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Influence of the nuclear equation of state on the

hadron-quark phase transition in neutron stars *
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Abstract We study the hadron-quark phase transition in the interior of neutron stars, and examine the

influence of the nuclear equation of state on the phase transition and neutron star properties. The relativistic

mean field theory with several parameter sets is used to construct the nuclear equation of state, while the

Nambu-Jona-Lasinio model is used for the description of the deconfined quark phase. Our results show that a

harder nuclear equation of state leads to an earlier onset of a mixed phase of hadronic and quark matter. We

find that a massive neutron star possesses a mixed phase core, but it is not dense enough to possess a pure

quark core.
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1 Introduction

The study of the hadron-quark phase transition

at high density is of great interest in both nuclear

physics and astrophysics. It is expected that the de-

confinement phase transition occurs in the core of

massive neutron stars[1]. It has been pointed out by

Glendenning[2] that the hadron-quark phase transi-

tion in neutron stars may proceed through a mixed

phase of hadronic and quark matter over a finite range

of pressures and densities according to the Gibbs cri-

teria for phase equilibrium. Such phase transition has

received much attention in neutron star physics[3—7].

In general, the presence of the quark degree of free-

dom tends to soften the equation of state (EOS) at

high density and lower the maximum mass of neutron

stars.

In order to investigate the hadron-quark phase

transition, we need models to describe hadronic mat-

ter and quark matter. Unfortunately, there is no sin-

gle model which can be used to describe both phases

and the dynamic process of the phase transition. We

have to use different approaches for the description

of the two phases, and then perform the Glenden-

ning construction for the charge-neutral mixed phase

where both hadronic and quark phases coexist[2]. In

this work, we adopt the relativistic mean field (RMF)

theory to describe the hadronic matter phase, while

the Nambu-Jona-Lasinio (NJL) model is used for the

quark matter phase. The RMF theory has been quite

successfully and widely used for the description of nu-

clear matter and finite nuclei[8—12]. It has also been

applied to provide the equation of state of dense mat-

ter for the use in supernovae and neutron stars[13, 14].

There are many parameter sets of the RMF model in

the literature, which are fitted to some nuclear mat-

ter properties or ground-state properties of finite nu-

clei. In order to evaluate the sensitivity of the results

to the parameters used in the RMF model, we em-

ploy four different parameter sets, namely, NL3[15],

TM1[16], GM1[17], and GPS[18]. For the quark phase

we adopt a two-flavor version of the NJL model[19].

The choice of the NJL model is motivated by the fact

that this model can successfully reproduce many as-

pects of quantum chromodynamics such as the non-

perturbative vacuum structure and dynamical break-

ing of chiral symmetry[19—21]. With a definite EOS

for quark matter based on the NJL model, we exam-

ine the influence of the hadronic EOS on the hadron-

quark phase transition and neutron star properties.
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For a comprehensive description of neutron stars,

we need not only the EOS at high density for the

interior region but also the EOS for the inner and

outer crusts, where the density is low and heavy nu-

clei exist. For the nonuniform matter at low density,

we adopt a relativistic EOS based on the RMF the-

ory with a local density approximation[13, 14]. The

nonuniform matter is modelled to be composed of a

lattice of spherical nuclei immersed in an electron

gas with or without free neutrons dripping out of

nuclei. As the density increases, heavy nuclei dis-

solve and the optimal state is a uniform matter con-

sisting of neutrons, protons, and leptons (electrons

and muons) in β equilibrium. The low density EOS

is therefore matched to an EOS of uniform nuclear

matter at around 1014 g/cm3[14]. As for the EOS at

high density, there are many discussions in the liter-

ature about possible mechanisms to soften the EOS,

e.g., by hyperons, kaon condensation, and/or quark

matter[4—7, 19, 22]. In this paper, we would like to fo-

cus on the study of the hadron-quark phase transi-

tion, so the hadronic matter in the present calcula-

tion is restricted to nucleonic degrees of freedom only.

Applying the EOS of neutron star matter over a wide

density range, we study the neutron star properties by

solving the Tolman-Oppenheimer-Volkoff equation,

and examine whether or not quark matter can exist

in the core of neutron stars.

This paper is arranged as follows. In Sec. 2, we

discuss the EOS for hadronic matter in the RMF the-

ory. In Sec. 3, the NJL model is used for the descrip-

tion of quark matter. In Sec. 4, we investigate the

hadron-quark phase transition of neutron star mat-

ter, and examine the influence of the hadronic EOS.

We present in Sec. 5 the properties of neutron stars.

Sec. 6 is devoted to a summary.

