Study of semileptonic decays $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 1}(2536) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573) \mathrm{l} \bar{v}$ in the CQM model ${ }^{*}$

ZHAO Shu－Min（赵树民）${ }^{1)}$ ZHANG Yin－Jie（张印杰）YAN Yu－Li（阎玉立）
LIU Li－Quan（刘立全）WU Li－Ping（武利平）

（College of Physics Science and Technology，Hebei University，Baoding 071002，China）

Abstract

Based on the assumption that $\mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$ belong to T doublet $\left(1^{+}, 2^{+}\right)$，we calculate the semileptonic decays of B_{s} to $\mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$ in terms of the Constituent Quark Meson（CQM） model．For $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 1}(2536)+\mathrm{l} \overline{\mathrm{v}}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573)+\mathrm{l} \bar{v}$ ，the order of magnitude of the obtained branching ratios is 10^{-3} ．Our numerical results of the semileptonic decays of B_{s} to $\mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$ are large， which implies that two semileptonic decays should be seen in future experiments．

Key words semileptonic decay，CQM model，branching ratios
PACS 12．25．Ft，12．38．Lg，12．39．Fe

1 Introduction

In recent years，both theorists and experimenta－ lists of high energy physics show great interest in the discoveries of exotic mesons $\mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$ which are made up of c and $\overline{\mathrm{s}}^{[1,2]}$ ．Using heavy quark spin－flavor symmetry，one classifies heavy $\mathrm{Q} \overline{\mathrm{q}}$ mesons into doublets which can be labeled by the value of the angular momentum s_{1} of the light degrees of freedom： $s_{1}=s_{\overline{\mathrm{q}}}+l$ ，with $s_{\overline{\mathrm{q}}}$ being the light antiquark spin and l the orbital angular momentum of the light degrees of freedom relative to the heavy quark ${ }^{[3-5]} \cdot s_{1}^{\mathrm{P}}$ can be either $\frac{1}{2}^{+}$or $\frac{3}{2}^{+}$，when the value of l is 1 ．Assuming that $D_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$ can be embedded into the $J_{\mathrm{s}_{1}}^{\mathrm{P}}=\left(1^{+}, 2^{+}\right)_{3 / 2}$ doublet，Colangelo P et al．stud－ ied the transitions $D_{\mathrm{s} 2}^{+} \rightarrow \mathrm{D}^{(*)+} \mathrm{K}^{0}, \mathrm{D}^{(*) 0} \mathrm{~K}^{+}$and $\mathrm{D}_{\mathrm{s} 1}^{+} \rightarrow$ $\mathrm{D}^{*+} \mathrm{K}^{0}, \mathrm{D}^{* 0} \mathrm{~K}^{+}$in the Heavy Quark Effective Theory $(\mathrm{HQET}){ }^{[3]}$ ．For the width of $\mathrm{D}_{\mathrm{s} 1}(2536)$ the present bound $\Gamma\left(\mathrm{D}_{\mathrm{s} 1}(2536)\right)<2.3 \mathrm{MeV}$ is given in the data book ${ }^{[6]}$ ．Recently，new measurements of the proper－ ties of the spin two $\mathrm{D}_{\mathrm{s} 2}(2573)$ meson were reported by the BaBar Collaboration ${ }^{[7]}$ ，particularly the decay width $\Gamma\left(\mathrm{D}_{\mathrm{s} 2}(2573) \rightarrow \mathrm{DK}\right)=27.1 \pm 0.6 \pm 5.6 \mathrm{MeV}$ ．The full width of the meson $\mathrm{D}_{\mathrm{s} 2}(2573)$ announced by the Particle Data Group is $15_{-4}^{+5} \mathrm{MeV}$ ．So the structures
and the properties of exotic mesons $\mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}$（2573）are interesting topics，and one needs to use various theoretical approaches to study the produc－ tions and decays of $\mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$ ．

By the QCD sum rules，Aliev A M et al．studied the semileptonic decays $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{sJ}}(2317,2460) \mathrm{l} \overline{\mathrm{v}}$ and obtained large branching ratios ${ }^{[8,9]}$ ．However，with other reasonable models，studies on the semileptonic decays B_{s} to D_{s} family may be useful．In the CQM model，we compute $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}^{(*)}(1968,2112) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{sJ}}(2317,2460) \mathrm{l} \overline{\mathrm{v}}$ and get reasonable results ${ }^{[10]}$ ． Thus the studies on the production of the higher ex－ otic states $\mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$ are also impor－ tant，which can not only deepen our understanding about the properties of these states，but also test the reliability of models which are used to calculate the semileptonic decays．The Large Hadron Collider （LHC）is running，from which large amount of data of B_{s} can be produced．Thus it would be realistic to obtain the information of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 1}(2536) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573) \mathrm{l} \overline{\mathrm{v}}$ ．

In this work，we calculate the semileptonic de－ cays $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 1}(2536) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573) \mathrm{l} \bar{v}$ in terms of the CQM model．By the assumption that $\left(\mathrm{D}_{\mathrm{s} 1}(2536), \mathrm{D}_{\mathrm{s} 2}(2573)\right)$ with spin－parity $\left(1^{+}, 2^{+}\right)$can be supposed as $\mathrm{T}\left(1^{+}, 2^{+}\right)$doublet in HQET，we com－

[^0]plete the studies on the semileptonic decays of B_{s} to $\mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$.

