum values is shown

in Fig. 5(c) as well as the values of

∫ 8193

1

[(S∗

6 )′′(x)]2dx

and

∫ 8193

1

[(S∗

8 )′′(x)]2dx are shown in Fig. 5(b) which

can indicate the smoother fitting curve clearly.

By comparison with this method, the spec-

trum is also smoothed by the 3-point convolution

method(iterates 2000). However some ripples and

somewhat distortion are appeared in the smoothed

curve. As a result, the cubic B-spline method can

eliminate fluctuation noise sufficiently with little dis-

tortion and the result fitting curve is smoother. This

is of great significance in peak searching, especially in

distinguishing the overlapping peaks.

The gamma ray spectrum of 60Co and the mixed

radiate source are also measured in the same environ-

ment to test this method, as shown in Fig. 6(a) and

Fig. 7(a), respectively. The values of ‖εi‖
2 are listed

in Table 1, also shown in Fig. 6(b) and Fig. 7(b).

The difference between them is that there are two

minimum ‖εi‖
2 values about 60Co compared with

the unique value of the mixture source. The fit-

ting curves corresponding to the minimum value of

‖εi‖
2 are shown respectively in each figure. Because

of two minimum of ‖εi‖
2 in 60Co source, the values of∫ 8193

1

[(S∗

i )′′(x)]2dx should be compared to determine

the smoother curve as the result. In the calculation of

mixed source, the fitting curve corresponding to the

unique value of ‖εi‖
2 is best.

4 Conclusion

In the paper, a least square fitting method with

the cubic B-splines basis functions has been devel-

oped for eliminating the statistical fluctuation of

gamma-ray spectra. As one can see from the illus-

tration as above, the method is automatic and does

not need any initial input value. Different tests show

that this method can remove statistical fluctuation

sufficiently with little data distortion and the resul-

tant fitting curve is smoother than that obtained by

the convolution method.
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