强流直流束在螺线管透镜中传输的Lie映射*

吕建钦1) 赵小松 张卓

(核物理与核技术国家重点实验室,北京大学 北京 100871)

摘要 用Lie代数方法分析了强流直流束在螺线管透镜中的传输,考虑了两种情况:一种情况是外磁场 力大于空间电荷力,另一种情况是外磁场力小于空间电荷力.得到两种情况下的传输矩阵.分析结果编 制成了程序,并计算了ECR离子源之后的束流传输系统.

关键词 强流直流束 螺线管 Lie 映射

1 引言

螺线管透镜常用作加速器及束流传输系统的聚焦

 $\begin{bmatrix} x\\ x'\\ y\\ y' \end{bmatrix} = \begin{bmatrix} \cos^2 k_m \ell & \frac{1}{k_m} \sin k_m \ell \cos k_m \ell \\ -k_m \sin k_m \ell \cos k_m \ell & \cos^2 k_m \ell \\ -\sin k_m \ell \cos k_m \ell & -\frac{1}{k_m} \sin^2 k_m \ell \\ k_m \sin^2 k_m \ell & -\sin k_m \ell \cos k_m \ell \end{bmatrix}$

其中 $k_m = qB_0/(2p_0)$, q为粒子的电荷, B为沿轴线的 磁场, p_0 参考粒子的动量, ℓ 为螺线管的有效长度. 当 考虑强流束的传输时, 式(1)就不再适用. 为了计算强 流束在螺线管透镜中的传输, 用Lie代数方法对粒子 运动的轨迹做了分析, 得到在空间电荷作用下的传输 矩阵.

2 粒子运动的 Hamilton 函数

在分析直流束的传输时,仍然采用六维相空间 $\varsigma = (x, x', y, y', \tau, p_{\tau}), 其中 x' = dx/dz, y' = dy/dz,$ $\tau = T - z/\beta = ct - z/\beta, p_T = -H_t/(p_0c), c$ 为光速, H_t 是以时间 t 为独立变量 Hamilton 函数,表示为

$$H_t = -c [(p_x - qA_x)^2 + (p_y - qA_y)^2 + (p_z - qA_z)^2 - m_0^2 c^2]^{\frac{1}{2}} + q\psi, \qquad (2)$$

其中 p_x, p_y 和 p_z 为粒子的正则动量; A_x, A_y 和 A_z 为磁

元件.如大家所知,它对带电粒子有聚焦和旋转两种 作用.在一级近似下切不考虑空间电荷效应时,这种 作用可以用以下传输矩阵表示

$$\frac{\sin k_m \ell \cos k_m \ell}{-k_m \sin^2 k_m \ell} \frac{1}{k_m} \frac{\sin^2 k_m \ell}{\sin k_m \ell \cos k_m \ell} \\ \frac{-k_m \sin^2 k_m \ell}{\cos^2 k_m \ell} \frac{1}{k_m} \frac{\sin k_m \ell \cos k_m \ell}{\cos^2 k_m \ell} \end{bmatrix} \begin{bmatrix} x_0 \\ x'_0 \\ y_0 \\ y'_0 \end{bmatrix}, \quad (1)$$

其中 $k_m = qB_0/(2p_0), q$ 为粒子的电荷, B为沿轴线的 / 矢势; m_0 为静止质量; ψ 为电势, 它包含两部分:

$$\psi = \psi_{\rm e} + \psi_{\rm s} \,, \tag{3}$$

其中 ψ_{e} 为外电势 ψ_{s} 为束流的自势. 在s相空间中Hamilton函数为

$$H = -\left[\left(p_{\tau} + p_{T}^{0} + \frac{q\psi}{p_{0}c}\right)^{2} - \left(x' - \frac{q}{p_{0}}A_{x}\right)^{2} - \left(y'_{y} - \frac{q}{p_{0}}A_{y}\right) - \frac{1}{\beta_{0}^{2}\gamma_{0}^{2}}\right]^{\frac{1}{2}} - \frac{q}{p_{0}}A_{z} - \frac{(p_{\tau} + p_{T}^{0})}{\beta_{0}}, \qquad (4)$$