The CQM model was proposed by Polosa et al. ${ }^{[11]}$ and has been well developed later based on the work of Ebert et al ${ }^{[12]}$. The effective Lagrangian which incorporates the flavor-spin symmetry for heavy quarks with the chiral symmetry for light quarks is the base of the CQM model. Using the CQM model, the authors ${ }^{[13,14]}$ have got reasonable results of heavy meson physics, so we can believe that the model is appropriate to our processes and expect to get relatively reasonable results.

The paper is organized as follows. After the introduction, in Section 2, we present our formulation and in Section 3, all the input parameters and the corresponding numerical results of the semileptonic decays $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 1}(2536) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573) \mathrm{l} \bar{v}$ are explicitly given. The last section is devoted to a simple discussion and conclusion. Some detailed expressions are collected in the appendix.

2 Formulation

For the convenience of readers, we give a brief introduction of the CQM model ${ }^{[11]}$. The model is relativistic and based on an effective Lagrangian which combines the HQET and the chiral symmetry for light quarks

$$
\begin{align*}
\mathcal{L}_{\mathrm{CQM}}= & \bar{\chi}[\gamma \cdot(\mathrm{i} \partial+V)] \chi+\bar{\chi} \gamma \cdot A \gamma_{5} \chi- \\
& m_{\mathrm{q}} \bar{\chi} \chi+\frac{f_{\pi}^{2}}{8} \operatorname{Tr}\left[\partial^{\mu} \Sigma \partial_{\mu} \Sigma^{+}\right]+\bar{h}_{\mathrm{v}}(\mathrm{i} v \cdot \partial) h_{\mathrm{v}}- \\
& {\left[\bar{\chi}\left(\bar{H}+\bar{S}+\mathrm{i} \bar{T}^{\mu} \frac{\partial_{\mu}}{\Lambda_{\chi}}\right) h_{\mathrm{v}}+\text { h.c. }\right]+} \\
& \frac{1}{2 G_{3}} \operatorname{Tr}[(\bar{H}+\bar{S})(H-S)]+\frac{1}{2 G_{4}} \operatorname{Tr}\left[\bar{T}^{\mu} T_{\mu}\right] \tag{1}
\end{align*}
$$

where the fifth term is the kinetic term of heavy quarks with $\nsim h_{\mathrm{v}}=h_{\mathrm{v}} ; H$ and S denote the superfields corresponding to doublets $\left(0^{-}, 1^{-}\right)$and $\left(0^{+}, 1^{+}\right)$ respectively. The explicit matrix representations of H and S read as

$$
\begin{align*}
H & =\frac{1+\nsucc}{2}\left[P_{\mu}^{*} \gamma^{\mu}-P \gamma_{5}\right] \tag{2}\\
S & =\frac{1+\ngtr}{2}\left[P_{1 \mu}^{*^{\prime}} \gamma^{\mu} \gamma_{5}-P_{0}\right] \tag{3}
\end{align*}
$$

where $P, P^{* \mu}, P_{0}$ and P_{1} are the annihilation operators of pseudoscalar, vector, scalar and axial vector mesons which are normalized as

$$
\begin{aligned}
\langle 0| P\left|M\left(0^{-}\right)\right\rangle & =\sqrt{M_{H}},\langle 0| P^{* \mu}\left|M\left(1^{-}\right)\right\rangle=\sqrt{M_{H}} \epsilon^{\mu} \\
\langle 0| P_{0}\left|M\left(0^{+}\right)\right\rangle & =\sqrt{M_{S}} \gamma_{5},\langle 0| P_{1}^{* \mu}\left|M\left(1^{+}\right)\right\rangle=\sqrt{M_{S}} \gamma_{5} \epsilon^{\mu}
\end{aligned}
$$

T is the super-field corresponding to the doublet $\left(1^{+}, 2^{+}\right)$

$$
\begin{align*}
T^{\alpha}= & \frac{1+\not \psi}{2}\left[P_{2}^{* \alpha \beta} \gamma_{\beta}-\right. \\
& \left.\sqrt{\frac{3}{2}} P_{1 \beta}^{*} \gamma_{5}\left(g^{\alpha \beta}-\frac{1}{3} \gamma^{\beta}\left(\gamma^{\alpha}-v^{\alpha}\right)\right)\right] . \tag{4}
\end{align*}
$$

