Projected SD-pair shell model study for even-even Xe isotopes^{*}

WANG Fu-Rong(王芙蓉)¹ MENG Xiang-Fei(孟祥飞)² LUO Yan-An(罗延安)^{2;1)} PAN Feng(潘峰)³

1 (Department of Physics, Tianjin Radio and Television University, Tianjin 300191, China) 2 (Department of Physics, Nankai University, Tianjin 300071, China)

3 (Department of Physics, Liaoning Normal University, Dalian 116029, China)

Abstract Projected SD-pair shell model is used to study the collectivity of low-lying state for even-even Xe isotopes. It is found that the collectivity can be reproduced in term of a three-parameter Hamiltonian.

Key words projected SD-pair shell model, spectrum, E2 transition

PACS 21.60.Cs

1 Introduction

How to describe the nuclear collective motions in terms of the shell model is a central task in nuclear structure theory. In 1993, Prof. Jin-quan Chen proposed the nucleon pair shell model $(NPSM)^{[1]}$. The tremendous success of the $IBM^{[2]}$ has suggested a possible truncation, the truncation to the SD subspace with S-D collective nucleon-pairs as the building blocks^[3, 4]. Therefore, we truncated the full shell-model space for medium and heavy mass nuclei to the collective SD-pair subspace in the NPSM, which is called SD-pair shell model(SDPSM)^[5, 6]. Our previous work and Dr. Zhao Yumin's work show that the collectivity of low-lying states can be reproduced very well with the SDPSM^[5-15].

But we also found that within the SDPSM, the subspace is not closed under the action of a pair annihilation operator $A^s, s = 0, 2$. Namely,

$$\hat{H}_{\rm SM} |\psi_{\rm SD}\rangle \Longrightarrow |\psi_{\rm SD}\rangle \oplus |\psi_{\rm other}\rangle,$$
 (1)

where $\hat{H}_{\rm SM}$ is the shell model Hamiltonian, $|\psi_{\rm SD}\rangle$ stands for the basis vectors in a special SD-pair subspace, and $|\psi_{other}\rangle$ stands for the basis vectors outside the SD-pair subspace.

Since only a special SD-pair subspace is important in the description of nuclear collective motions, we propose the following projected SD-pair shell model(PSDPSM), in which

$$\hat{\mathcal{P}}\hat{H}_{\rm SM}\hat{\mathcal{P}}|\Psi_{\rm SD}\rangle \Longrightarrow |\Psi_{\rm SD}\rangle + |\Psi_{\rm S'D'}\rangle,$$
 (2)

where $\hat{\mathcal{P}}$ is the projection operator which project the full shell model space onto SD-pair subspace, and $|\psi_{S'D'}\rangle$ is the basis vector in the new collective S'D' space, the S'D' space is in the subspace of $|\psi_{other}\rangle$. It is the aim of this paper to see if the low-lying states for Xe isotopes can be described reasonably within this framework.

2 Brief review of the model

. .

In this paper, we choose a rather simple Hamiltonian,

$$H_{\rm SD} = \hat{\mathcal{P}} H_{\rm SM} \hat{\mathcal{P}},\tag{3}$$

where $\hat{\mathcal{P}}$ is the projection operator, $H_{\rm SM}$ is the shell model Hamiltonian.

Received 8 July 2008

 $[\]ast$ Supported by National Natural Science Foundation of China (10675063, 10575047) and SRF

¹⁾ E-mail: luoya@nankai.edu.cn

$$H_{\rm SM} = H_0 + V(\sigma) + \kappa Q_{\pi}^2 \cdot Q_{\nu}^2, \qquad (4)$$
$$H_0 = \sum_{a\sigma} \varepsilon_{a\sigma} \hat{n}_{a\sigma}, \quad \sigma = \pi, \ \nu$$
$$V(\sigma) = V_{\rm SDI}(\sigma) = 4\pi G_{\sigma} \sum_{i>j=1}^n \delta(\Omega_{ij}),$$
$$Q_{\mu}^2 = \sum_{i=1}^n r_i^2 Y_{2\mu}(\theta_i \phi_i),$$

where ϵ_a and \hat{n}_a are the single-particle energy and the number operator, respectively.

The E2 transition operator is

In Altr

$$E2 = e_{\pi} \hat{\mathcal{P}} Q_{\pi}^2 \hat{\mathcal{P}} + e_{\nu} \hat{\mathcal{P}} Q_{\nu}^2 \hat{\mathcal{P}}, \qquad (5)$$

 \mathbf{x}' $\hat{\mathbf{\sigma}}$ ast as $\hat{\mathbf{\sigma}}$ a $\mathbf{J}\mathbf{x}$

T) + 10)

where e_{ν} and e_{π} are effective charges of a neutron and proton, respectively.