其中 $p_T^0 = -H_t/(p_0c)|_{\text{reference particle}};$ 在螺线管透镜情况下,外电场 $\psi_e = 0;$ 若束流在横截面上均匀分布是均匀的(K-V束), 束流的自势为

$$\psi_{\rm s} = -\frac{I}{4\pi\varepsilon_0 vXY} \left[x^2 + y^2 - \frac{X-Y}{X+Y} (x^2 - y^2) \right], \quad (5)$$

其中 ε_0 为真空中的介电常数, v是粒子的速度, X和Y为椭圆形束截面的两个半轴, I为流强.如果束流在横

^{2008 - 01 - 07} 收稿

^{*} 国家自然科学基金(1057009)和高等学校博士学科点专项科研基金(20070001001)资助

¹⁾ E-mail: jqlu@pku.edu.cn

截面上呈Gauss分布, 束流的自势为

$$\psi_{s} = \frac{I}{4\pi\varepsilon_{0}v} \int_{0}^{\infty} \frac{\exp\left[-\left(\frac{x^{2}}{2\sigma_{x}^{2}+\xi} + \frac{y^{2}}{2\sigma_{y}^{2}+\xi}\right)\right]}{\sqrt{(2\sigma_{x}^{2}+\xi)(2\sigma_{y}^{2}+\xi)}} \mathrm{d}\xi \,. \quad (6)$$

其中 σ_x 和 σ_y 分别为x和y的均方根值.将(4)式所表示的 Hamilton 函数在平衡轨道附近作展开,得

$$H_{0} = 1/\beta_{0}^{2}\gamma_{0}^{2},$$

$$H_{1} = 0,$$

$$H_{2} = \frac{1}{2}s_{x}^{2}x^{2} - k_{m}xy' + \frac{1}{2}x'^{2} + k_{m}x'y +$$
(7)
$$\frac{1}{2}s_{y}^{2}y^{2} + \frac{1}{2}y'^{2} + \frac{p_{\tau}^{2}}{2\beta_{0}^{2}\gamma_{0}^{2}}$$
.....

其中 k_x 的意义在第1节中已经给出; s_x 和 s_y 为考虑空间电荷效应时粒子在x和y方向振动的波数,表示为

$$s_x^2 = k_m^2 - k_s^2, \quad s_y^2 = k_m^2 - k_y^2, \tag{8}$$

对于均匀分布束,有

$$k_x^2 = \frac{qI}{X(X+Y)m_0c^3\beta_0^3\gamma_0\pi\varepsilon_0},$$

$$k_y^2 = \frac{qI}{Y(X+Y)m_0c^3\beta_0^3\gamma_0\pi\varepsilon_0},$$
(9)

对于Gauss分布束,有

$$k_x^2 = \frac{qI\mu_x}{2m_0c^3\beta_0^3\gamma_0\pi\varepsilon_0},\tag{10}$$

$$k_y^2 = \frac{q_1 \mu_y}{2m_0 c^3 \beta_0^3 \gamma_0 \pi \varepsilon_0},$$

$$M = \begin{bmatrix} \cos(k_m \ell) \cos(s_x \ell) & \frac{1}{s_x} \cos(k_m \ell) \sin(s_x \ell) \\ -s_x \cos(k_m \ell) \sin(s_x \ell) & \cos(k_m \ell) \cos(s_x \ell) \\ -\sin(k_m \ell) \cos(s_x \ell) & -\frac{1}{s_x} \sin(k_m \ell) \sin(s_x \ell) \\ s_x \sin(k_m \ell) \sin(s_x \ell) & -\sin(k_m \ell) \cos(s_x \ell) \end{bmatrix}$$

5 计算机模拟

将以上分析结果写入了程序LEADS^[2],并计算了 一个低能束流传输系统(LEBT),此系统的平面布局 见图1. 它由一个三膜片静电单透镜,一个螺线管透镜 和漂浮管组成. 关于强流直流束在漂浮空间和静电透 镜的传输,这里不再介绍. 计算结果示于图2.