$\chi=\xi q(q=u, d, s)$ is the light quark field and $\xi=\mathrm{e}^{\frac{\mathrm{i} M}{f \pi}}$, and M is the octet pseudoscalar matrix. We also have

$$
\begin{align*}
V^{\mu} & =\frac{1}{2}\left(\xi^{\dagger} \partial^{\mu} \xi+\xi \partial^{\mu} \xi^{\dagger}\right) \tag{5}\\
A^{\mu} & =\frac{-\mathrm{i}}{2}\left(\xi^{\dagger} \partial^{\mu} \xi-\xi \partial^{\mu} \xi^{\dagger}\right) \tag{6}
\end{align*}
$$

Here we also present the Lagrangian of the decays $\mathrm{H} \rightarrow \mathrm{H}^{\prime} \mathrm{M}, \mathrm{S} \rightarrow \mathrm{H}^{\prime} \mathrm{M}, \mathrm{T} \rightarrow \mathrm{H}^{\prime} \mathrm{M}$ at leading order of the heavy quark expansion ${ }^{[3]}$.

$$
\begin{align*}
\mathcal{L}_{H} & =g \operatorname{Tr}\left[\bar{H}_{a} H_{b} \gamma_{\mu} \gamma_{5} A_{b a}^{\mu}\right] \\
\mathcal{L}_{S} & =h \operatorname{Tr}\left[\bar{H}_{a} S_{b} \gamma_{\mu} \gamma_{5} A_{b a}^{\mu}\right]+\text { h.c. } \\
\mathcal{L}_{T} & =\frac{h^{\prime}}{\Lambda_{\chi}} \operatorname{Tr}\left[\bar{H}_{a} T_{b}^{\mu}\left(\mathrm{i} D_{\mu} / A+\mathrm{i} / D A_{\mu}\right)_{b a} \gamma_{5}\right]+\text { h.c. } \\
D_{\mu b a} & =-\delta_{b a} \partial_{\mu}+\frac{1}{2}\left(\xi^{\dagger} \partial^{\mu} \xi+\xi \partial^{\mu} \xi^{\dagger}\right)_{b a} \tag{7}
\end{align*}
$$

Categorizing $\mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$ as the T type doublet $\left(1^{+}, 2^{+}\right)$, we compute the semileptonic decays of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 1}(2536)+\mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573)+\mathrm{l} \bar{v}$. To calculate the semileptonic decays of B_{s} to D_{s} mesons, the four-fermion operator of $b \rightarrow c+l \bar{v}$ is necessary and reads as ${ }^{[15]}$

$$
\begin{equation*}
\mathcal{O}=\frac{G_{\mathrm{F}} V_{c b}}{\sqrt{2}} \bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) b \bar{v} \gamma_{\mu}\left(1-\gamma_{5}\right) l \tag{8}
\end{equation*}
$$

At hadron level, the transition amplitudes of $\mathrm{B}_{\mathrm{s}} \rightarrow$ $\mathrm{D}_{\mathrm{s} 1}(2536) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573) \mathrm{l} \bar{v}$ can be written in the following form

$$
\begin{align*}
\mathcal{M}= & \left\langle\mathrm{D}_{\mathrm{s}}^{(*)} \mathrm{l} \bar{v}\right| \mathcal{O}\left|\mathrm{B}_{\mathrm{s}}\right\rangle= \\
& \frac{G_{\mathrm{F}} V_{c b}}{\sqrt{2}}\left\langle\mathrm{D}_{\mathrm{s}}^{(*)}\right| \bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) b\left|\mathrm{~B}_{\mathrm{s}}\right\rangle \times \\
& \langle l \overline{\mathrm{v}}| \overline{\mathrm{v}} \gamma_{\mu}\left(1-\gamma_{5}\right) l|0\rangle \tag{9}
\end{align*}
$$

where the hadronic matrix element is related to nonperturbative QCD effects. In the HQET symmetries, the hadronic matrix elements can be expressed as

$$
\begin{align*}
& \left\langle\mathrm{D}_{1}^{*}\left(v^{\prime}, \epsilon\right)\right| \bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b|B(v)\rangle=\sqrt{\frac{M_{\mathrm{B}} M_{\mathrm{D}_{1}^{*}}}{2}} \times \\
& \tau_{3 / 2}(\omega)\left\{\left(\omega^{2}-1\right) \epsilon_{\mu}^{*}+\left(\epsilon^{*} \cdot v\right)\left[3 v_{\mu}-(\omega-2) v_{\mu}^{\prime}\right]-\right. \\
& \left.\mathrm{i}(\omega+1) \varepsilon_{\mu \alpha \beta \gamma} \epsilon^{* \alpha} v^{\prime \beta} v^{\gamma}\right\} \tag{10}
\end{align*}
$$

$$
\begin{align*}
& \left\langle\mathrm{D}_{2}^{*}\left(v^{\prime}, \epsilon^{\prime}\right)\right| \bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b|B(v)\rangle=\sqrt{3 M_{\mathrm{B}} M_{\mathrm{D}_{2}^{*}}} \times \\
& \tau_{3 / 2}(\omega)\left\{\mathrm{i} \varepsilon_{\mu \alpha \beta \gamma} \epsilon^{\prime * \alpha \eta} v_{\eta} v^{\prime \beta} v^{\gamma}-\left[(\omega+1) \epsilon_{\mu \alpha}^{\prime *} v^{\alpha}-\right.\right. \\
& \left.\left.\epsilon_{\alpha \beta}^{\prime *} v^{\alpha} v^{\beta} v_{\mu}^{\prime}\right]\right\} \tag{11}
\end{align*}
$$

where $\omega=v \cdot v^{\prime}$. In HQET, the dimensionless probability function $\tau_{3 / 2}(\omega)$ is the famous Isgur-Wise function. Then, the central task in the CQM model is how to extract the Isgur-Wise function from the loop integrals.