2 Hadronic phase

We adopt the relativistic mean field (RMF) theory

to describe the hadronic matter phase. In the RMF

theory, baryons interact via the exchange of isoscalar

scalar and vector mesons (σ and ω) and isovector vec-

tor meson ρ, which are treated as classical fields in

the mean-field approximation. For neutron star mat-

ter consisting of a neutral mixture of nucleons (p and

n) and leptons (e and µ) in β equilibrium, we start

from the effective Lagrangian

LRMF =
∑

b=n,p

ψ̄b

[

iγµ ∂µ
−mN−gσσ−gωγµω

µ−

gργµτaρ
aµ

]
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1
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1
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m2

ρ
ρa

µρ
aµ +

∑

l=e,µ

ψ̄l [iγµ ∂µ
−ml]ψl , (1)

where the notation follows the standard one[13]. The

parameters in the Lagrangian are usually determined

by fitting to nuclear matter properties or ground-state

properties of finite nuclei. There are several parame-

ter sets which are often used in the RMF calculations.

Here we employ four different parameter sets, NL3[15],

TM1[16], GM1[17], and GPS[18], as listed in Table 1,

so as to evaluate the sensitivity of the results to the

RMF parameter set used. The nuclear matter prop-

erties of these parameter sets are shown in Table 2.

Table 1. The parameter sets of the RMF model
used in the calculation. The masses are given
in MeV.

set NL3 TM1 GM1 GPS

Ref. [15] [16] [17] [18]
mN 939.0 938.0 938.0 938.0
mσ 508.194 511.198 550.0 550.0
mω 782.501 783.0 783.0 783.0
mρ 763.0 770.0 770.0 770.0
gσ 10.217 10.0289 9.5705 8.1223
gω 12.868 12.6139 10.6096 8.2817
gρ 4.474 4.6322 4.0977 4.3736

g2/fm−1
−10.431 −7.2325 −12.2799 −5.3083

g3 −28.885 0.6183 −8.9767 120.9956
c3 - 71.3075 - -

Table 2. The nuclear matter properties of the
parameter sets used in the calculation. The
saturation density and the energy per particle
are denoted by n0 and E/A, the incompress-
ibility by K, the effective mass by m∗

N, and
the symmetry energy by asym.

set NL3 TM1 GM1 GPS

n0/fm−3 0.148 0.145 0.153 0.150
(E/A)/MeV −16.3 −16.3 −16.3 −16.0

K/MeV 272 281 300 300
m∗

N/mN 0.60 0.63 0.70 0.80
asym/MeV 37.4 36.9 32.5 32.5

Considering a homogeneous matter, the meson

field equations at the mean-field level have the fol-

lowing form:

m2
σ
σ+g2σ

2 +g3σ
3 =−

∑

b=n,p

gσ

π2

∫ kb

F

0

m∗

Nk
2

√

k2 +m∗2
N

dk,

(2)

m2
ω
ω+c3ω

3 =
∑

b=n,p

gω(kb
F)3

3π2
, (3)

m2
ρ
ρ=

∑

b=n,p

gρτ
b
3 (kb

F)3

3π2
, (4)

where σ = 〈σ〉, ω = 〈ω0〉, and ρ = 〈ρ30〉 are the ex-

pectation values of the meson fields. m∗

N =mN +gσσ

is the effective nucleon mass, and kb
F is the Fermi mo-

mentum of protons (b = p) or neutrons (b = n). τ b
3
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denotes the isospin projection of protons or neutrons.

For neutron star matter containing nucleons and lep-

tons, the conditions of β equilibrium and charge neu-

trality should be satisfied. The β equilibrium condi-

tions without trapped neutrinos are given by

µp = µn−µe , (5)

µµ = µe , (6)

where µi is the chemical potential of species i. At zero

temperature, the chemical potentials of nucleons and

leptons are expressed by

µb =

√

kb
F

2
+m∗

N
2 +gωω+gρτ

b
3 ρ , (7)

µl =

√

kl
F

2
+ml

2 . (8)

The charge neutrality condition is given by

np =ne +nµ , (9)

where ni = (ki
F)

3
/(3π

2) is the number density of

species i. The coupled Eqs. (2)—(6) and (9) can

be solved self-consistently at a given baryon density

nB = np +nn. The total energy density and pressure

of neutron star matter are given by
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∑
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3 Quark phase

In this section, we use a two-flavor version of the

NJL model to describe the deconfined quark phase.