The building blocks of the NPSM in the S-D subspace are "realistic" collective pairs $A_{\mu}^{r\dagger}$ of angular momentum r = 0, 2 with projection μ , built from many non-collective pairs $(C_a^{\dagger} \times C_b^{\dagger})_{\mu}^r$ in the singleparticle levels *a* and *b*,

$$A^{r\dagger}_{\mu} = \sum_{ab} y(abr) \left(C^{\dagger}_{a} \times C^{\dagger}_{b} \right)^{r}_{\mu}, \qquad (6)$$
$$y(abr) = -\theta(abr)y(bar), \quad \theta(abr) = (-)^{a+b+r},$$

where y(abr) are the distribution coefficients. As in the SDPSM, SDI-A method is used to determine the S-D pairs, i.e., by diagonalizing the SDI Hamiltonian in the orthonormal basis $|(ab)r\mu\rangle$, and choosing the lowest 0⁺ and 2⁺ as our S and D pair.

In the PSDPSM, due to the projection operator $\hat{\mathcal{P}}$, the new collective pairs appeared in the one- and two-body matrix elements are restricted to S and D-pairs only. As an example, the expression of the matrix element for pairing interaction is given in the following^[16].

$$\left\{ 0 | A_{M_N}^{N}(s_i, J_i) \mathcal{P} A^{s_1} \cdot A^{s_2} \mathcal{P} A_{M_N}^{N}(r_i, J_i)^{\dagger} | 0 \right\} = \\ \hat{J}_N^{-1} \sum_{k=N}^{1} \sum_{L_{k-1} \cdots L_{N-1}} (-)^{J_N + s - L_{N-1}} \hat{L}_{N-1} H_N(s) \cdots H_{k+1}(s) \times \\ \left[\psi_k \delta_{s, r_k} \delta_{L_{k-1}, J_{k-1}} \langle s_1 s_2 \dots s_N; J_1' \dots J_{N-1}' J_N | r_1 \dots r_{k-1}, r_{k+1} \dots r_N s; J_1 \dots J_{k-1} L_k \dots L_{N-1} J_N \rangle + \right. \\ \left. \sum_{i=k-1}^{1} \sum_{r_i'=0, 2} \sum_{L_i \dots L_{k-2}} \langle s_1 \dots s_N; J_1' \dots J_{N-1}' J_N | r_1 \dots r_i' \dots r_{k-1}, r_{k+1} \dots r_N s; J_1 \dots J_{i-1} L_i \dots L_{N-1} J_N \rangle \right],$$

$$(7)$$

where $r'_i = 0$, 2 represents the new S and D pair.

3 Results

The Xe isotopes have been studied extensively in the interacting boson model (IBM) and fermion dynamical symmetry model (FDSM). We take $H_0 =$ $H_0^{\exp}(\pi) + H_0^{\exp}(\nu)$, where $H_0^{\exp}(\pi)$ and $H_0^{\exp}(\nu)$ are the s. p. energies of the nuclei ¹³³₅₁Sb₈₂, and ¹³¹₅₀Sn₈₁, respectively, taken from^[17, 18] and listed in Table 1. The parameters obtained by fitting the experimental excitation energies in each case are listed in Table 2.

From Fig. 1 one can see that except for 134 Xe, a general agreement between the calculation and experiment is achieved for the Xe isotopes. The even-spin yrast sequence is reproduced quite well. The prediction of the quasi- γ band can also be considered nearly satisfactory. One can also see that the larger the $N_{\rm v}$, the better the agreement between the calculation and the experiments.

Table 1. The single particle (hole) energies.					
$\epsilon_{\pi}/{\rm MeV}$	$g_{7/2}$	$d_{5/2}$	$d_{3/2}$	$h_{11/2}$	$s_{1/2}$
	0	0.963	2.69	2.76	2.99
$\epsilon_{\nu}/{\rm MeV}$	$d_{3/2}$	$h_{11/2}$	$s_{1/2}$	$d_{5/2}$	$g_{7/2}$
	0	0.242	0.332	1.655	2.434

Table 2. The parameters we used.

		1		
	134 Xe	132 Xe	130 Xe	$^{128}\mathrm{Xe}$
G_{π}	0.185	0.178	0.173	0.170
$G_{\mathbf{v}}$	0.096	0.098	0.092	0.086
κ	0.172	0.110	0.086	0.071

Table 3. B(E2) (in units of $(ab)^2$). The experimental data taken from Ref. [20].