$$\mu_{x} = \int_{0}^{\infty} \frac{\mathrm{d}\xi}{(2\sigma_{x}^{2} + \xi)\sqrt{(2\sigma_{x}^{2} + \xi)(2\sigma_{y}^{2} + \xi)}},$$

$$\mu_{y} = \int_{0}^{\infty} \frac{\mathrm{d}\xi}{(2\sigma_{y}^{2} + \xi)\sqrt{(2\sigma_{x}^{2} + \xi)(2\sigma_{y}^{2} + \xi)}}.$$
(11)

式(8)是在外聚焦力大于空间电荷力时成立.如果外 聚焦力小于空间电荷力,则有

$$s_x^2 = k_x^2 - k_m^2 \,, \qquad s_y^2 = k_y^2 - k_m^2 \,. \tag{12}$$

3 Lie 映射^[1]

当粒子在电磁场中运动时,它在相空间中的最终 坐标 Sr 与初始 So 坐标的关系可表示为

$$\varsigma_{\rm f} = \mathcal{M} \varsigma_{\rm o} \,, \tag{13}$$

这里 *M* 为一个辛 (symplectic) 映射,也称 Lie 映射,表示为

$$\mathcal{M} = \cdots \mathcal{M}_3 \mathcal{M}_2,$$

$$\mathcal{M}_2 = \exp(: f_2 :), \qquad (14)$$

$$\mathcal{M}_3 = \exp(: f_3 :),$$

其中

$$f_{2} = -\ell H_{2},$$

$$f_{3} = -\int_{0}^{\ell} h_{3}^{\text{int}}(\varsigma, z_{1}) \mathrm{d}z_{1} \cdots$$
(15)

$$h_n^{\text{int}}(\varsigma, z) = H_n(M_2(z \leftarrow 0)\varsigma, z).$$
(16)

4 粒子运动的解

利用Lie代数方法,强流直流束中的粒子在螺线 管中运动时所受到的作用可用以下矩阵表示:

$$\frac{\sin(k_m\ell)\cos(s_y\ell)}{-s_y\sin(k_m\ell)\sin(s_y\ell)} = \frac{1}{s_y}\sin(k_m\ell)\sin(s_y\ell)} \\
\frac{-s_y\sin(k_m\ell)\sin(s_y\ell)}{\cos(k_m\ell)\cos(s_y\ell)} = \frac{1}{s_y}\cos(k_m\ell)\sin(s_y\ell)} \\
\frac{-s_y\cos(k_m\ell)\sin(s_y\ell)}{\sin(s_y\ell)} = \cos(k_m\ell)\cos(s_y\ell)}$$
(17)

6 讨论

因为空间电荷力随着粒子的运动在不断变化,所 以在进行数值计算时,需将每个元件分成若干小段. 在每个小段上都要进行迭代计算,直到相邻两次迭代 的结果满足所给定的误差要求再进行下一个小段的 迭代.

图 1 LEBT 的布局(1. 离子源; 2. 单透镜; 3. 螺线管; 4. 加速腔)

参考文献(References)

1 Dragt A J. AIP Conference proceedings, 1982, 87: 147-

3102 LÜ Jian-Qin, LI Jin-Hai. Progress in Natural Science, 2004,

16(6): 667–672

Lie Map for the Intense dc Beam Transport in Solenoids^{*}

LÜ Jian-Qin¹⁾ ZHAO Xiao-Song ZHANG Zhuo

(State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China)

Abstract The intense dc beam transport in the solenoid lenses is analyzed with the Lie algebraic method, and the transfer matrix with space charge effects is obtained. Two cases are considered: one of them is that the external focusing force is greater than the space charge force; another is that the external force is less than the space charge force. The theoretical results are coded and used in the calculations of a low energy beam transport after the ECR ion source.

Key words intense dc beam, solenoids Lie map

Received 7 January 2008

^{*} Supported by National Natural Science Foundation of China (10577009) and Specialized Research Fund for the Doctoral Program of Higher Education (20070001001)

¹⁾ E-mail: jqlu@pku.edu.cn