In the CQM model, the hadronic matrix element $\left\langle\mathrm{D}_{\mathrm{s}}^{(*)}\right| \bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) b\left|\mathrm{~B}_{\mathrm{s}}\right\rangle$ can be described by the following Feynman diagram (Fig. 1).

Fig. 1. The Feynman diagram depicts the decays of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}^{(*)} \mathrm{l} \overline{\mathrm{v}}$. The thick-line denotes the heavy quark propagator.

According to the CQM model ${ }^{[11]}$, the couplings of B_{s} and $\mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$ with light and heavy quarks are expressed as

$$
\begin{align*}
& \frac{1+\not ้}{2} \sqrt{Z_{H} M_{\mathrm{B}_{\mathrm{s}}}} \gamma_{5} \tag{12}\\
& \frac{1+\not ้}{2} \sqrt{Z_{T} M_{\mathrm{D}_{\mathrm{s} 1}}} \sqrt{\frac{3}{2}} \epsilon_{\beta} \gamma_{5}\left(g^{\alpha \beta}-\frac{1}{3} \gamma^{\beta}\left(\gamma^{\alpha}-v^{\alpha}\right)\right) \frac{\mathrm{i} \partial_{\alpha}}{\Lambda_{\chi}} \tag{13}
\end{align*}
$$

$\frac{1+\not \psi^{\prime}}{2} \sqrt{Z_{T} M_{\mathrm{D}_{\mathrm{s} 2}}} \epsilon^{\prime \alpha \beta} \gamma_{\beta} \frac{\mathrm{i} \partial_{\alpha}}{\Lambda_{\chi}}$,
where ϵ denotes the polarization vector of $\mathrm{D}_{\mathrm{s} 1}(2536)$, and ϵ^{\prime} is the tensor of $\mathrm{D}_{\mathrm{s} 2}(2573) . Z_{H}$ and Z_{T} are the renormalization constants corresponding to S and T doublets respectively, whose concrete expressions are presented as ${ }^{[11]}$

$$
\begin{align*}
Z_{H}^{-1}= & \left(\Delta_{H}+m\right) \frac{\partial I_{3}\left(\Delta_{H}\right)}{\partial \Delta_{H}}+I_{3}\left(\Delta_{H}\right) \tag{15}\\
Z_{T}^{-1}= & \frac{1}{\Lambda_{\chi}^{2}}\left[\left(\Delta_{T}^{2}-m^{2}\right)\left(\left(m+\Delta_{T}\right) \frac{\partial I_{3}\left(\Delta_{T}\right)}{\partial \Delta_{T}}+I_{3}\left(\Delta_{T}\right)\right)+\right. \\
& \left(m+\Delta_{T}\right)\left(\frac{\partial I_{0}\left(\Delta_{T}\right)}{\partial \Delta_{T}}+I_{1}+2 \Delta_{T} I_{3}\left(\Delta_{T}\right)\right)+ \\
& \left.I_{0}+\Delta_{T} I_{1}\right] \tag{16}
\end{align*}
$$

where $\Lambda_{\chi}=1 \mathrm{GeV}, N_{\mathrm{c}}=3$ and m is the mass of the light quark s. To save space the explicit expressions of the functions I_{0}, I_{1} and I_{3} are collected in appendix.
Δ_{H} is a free CQM parameter, which can be fixed by reasonable numerical values, and Δ_{T} is the function of Δ_{H}.

Now the hadronic transition matrix element can be written as

$$
\begin{align*}
M^{\mu}= & \frac{\left(\mathrm{i}^{5}\right)}{4} \sqrt{M_{\mathrm{B}_{\mathrm{s}}} M_{\mathrm{D}_{\mathrm{s}}}} \sqrt{Z_{H} Z_{T}} N_{\mathrm{c}} \int^{\mathrm{reg}} \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \times \\
& \frac{\left.\operatorname{Tr}\left[(\not ้+m) \Gamma^{\prime}\left(1+\not \psi^{\prime}\right) \gamma^{\mu}(1+\not)^{\prime}\right) \gamma^{5}\right]}{\left(k^{2}-m^{2}\right)\left(v^{\prime} \cdot k+\Delta_{H}\right)\left(v \cdot k+\Delta_{H}\right)} \tag{17}
\end{align*}
$$

where Γ^{\prime} should be $\sqrt{\frac{3}{2}} \epsilon_{\beta} \gamma_{5}\left(g^{\alpha \beta}-\frac{1}{3} \gamma^{\beta}\left(\gamma^{\alpha}-v^{\alpha}\right)\right) \frac{\mathrm{i} \partial_{\alpha}}{\Lambda_{\chi}}$ and $\epsilon^{\prime \alpha \beta} \gamma_{\beta} \frac{\mathrm{i} \partial_{\alpha}}{\Lambda_{\chi}}$ correspond to $\mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$ respectively.