The Lagrangian is given by

LNJL = q̄ (iγµ ∂µ
−m0)q+G

[

(q̄q)
2
+(q̄ iγ5τq)

2
]

, (12)

where q denotes a quark field with two flavors (Nf = 2)

and three colors (Nc = 3). G is a dimensionful cou-

pling constant (mass−2) and τ is a Pauli matrix act-

ing in flavor space. m0 =diag(m0
u,m

0
d) contains the

current quark masses, and we assume the isospin

symmetry m0
u = m0

d ≡ m0
q. The model has three

parameters: the current quark mass m0
q, the cou-

pling constant G, and the momentum cutoff Λ. In

the present calculation, we adopt the parameter set

given in Ref. [19], m0
q = 5.6 MeV, Λ = 587.9 MeV,

and GΛ2 = 2.44, which are chosen to reproduce em-

pirical values for the pion mass and decay constant

in vacuum.

In the NJL model, the quarks get constituent

quark masses by spontaneous chiral symmetry break-

ing. The constituent quark mass in vacuum mq is

much larger than the current quark mass m0
q. In

the quark matter at high density, the constituent

quark mass m∗

q becomes approximately the same as

m0
q, which reflects the restoration of chiral symmetry.

Within the mean-field approximation, m∗

q is obtained

by solving the gap equation

m∗

q =m0
q−2G(Cu +Cd) , (13)

where the quark condensate Ci = 〈q̄iqi〉 is given by

Ci =−
3

π2

∫Λ

ki

F

m∗

q
√

k2 +m∗2
q

k2dk . (14)

Here, ki
F denotes the Fermi momentum of the quark

flavor i (i = u or d), which is connected with the num-

ber density ni and the chemical potential µi via

ni =
(ki

F)
3

π2
, (15)

µi =
√

ki
F

2
+m∗

q
2 . (16)

The energy density of the quark system is given by

εNJL =
∑

i=u,d

[

−
3

π2

∫Λ

ki

F

√

k2 +m∗2
q k2dk

]

+

G(Cu +Cd)
2
−ε0 , (17)

where ε0 is introduced to ensure εNJL = 0 in the vac-

uum.

For the quark matter consisting of a neutral mix-

ture of quarks (u and d) and leptons (e and µ) in

β equilibrium, the charge neutrality condition is ex-

pressed as

2

3
nu−

1

3
nd−ne−nµ = 0 , (18)

the β equilibrium conditions are given by

µd = µu +µe , (19)

µµ = µe . (20)

We solve the coupled Eqs. (13) and (18)—(20) at a

given baryon density nB = (nu +nd)/3. The total en-

ergy density and pressure including the contributions
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from both quarks and leptons are given by

εQP = εNJL +
∑

l=e,µ

1

π2

∫ kl

F

0

√

k2 +m2
l k

2dk , (21)

PQP =
∑

i=u,d,e,µ

niµi−εQP . (22)

4 Hadron-quark phase transition

In this section, we study the hadron-quark phase

transition which may occur in the core of massive

neutron stars. It has been discussed extensively in

the literature that a mixed phase of hadronic and

quark matter could exist over a finite range of pres-

sures and densities according to the Gibbs criteria

for phase equilibrium. In the mixed phase, the lo-

cal charge neutrality condition is replaced by a global

one. This means that both hadronic and quark mat-

ter are allowed to be separately charged. The condi-

tion of global charge neutrality is expressed as

χnQP
c +(1−χ)nHP

c = 0 , (23)

where χ is the volume fraction occupied by quark

matter in the mixed phase, which monotonically in-

creases from χ= 0 in the pure hadronic phase to χ= 1

in the pure quark phase. nHP
c and nQP

c denote the

charge densities of hadronic phase and quark phase,

respectively. Without the constraint of local charge

neutrality, we impose that the two phases are in weak

equilibrium and described by two independent chemi-

cal potentials (µn, µe). The Gibbs condition for phase

equilibrium at zero temperature is then given by

PHP (µn,µe) =PQP (µn,µe) . (24)

Using Eq. (24) we can calculate the equilibrium chem-

ical potentials of the mixed phase where PHP =PQP =

PMP holds. The energy density and the baryon den-

sity in the mixed phase are given by

εMP =χεQP+(1−χ)εHP , (25)

and

nMP
B =χnQP

B +(1−χ)nHP
B . (26)

We show in Fig. 1 the possible phase structure

of neutron star matter by using the RMF model with

four different parameter sets for hadronic phase and a

two-flavor version of the NJL model for quark phase.