	$J_i \rightarrow J_f$	$^{134}\mathrm{Xe}$	$^{132}\mathrm{Xe}$	$^{130}\mathrm{Xe}$	$^{128}\mathrm{Xe}$
Expt.	$B(\mathrm{E2};\!2^+_1\!\rightarrow\!0^+_1)$	0.068(12)	0.092(6)	0.13(1)	0.150(8)
Theo.	$B(\mathrm{E2};\!2^+_1\!\rightarrow\!0^+_1)$	0.06408	0.08847	0.09967	0.10035
	$B(\mathrm{E2};\!4_1^+\!\rightarrow\!2_1^+)$	0.05998	0.11876	0.16554	0.18820
_	$B(\mathrm{E2};\!2_2^+\!\rightarrow\!2_1^+)$	0.00512	0.08858	0.11644	0.10070

5.0		- 10 ⁺	5.0	
4.5 4.0	Expt.	12 Theo.	4.5 - Expt.	— 10 ⁺ Theo.
4.0 3.5 3.0 (na) 2.5 2.0 1.5 1.0 0.5 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4.0 3.5	- Expt.	-8^+ -7^+ Theo.	4.5 4.0	8*7* Theo.
3.0 2.5	-8^{*} -0^{*} -0^{*}	-5* -6* -4* -3*	3.5 3.0 2.5 -5^{*} -2^{*}	$ \begin{array}{cccc} -6^{*} & -5^{*} \\ -6^{*} & -4^{*} \\ -3^{*} & -2^{*} \end{array} $
E 1.5	$-4^{\circ} -3^{\circ} -6^{\circ}$	-4^{*} -2^{*} -0^{*}	$ \begin{array}{c} 5 \\ 2.0 \\ 1.5 \\ 1.5 \\ 1.0 \end{array} = \begin{array}{c} -6^{*} & -4^{*} & 0 \\ -4^{*} & -3^{*} \\ -2^{*} & -0^{*} \end{array} $	4 [*] 2 [*] 0 [*]
0.5		-2*	0.5 -0^{*}	2' " ^M Xe 0'

Fig. 1. The spectrum for Xe isotopes. The experimental data are taken from Ref. [19].

Except for the spectra, B(E2) values are also studied. By fitting ¹³⁸Ba with the SDI-A truncation, the effective charges are fixed as 1.5e for both proton and neutron. Part of the B(E2) absolute values are listed in Table 3. From Table 3 one can see that the calculated results are close to the experiments. The B(E2)values are all strong between yrast states, and they increase with N_{ν} , For the nuclei with $N_{\nu} \ge 2$, the E2 transition for $2^+_1 \rightarrow 2^+_1$ is about the same magnitude as for $2^+_1 \rightarrow 0^+_1$, which is what one might expects for a O(6) symmetry nuclei, but it is too small for ¹³⁴Xe.

References

- 1 CHEN Jin-Quan. Nucl. Phys. A, 1997, 626: 686
- 2 Arima A, Iachello I. Adv. Nucl. Phys., 1983, 13: 139
- 3 Otsuka T, Arima A, Iachello F, Talmi I. Phys. Lett. B, 1978, 76: 139
- 4 Otsuka T, Arima A, Iachello F. Nucl. Phys. A, 1978, **309**: 1
- 5 LUO Y A, CHEN J Q, Draayer J P. Nucl. Phys. A, 2000, 669: 101
- 6 CHEN J Q, LUO Y A. Nucl. Phys. A, 1998, 639: 615
- 7 LUO Y A, CHEN J Q. Phys. Rev. C, 1998, 58: 589
- 8 LUO Y A, ZHANG X B, PAN F, NING P Z, Draayer J P. Phys. Rev. C, 2001, 64: 047302
- 9 LUO Y A, CHEN J Q, FENG T F, NING P Z. Phys. Rev. C, 2001, 64: 037303
- 10 LUO Y A, PAN F, Bahri C, Draayer J P. Phys. Rev. C, 2005, **71**: 044304

4 A brief summary

In summary, from above analysis one can see that the property of low-lying states can be reproduced very well with the projected SD-pair shell model. But we also notice that there are still some shortcoming in this model, for example, most of the calculated B(E2) are smaller than the experiments, and although $B(E2; 2_1^+ \rightarrow 0_1^+)$ increase with N_{γ} for Xe isotopes, they do not increase as quickly as the experimental case.

- 11 LUO Y A, PAN F, WANG T, NING P Z, Draayer J P. Phys. Rev. C, 2006, **73**: 044323
- 12 ZHAO Y M, Yoshinaga N, Yamaji S, Arima A. Phys. Rev. C, 2000, 62: 014316
- 13 ZHAO Y M, Yamaji S, Yoshinaga N, Arima A. Phys. Rev. C, 2000, 62: 014315
- 14 ZHAO Y M, Yoshinaga N, Yamaji S, Arima A. Phys. Rev. C, 2000, 62: 024322
- 15 JIA L Y, ZHANG H, ZHAO Y M. Phys. Rev. C, 2007, 75: 034307
- 16 LUO Y A, PAN F, Draayer J P, NING P Z. Int. J. Mod. Phys. E, 2006, 15: 1751
- 17 Fogelberg B, Blomquist J. Nucl. Phys. A, 1984, 429: 205
- 18 Baldridge W J. Phys. Rev. C, 1978, 18: 530
- 19 http://www.nndc.bnl.gov/nudat2/adopted-searchi.jsp
- 20 CHEN H T, FENG D H, WU C L. Phys. Rev. Lett., 1992, 69: 418