In order to retrench space in the text, one omits the technical details. After tedious calculation, one finally obtains the Isgur-Wise function $\tau_{3 / 2}(\omega)$ from Eq. (17) by matching the Eqs. (10) and (11).

$$
\begin{align*}
& \tau_{3 / 2}(\omega)=-\frac{\sqrt{Z_{H} Z_{T}}}{\sqrt{3}}\left[m \left(\frac { 1 } { 2 (1 - \omega) } \left(I_{3}\left(\Delta_{H}\right)-\right.\right.\right. \\
& \left.I_{3}\left(\Delta_{T}\right)-\left(\Delta_{H}-\Delta_{T}\right) I_{5}\left(\Delta_{H}, \Delta_{T}, \omega\right)\right)- \\
& \frac{1}{2(1+\omega)}\left(I_{3}\left(\Delta_{H}\right)+I_{3}\left(\Delta_{T}\right)+\right. \\
& \left.\left.\left(\Delta_{H}+\Delta_{T}\right) I_{5}\left(\Delta_{H}, \Delta_{T}, \omega\right)\right)\right)- \\
& \frac{1}{2\left(-1-\omega+\omega^{2}+\omega^{3}\right)}\left(-3 S\left(\Delta_{H}, \Delta_{T}, \omega\right)-\right. \\
& (1-2 \omega) S\left(\Delta_{T}, \Delta_{H}, \omega\right)+\left(1-\omega^{2}\right) T\left(\Delta_{H}, \Delta_{T}, \omega\right)- \\
& \left.\left.2(1-2 \omega) U\left(\Delta_{H}, \Delta_{T}, \omega\right)\right)\right] \tag{18}
\end{align*}
$$

where S, T, U being linear combinations of I_{i}, are listed in appendix.

With Eqs. (9)——(11), we deduce the decay widths of the semileptonic decays $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 1}(2536) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573) \mathrm{l} \overline{\mathrm{v}}$.

$$
\begin{aligned}
& \mathrm{d} \Gamma\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 1}(2536) \mathrm{l} \bar{v}\right)= \\
& \quad \frac{G_{\mathrm{F}}^{2}\left|V_{\mathrm{cb}}\right|^{2}}{24 \pi^{3}} M_{\mathrm{D}_{\mathrm{s} 1}}^{3} \sqrt{\left(\omega^{2}-1\right)}(1+\omega) \tau_{3 / 2}^{2}(\omega) \times \\
& \quad\left(\left(M_{\mathrm{B}_{\mathrm{s}}}^{2}+M_{\mathrm{D}_{\mathrm{s} 1}}^{2}\right)\left(2 \omega^{3}-\omega^{2}-2 \omega+1\right)-\right. \\
& \left.2 M_{\mathrm{B}_{\mathrm{s}}} M_{\mathrm{D}_{\mathrm{s} 1}}\left(\omega^{4}-\omega^{3}+\omega-1\right)\right) \mathrm{d} \omega \\
& \mathrm{~d} \Gamma\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573) \mathrm{l} \bar{v}\right)= \\
& \quad \frac{G_{\mathrm{F}}^{2}\left|V_{\mathrm{cb}}\right|^{2}}{24 \pi^{3}} M_{\mathrm{D}_{\mathrm{s} 2}}^{3} \sqrt{\left(\omega^{2}-1\right)}(\omega-1)(1+\omega)^{2} \times \\
& \tau_{3 / 2}^{2}(\omega)\left(\left(M_{\mathrm{B}_{\mathrm{s}}}^{2}+M_{\mathrm{D}_{\mathrm{s} 2}}^{2}\right)(4 \omega+1)-\right. \\
& \left.2 M_{\mathrm{B}_{\mathrm{s}}} M_{\mathrm{D}_{\mathrm{s} 2}}\left(3 \omega^{2}+\omega+1\right)\right) \mathrm{d} \omega
\end{aligned}
$$

Table 1. The values of Δ_{H} are taken from ${ }^{[16]}$ and those of Δ_{T} are calculated from ${ }^{[3,11]}$. The values of Z_{S} and Z_{H} are obtained from the Eqs. (15) and (16). $B R_{1}$ and $B R_{2}$ respectively denote the the branching ratios of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 1}(2536) \mathrm{l} \overline{\mathrm{v}}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573) \mathrm{l} \overline{\mathrm{v}}$.