In particular, we are interested in the influence of the

hadronic EOS on the phase transition. The shaded

regions correspond to the mixed phase. It is shown

that a pure hadronic phase is favored at low den-

sity. The mixed phase appears at the critical density

n
(1)
B where the pressure of the pure hadronic phase

becomes to be lower than the pressure of the mixed

phase. The fraction of quark matter χ increases with

increasing density in the mixed phase, and it turns

to be a pure quark phase at the critical density n(2)
B

where the pressure of the pure quark phase is above

the pressure of the mixed phase. The critical den-

sities n(1)
B and n(2)

B are model-dependent. We obtain

n(1)
B =0.37, 0.48, 0.50, 0.62 fm−3 and n(2)

B =0.83, 1.23,

1.06, 1.59 fm−3 for the four RMF parameter sets NL3,

TM1, GM1, and GPS used in the calculation. In

order to estimate the influence of hadronic EOS on

the deconfinement phase transition, we plot in Fig. 2

the four hadronic EOS and the NJL EOS with local

charge neutrality as a function of the neutron chem-

ical potential µn. The crossing of the hadronic EOS

Fig. 1. The pressure P as a function of the
baryon density nB. The RMF model with four
parameter sets NL3, TM1, GM1, and GPS is
adopted for the hadronic phase (HP), while a
two-flavor version of the NJL model is used
for the quark phase (QP). The shaded regions
correspond to the mixed phase (MP).

Fig. 2. The pressure P as a function of the neu-
tron chemical potential µn for the charge neu-
tral hadronic matter and quark matter. The
parameter sets NL3, TM1, GM1, and GPS are
adopted in the RMF model for the hadronic
matter, and the NJL model is used for the
quark matter.
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and NJL EOS marks the transition point between the

charge neutral hadronic matter and quark matter. It

is seen that a harder hadronic EOS favors the phase

transition at a lower µn. A more realistic treatment

of the phase transition is to release the constraint of

local charge neutrality, which leads to the existence of

the mixed phase of charged hadronic and quark mat-

ter over a finite range of pressures and densities as

shown in Fig. 1. In general, a harder hadronic EOS

also favors an earlier appearance of the mixed phase.

In Fig. 3 we plot the full EOS in the form P =

P (ε), which consists of three parts: (a) the charge

neutral hadronic matter phase at low density given

by Eqs. (10) and (11), (b) the mixed phase of charged

hadronic and quark matter described by Eqs. (23)—

(26), (c) the charge neutral quark matter phase at

high density given by Eqs. (21) and (22). The mixed

phase part of the EOS is shaded gray, where the pres-

sure varies continuously. It is shown that the onset

and width of the mixed phase depend on the RMF

parameter set used in the calculation. The NL3 pa-

rameter set leads to earlier appearance of the mixed

phase and pure quark phase than the other three pa-

rameter sets, since the EOS with NL3 parameter set

is harder than the other cases. The TM1 and GM1

parameter sets give almost the same threshold of the

mixed phase, but different onset of the pure quark

phase. This is because the hadronic EOS with GM1

parameter set gets harder than that with TM1 as den-

sity increases, and harder hadronic EOS favors ear-

lier appearance of quark phase. The use of the four

different parameter sets reflects the influence of the

hadronic EOS on the hadron-quark phase transition,

and it shows that the RMF parameter set plays an

important role in this study.

Fig. 3. The full EOS of neutron star matter
in the form of pressure versus energy density.
The shaded regions correspond to the mixed
phase.

In Fig. 4 we show the particle fraction Yi =ni/nB

as a function of the total baryon density nB. Muons

appear when the chemical potential of electrons ex-

ceeds the rest mass of muons. The fractions Yp ,

Ye, and Yµ increase with increasing density before

the mixed phase occurs. The quarks appear at the

critical density n(1)
B =0.37, 0.48, 0.50, 0.62 fm−3 for

the four parameter sets NL3, TM1, GM1, and GPS,

then the fractions Yu and Yd increase rapidly with

increasing density. At the critical density n(2)
B =0.83,

1.23, 1.06, 1.59 fm−3 for NL3, TM1, GM1, and GPS,

the hadronic matter completely disappears where the

pure quark phase occurs. Yd is approximately twice

of Yu in the pure quark phase, and a small amount of

electrons exist so as to maintain charge neutrality.

Fig. 4. The particle fraction Yi = ni/nB as a
function of the total baryon density nB.

5 Neutron star properties

In this section, we investigate the properties of

neutron stars by solving the Tolman-Oppenheimer-

Volkoff equation with the EOS over a wide density

range. For the nonuniform matter at low density,

which exists in the inner and outer crusts of neutron

stars, we adopt a relativistic EOS based on the RMF

theory with a local density approximation[13, 14]. The

nonuniform matter is modelled to be composed of a

lattice of spherical nuclei immersed in an electron gas

with or without free neutrons dripping out of nuclei.