$\Delta_{H} / \mathrm{GeV}$	$\Delta_{T} / \mathrm{GeV}$	$Z_{H} / \mathrm{GeV}^{-1}$	$Z_{T} / \mathrm{GeV}^{-1}$	$B R_{1}$	$B R_{2}$
0.5	0.9	3.99	2.23	2.4×10^{-3}	3.4×10^{-3}
0.6	1.0	2.69	1.29	3.1×10^{-3}	4.4×10^{-3}
0.7	1.1	1.74	0.68	3.7×10^{-3}	5.7×10^{-3}

3 Numerical results

In this section, we present our numerical results. With the formulation we derived in the last section, we numerically evaluate the corresponding decay rates. The input parameters are taken as follows: $G_{\mathrm{F}}=1.1664 \times 10^{-5} \mathrm{GeV}^{-2}, V_{\mathrm{cb}}=0.043, M_{\mathrm{B}_{\mathrm{s}}}=$ $5.3696 \mathrm{GeV}, M_{\mathrm{D}_{\mathrm{s} 1}}=2.536 \mathrm{GeV}, M_{\mathrm{D}_{\mathrm{s} 2}}=2.573 \mathrm{GeV}^{[6]}$, $m=0.5 \mathrm{GeV}$, the UV cutoff $\Lambda=1.25 \mathrm{GeV}$, the IR cutoff $\mu=0.5 \mathrm{GeV}$ and $\Delta_{T}-\Delta_{H} \sim 0.4 \mathrm{GeV}$.

We present the numerical results of the semileptonic decays $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 1}(2536) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573) \mathrm{l} \bar{v}$ in the table.

4 Discussion and conclusion

In this work, the semileptonic decays $\mathrm{B}_{\mathrm{s}} \rightarrow$ $\mathrm{D}_{\mathrm{s} 1}(2536) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573) \mathrm{l} \bar{v}$ are studied in the CQM Model. In order to complete the calculation of the semileptonic decays B_{s} to $\mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$, we make an assumption that $\mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$ belong to T doublet $\left(1^{+}, 2^{+}\right)$.

For $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 1}(2536) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573) \mathrm{l} \bar{v}$, the order of magnitude of the obtained branching ratios is 10^{-3}. Comparing our results with those obtained by other groups, for the semileptonic decays B_{s} to D_{s} family, it can be found that the order of our results is reasonable. For $B_{s} \rightarrow D_{s}(1968)+\mathrm{l} \bar{v}$, the experimen-
tal data are $(7.9 \pm 2.4) \%$. Meanwhile one predicts the branching ratio of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}^{*}(2112)+\mathrm{l} \bar{v}$ which should be at the same order as that of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}(1968)+\mathrm{l} \overline{\mathrm{v}}$. In QCD sum rules, the authors ${ }^{[8,9]}$ calculate $\mathrm{B}_{\mathrm{s}} \rightarrow$ $\mathrm{D}_{\mathrm{sJ}}^{*}(2317) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{sJ}}(2460) \mathrm{l} \bar{v}$, and the order of the corresponding results is about 10^{-3}.
$\mathrm{D}_{\mathrm{sJ}}^{*}(2317), \mathrm{D}_{\mathrm{sJ}}(2460), \mathrm{D}_{\mathrm{s} 1}(2536)$ and $\mathrm{D}_{\mathrm{s} 2}(2573)$ are all exotic mesons with the orbital angular momentum $l=1$, and can be categorized as S doublet $\left(0^{+}, 1^{+}\right)$and T doublet $\left(1^{+}, 2^{+}\right)$respectively. So the branching ratios for the semileptonic decays B_{s} to $\mathrm{D}_{\mathrm{sJ}}^{*}(2317)$ and $\mathrm{D}_{\mathrm{sJ}}(2460)$ should be close to those of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 1}(2536) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573) \mathrm{l} \bar{v}$. It is obvious that the order of our numerical results of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 1}(2536) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2573) \mathrm{l} \bar{v}$ can match that of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{sJ}}^{*}(2317) \mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{sJ}}(2460) \mathrm{l} \bar{v}$ obtained by the QCD sum rules. Both our numerical results and the analyses from the QCD sum rules imply that the semileptonic decays $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{S}+\mathrm{l} \bar{v}$ and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{T}+\mathrm{l} \bar{v}$ have large branching ratios. In the future, these semileptonic decays will be measured in the CDF experiment and LHCb experiment by our experimental colleagues, which can make one understand the nature of those exotic D_{s} mesons deeply. Moreover, our understanding of the CQM model can also be improved by further experiments.

We would like to thank professor X.Q. Li and Dr. X. Liu for useful discussion.

References

1 Aubert B et al. (The BaBar Collaboration). arXiv: hep-ex/0607084; Balagura V et al. (Belle Collaboration). BELLE-CONF-0516, LP2005-PAPER-151, EPS05488, arXiv: hep-ex/0507030; Bishai M et al. Phys. Rev. D, 1998, 57: 3847, arXiv: hep-ex/9710023; The CLEO Collaboration. Phys. Rev. Lett., 1994, 72: 1972, arXiv: hep-ph/9403325
2 Chao K T. Phys. Lett. B, 2004, 599: 43; Petersen B A (BaBar Collaboration). arXiv: hep-ex/0609030
3 Colangelo P, Fazio F D, Ferrandes R. Phys. Lett. B, 2006, 634: 235
4 Isguar N, Wise M B. Phys. Rev. Lett., 1991, 66: 1130; Phys. Rev. D, 1991,43: 819; Kilian U, Körner J G, Pirjol D. Phys. Lett. B, 1992, 288: 360; Falk A F, Luke M. Phys. Lett. B, 292: 119
5 Colangelo P, Fazio F D, Nicotri S. Phys. Lett. B, 2006, 642: 48
6 Eidelman S et al. (Partical Data Group). Phys. Lett. B, 2004, 592: 1

7 Palano A. New Spectroscopy with Charm Quarks at B Factories, talk given at the International Workshop Charm2006. Beijing, China, 5-7 June 2006; Rahimi A. $\mathrm{D}_{\mathrm{SJ}}^{*}$ and Charmed Baryons at BaBar, talk given at the Heavy Quarkonium Workshop. Brookhaven, USA, 2730 June 2006; Negrini M. Charm and Charmonium spectroscopy at BaBar, talk given at the International Conference QCD 06. Montpellier, France, 3-7 July 2006
8 Aliev T M, Savci M. Phys. Rev. D, 2006, 73: 114010
9 Aliev T M, Azizi K, Ozpinect A. Eur. Phys. J. C, 2007, 51: 593
10 ZHAO S M, LIU X, LI S J. Eur. Phy. J. C, 2007, 51: 601
11 Polosa A D. Riv. Nuovo Cim., 2000, 23 N 11: 1
12 Ebert D, Feldmann T, Reinhardt H. Phys. Lett. B, 1996, 388: 154; Ebert D, Feldmann T, Friedrich R, Reinhardt H. Nucl. Phys. B, 1995, 434: 619

13 Deandrea A , Bartolomeo N D, Gatto R et al. Phys. Rev. D, 1998, 58: 034004; Deandrea A, Gatto R, Nardulli G et al. Phys. Rev. D, 1999, 59: 074012; J. High Energy Phys., 1999, 02: 021
14 Deandrea A, Gatto R, Nardulli G et al. Phys. Rev. D, 2000,

61: 017502
15 LI H N. Phys. Rev. D, 1995, 52: 3958

Appendix A

The explicit expressions of $\quad I_{i}, \quad S\left(\Delta_{1}, \Delta_{2}, \omega\right)$, $T\left(\Delta_{1}, \Delta_{2}, \omega\right)$ and $U\left(\Delta_{1}, \Delta_{2}, \omega\right)$ which are related to our calculations are listed

$$
\begin{aligned}
& I_{0}(\Delta)= \frac{\mathrm{i} N_{\mathrm{c}}}{16 \pi^{4}} \int^{\mathrm{reg}} \frac{\mathrm{~d}^{4} k}{v \cdot k+\Delta+\mathrm{i} \epsilon}= \\
& \frac{N_{\mathrm{c}}}{16 \pi^{3 / 2}} \int_{1 / \Lambda^{2}}^{1 / \mu^{2}} \frac{\mathrm{~d} s}{s^{3 / 2}} \mathrm{e}^{-s\left(m^{2}-\Delta^{2}\right)} \times \\
&\left(\frac{3}{2 s}+m^{2}-\Delta^{2}\right)[1+\operatorname{erf}(\Delta \sqrt{s})]- \\
& \Delta \frac{N_{\mathrm{c}} m^{2}}{16 \pi^{2}} \Gamma\left(-1, \frac{m^{2}}{\Lambda^{2}}, \frac{m^{2}}{\mu^{2}}\right), \\
& I_{1}= \frac{\mathrm{i} N_{\mathrm{c}}}{16 \pi^{4}} \int^{\mathrm{reg}} \frac{\mathrm{~d}^{4} k}{k^{2}-m^{2}}= \\
& I_{3}(\Delta)=- \frac{N_{\mathrm{c}} m^{2}}{16 \pi^{2}} \Gamma\left(-1, \frac{m^{2}}{\Lambda^{2}}, \frac{m^{2}}{\mu^{2}}\right), \\
& \int^{\mathrm{reg}} \frac{\pi^{4}}{\left(k^{2}-m^{2}\right)(v \cdot k+\Delta+\mathrm{i} \epsilon)}= \\
& \frac{N_{\mathrm{c}}}{16 \pi^{3 / 2}} \int_{1 / \Lambda^{2}}^{1 / \mu^{2}} \frac{\mathrm{~d} s}{s^{3 / 2}} \mathrm{e}^{-s\left(m^{2}-\Delta^{2}\right)} \times \\
&(1+\operatorname{erf}(\Delta \sqrt{s})), \\
& I_{5}\left(\Delta_{1}, \Delta_{2}, \omega\right)= \frac{\mathrm{i} N_{\mathrm{c}}}{16 \pi^{4}} \int^{\mathrm{reg}} \times
\end{aligned}
$$