The low density EOS is matched to the EOS of uni-

form hadronic matter at the density where they have

equal pressures. The pure hadronic phase ends at the

critical density n(1)
B , and the pure quark phase starts

at the critical density n
(2)
B . The values of these criti-

cal densities depend on the RMF parameter set used

in the calculation. The neutron star properties are
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mainly determined by the EOS at high density. We

calculate the neutron star profiles in order to examine

whether or not quark matter can exist in the core of

neutron stars.

Fig. 5. The mass-radius relation for neutron stars.

In Fig. 5 we present the mass-radius relation us-

ing the EOS with the four different parameter sets

of the RMF model. It is shown that the results de-

pend on the parameter set significantly, and a harder

hadronic EOS predicts a larger maximum mass of

neutron stars. Since the pressure and density inside

neutron stars decrease from the center to the sur-

face, the most possible region where deconfined quark

phase can exist is the center of the neutron star with

maximum mass. We list in Table 3 the properties

of neutron stars with maximum mass. It is found

that the central baryon density nc is between n(1)
B

and n(2)
B for all parameter sets used in the calcula-

tion. This means that the neutron star can possess a

mixed phase core, but it is not dense enough to pos-

sess a pure quark core. In order to see the influence

of the hadronic EOS on the neutron star properties,

we show in Fig. 6 the neutron star profile with max-

imum mass for the four RMF parameter sets. The

shaded regions correspond to the mixed phase cores

of neutron stars. It is found the density distribution

depends on the RMF parameter set. The thickness of

the mixed phase core is about 5 km for all parameter

sets used in the calculation.

Fig. 6. The baryon number density nB as a
function of the radius r in neutron stars with
the maximum mass listed in Table 3. The
shaded regions correspond to the mixed phase
cores of neutron stars.

Table 3. The properties of neutron stars with the maximum mass Mmax for the RMF parameter sets used in
the calculation. The central energy density, pressure, and baryon number density are denoted by εc, Pc, and
nc, respectively. R and RMP denote the radii of the star and its mixed phase core.

set Mmax/M� εc/(1015 g/cm3) Pc/(1035 dyn/cm2) nc/fm−3 R/km RMP/km

NL3 2.3146 1.2168 2.0849 0.5923 14.330 5.405
TM1 2.0596 1.6315 3.3044 0.7749 12.920 5.704
GM1 2.1606 1.5512 3.3044 0.7400 12.905 5.105
GPS 1.9654 2.1793 5.2371 0.9953 11.730 5.305

6 Summary

We have studied the hadron-quark phase transi-

tion at high density, which may occur in the core of

massive neutron stars. In the present work, we have

adopted the RMF theory to describe the hadronic

matter phase, while a two-flavor version of the NJL

model has been used for the quark matter phase. In

order to examine the influence of the hadronic EOS on

the hadron-quark phase transition and neutron star

properties, we have employed four RMF parameter

sets, NL3, TM1, GM1, and GPS, which were fitted

to nuclear matter properties or ground-state proper-

ties of finite nuclei. The hadron-quark phase transi-

tion can proceed through a mixed phase of hadronic

and quark matter over a finite range of pressures and

densities according to the Gibbs criteria for phase

equilibrium. We have found that the mixed phase

starts at n(1)
B =0.37, 0.48, 0.50, 0.62 fm−3 and ends at

n(2)
B =0.83, 1.23, 1.06, 1.59 fm−3 for the four param-

eter sets, NL3, TM1, GM1, and GPS, respectively.

The use of the four different parameter sets reflects

the influence of the hadronic EOS on the hadron-

quark phase transition. In general, a harder hadronic

EOS favors an earlier appearance of deconfined quark
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matter.

We have calculated the properties of neutron stars

using the EOS over a wide density range. The star

properties such as their masses and radii are mainly

determined by the EOS at high density. We found

the maximum mass of neutron stars falls in the range

1.97∼ 2.31 M� for the four RMF parameter sets used

in the present calculation, and their central baryon

density is between n(1)
B and n(2)

B . Therefore, the mixed

phase can exist in the core of massive neutron stars,

but no pure quark phase in the present approxima-

tion. We found the maximum mass and the den-

sity distribution inside neutron stars depend on the

RMF parameter set adopted in the calculation. In

the present work, the hadronic matter is restricted to

nucleonic degrees of freedom in order to focus on the

influence of the RMF parameter set on the hadron-

quark phase transition. It would be interesting and

important to incorporate other degrees of freedom

such as hyperons and kaon condensation in the study

of the hadron-quark phase transition in neutron stars.
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