$$
\frac{\mathrm{d}^{4} k}{\left(k^{2}-m^{2}\right)\left(v \cdot k+\Delta_{1}+\mathrm{i} \epsilon\right)\left(v^{\prime} \cdot k+\Delta_{2}+\mathrm{i} \epsilon\right)}=
$$

$$
\int_{0}^{1} \mathrm{~d} x \frac{1}{1+2 x^{2}(1-\omega)+2 x(\omega-1)} \times
$$

$$
\left[\frac{6}{16 \pi^{2}} \int_{1 / \Lambda^{2}}^{1 / \mu^{2}} \mathrm{~d} s \mathrm{e}^{-s\left(m^{2}-2 \sigma^{2}\right)} s^{-1}+\right.
$$

$$
\frac{6}{16 \pi^{3 / 2}} \int_{1 / \Lambda^{2}}^{1 / \mu^{2}} \mathrm{~d} s \sigma \mathrm{e}^{-s\left(m^{2}-\sigma^{2}\right)} s^{-1 / 2} \times
$$

$$
\begin{equation*}
(1+\operatorname{erf}(\sigma \sqrt{s}))] \tag{A4}
\end{equation*}
$$

16 Deandrea A, Nardulli G, Polosa A D. Phys. Rev. D, 2003, 68: 097501

$$
\begin{align*}
& I_{6}\left(\Delta_{1}, \Delta_{2}, \omega\right)= \frac{\mathrm{i} N_{\mathrm{c}}}{16 \pi^{4}} \int^{\mathrm{reg}} \times \\
& \frac{\mathrm{d}^{4} k}{\left(v \cdot k+\Delta_{1}+\mathrm{i} \epsilon\right)\left(v^{\prime} \cdot k+\Delta_{2}+\mathrm{i} \epsilon\right)}= \\
& I_{1} \int_{0}^{1} \mathrm{~d} x \frac{\sigma}{1+2 x^{2}(1-\omega)+2 x(\omega-1)}- \\
& \frac{N_{\mathrm{c}}}{16 \pi^{3 / 2}} \int_{0}^{1} \mathrm{~d} x \frac{\sigma}{1+2 x^{2}(1-\omega)+2 x(\omega-1)} \times \\
& \int_{1 / \Lambda^{2}}^{1 / \mu^{2}} \frac{\mathrm{~d} s}{s^{3 / 2}} \mathrm{e}^{-s\left(m^{2}-\sigma^{2}\right)} \times \\
&\left\{\sigma[1+\operatorname{erf}(\sigma \sqrt{s})] \cdot\left[1+2 s\left(m^{2}-\sigma^{2}\right)\right]+\right. \\
&\left.2 \sqrt{\frac{s}{\pi}} \mathrm{e}^{-s \sigma^{2}}\left[\frac{3}{2 s}+\left(m^{2}-\sigma^{2}\right)\right]\right\} . \tag{A5}\\
& S\left(\Delta_{1}, \Delta_{2}, \omega\right)= \Delta_{1} I_{3}\left(\Delta_{2}\right)+\omega\left(I_{1}+\Delta_{2} I_{3}\left(\Delta_{2}\right)\right)+ \\
& \Delta_{1}^{2} I_{5}\left(\Delta_{1}, \Delta_{2}, \omega\right), \tag{A6}
\end{align*}
$$

$$
\begin{equation*}
T\left(\Delta_{1}, \Delta_{2}, \omega\right)=m^{2} I_{5}\left(\Delta_{1}, \Delta_{2}, \omega\right)+I_{6}\left(\Delta_{1}, \Delta_{2}, \omega\right) \tag{A7}
\end{equation*}
$$

$$
U\left(\Delta_{1}, \Delta_{2}, \omega\right)=I_{1}+\Delta_{2} I_{3}\left(\Delta_{2}\right)+\Delta_{1} I_{3}\left(\Delta_{1}\right)+
$$

$$
\begin{equation*}
\Delta_{1} \Delta_{2} I_{5}\left(\Delta_{1}, \Delta_{2}, \omega\right) \tag{A8}
\end{equation*}
$$

In these equations, $\Gamma, \operatorname{erf}(z)$ and σ are defined by:

$$
\begin{align*}
& \Gamma\left(\alpha, x_{0}, x_{1}\right)=\int_{x_{0}}^{x_{1}} \mathrm{e}^{-t} t^{\alpha-1}, \operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} \mathrm{~d} x \mathrm{e}^{-x^{2}}, \\
& \sigma\left(x, \Delta_{1}, \Delta_{2}, \omega\right)=\frac{\Delta_{1}(1-x)+\Delta_{2} x}{\sqrt{1+2(\omega-1) x+2(1-\omega) x^{2}}} \tag{A9}
\end{align*}
$$

[^0]: Received 24 October 2007，Revised 14 December 2007
 ＊Supported by Natural Science Fund of Hebei Province（A2005000090，E2005000129），Fund of Education Department of Hebei Province（2007409）and Natural Science Fund of Hebei University（2005007）

 1）E－mail：zhaosm＠mail．hub．edu．cn

