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Abstract In the strong uniform magnetic field, the noncommutative plane (NCP) caused by the lowest Landau

level (LLL) effect, and QED with NCP (QED-NCP) are studied. Being similar to the condensed matter theory

of quantum Hall effect, an effective filling factor f(B) is introduced to characterize the possibility that the

electrons stay on the LLL. The analytic and numerical results of the differential cross section for the process of

backward Compton scattering in accelerator with unpolarized or polarized initial photons are calculated. The

existing data of BL38B2 in Spring-8 have been analyzed roughly and compared with the numerical predictions

primitively. We propose a precise measurement of the differential cross sections of backward Compton scattering

in a strong perpendicular magnetic field, which may reveal the effects of NCP.
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1 Introduction

The physics related to the lowest Landau level

(LLL) and corresponding spacetime noncommutativ-

ity, especially noncommutative field theory (NCFT),

have long been studied with considerable interest[1],

and appear naturally in fundamental field theory[2, 3]

and condensed matter theory[4, 5]. Spacetime non-

commutativity was proposed by Heisenberg in the

1930’s, in order to introduce an effective ultraviolet

cutoff to control the ultraviolet divergences in quan-

tum field theory. Peierls applied it to non-relativistic

electronic systems in external magnetic fields, which

is the first phenomenological realization of spacetime

noncommutativity, and Snyder published it with sys-

tematic analysis in 1947[1]. Recently, noncommuta-

tive QED (NCQED)[2] and other NCFTs have been

constructed as limits of string/M theory[1], and as

the LLL approximation of QED or the Nambu-Jona-

Lasinio model in the strong magnetic field[3]. In con-

densed matter theory, NCFT, particularly the non-

commutative Chern-Simons theory[4], provides a bet-

ter mean field theory description of the fractional

quantum Hall states, which can reproduce the de-

tailed properties and the correct quantitative features

of quasiparticles. In the present paper, we try to ex-

plore the effect of space noncommutativity caused by

the LLL, and the possibility to measure it by consid-

ering backward Compton scattering in the external

magnetic field in accelerator.

Considering a non-relativistic electron in a uni-

form magnetic field[6],

L=
1

2
me(ẋ

2 + ẏ2 + ż2)+
e

c
(ẋAx + ẏAy + żAz)−V (x,z),

A = (0,0,−xB) (1)

or a non-relativistic 2D electronic system in a perpen-

dicular magnetic field[1],
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L=

Ne
∑

µ=1

1

2
meẋ

2
µ−

ieB

2c
εijx

i
µẋ

j
µ+V (xµ)+

∑

µ<ν

U(xµ−xν),

(2)

the energy eigenvalues of the Landau levels are:

En = ~
eB

mec

(

n+
1

2

)

. (3)

In the limit of the strong magnetic field, the sepa-

ration between the Landau levels becomes very large

and consequently only the LLL is relevant. One can

neglect the kinetic term, i.e. formally put me = 0, the

resulting Lagrangian is first order in time derivatives,

turning the original coordinate space into an effective

phase space defined by:

pz ≡ ∂LLLL

∂ ż
=−eB

c
x ⇒

[

−eB
c
x,z

]

=−i~ ⇒

[x,z] = i
~c

eB
≡ iθL, (4)

or

[xi
µ,x

j
ν ] = iδµνε

ij ~c

eB
≡ iδµνε

ijθL . (5)

The effects of truncation to the LLL are now ex-

pressed by noncommutativity, which is described by

θL =
~c

eB
. It is essential that the Eqs. (4, 5) indicate

that in the 3-dimensional space there is a noncom-

mutative plane (NCP) perpendicular to the strong

external magnetic field B.

The existence of NCP has been widely used to

discuss the quantum Hall effect and relevant top-

ics in condensed matter physics and mathematical

physics[4, 5]. In such discussions on the quantum Hall

effect, the noncommutative parameter for NCP is

usually taken to be

θ= fθL , (6)

where f = f(ν,B) is a function of the filling frac-

tion ν and the magnetic field B, e.g. f =
1

ν
=

eB

2πρ

in the noncommutative Chern-Simons theory[4], and

it could be thought as an effective filling factor to

characterize the possibility that the electrons stay on

the LLL. At f = 0, no electron stays on the LLL, so

that the NCP caused by the external magnetic field

B is absent. For f 6= 0, the NCP exists and must be

considered. In this paper f(B) is treated as a phe-

nomenology parameter.

A nature question arising from the condensed

matter physics discussions mentioned above is

whether such sort of NCP discussions can be extended

into the QED dynamics of electron beam in accelera-

tor, where the electrons are correlative to each other.

It is always a possibility that some electrons stay

on the LLL and f 6= 0, and there is no prior rea-

son to ban this extension, hence the answer should

be yes. As a matter of fact[7], the anomalous devia-

tion of (g-2)-factor of muon to the prediction of the

standard model has been attributed to the loop ef-

fects of QED with NCP. That could be thought as a

rough estimation of the NCP effects in QED at loop

level. However, the loop level process has some uncer-

tainties both due to the theoretical treatment errors

and the experimental measurement errors, and a tree

level process in the accelerator experiments could be

essential to make it clear. Hence, we consider the

backward Compton scattering process in the strong

magnetic field, e.g. the beamline BL38B2 in Spring-8,

to explore whether the NCP effects exist or not.

The point for revealing the NCP effects caused by

the LLL effect in a process is that the perpendicu-

lar external magnetic field B “felt” by the correlated

electrons with non-relativistic motion should be very

strong. As the backward Compton scattering is a

process that the soft laser photons are backscattered

by the high energy electrons elastically, the motion

of the electrons in the eγ-mass center frame (CM) is

non-relativistic, the Lorentz factor to the laboratory

frame is very large and the magnetic field “felt” by

the electrons B = BCM = γBLab becomes very large

even if BLab is small. For instance, in the mass cen-

ter frame of the beamline BL38B2 in Spring-8 with

8 GeV electron, 0.01 eV photon and 0.68 T magnetic

field, the velocity of the electron vCM ≈ 0.0006 � 1,

γ ≈ 15645.6, BCM ≈ 10639 T. It well satisfies the

precondition, hence the NCP due to the LLL could

be described by a noncommutative quantum theory

constructed in the mass center frame.

The contents of this paper are organized as fol-

lows: in Section 2, we construct QED with NCP; in

Section 3, we derive the differential cross section of

the backward Compton scattering process in a uni-

form perpendicular magnetic field; in Section 4, we

produce the numerical results on it by using the data

of Spring-8, and show how a precise measurement of

the differential cross section leads to distinguishing

the prediction of QED with NCP from the prediction

of QED without NCP; finally, we briefly discuss the

results.

2 QED with NCP

In order to construct the effective Lagrangian de-

scribing the electrons in the external magnetic field,

the LLL effect should be considered. For the elec-

trons stay on the LLL, the effects of projection on the

LLL could be expressed by noncommutativity (natu-

ral units ~ = c= 1):

[x̂µ, x̂ν ] = iθµν = iθCµν , θ= fθL = f
1

eB
, (7)
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Cµν =









0 c01 c02 c03
−c01 0 c12 −c13
−c02 −c12 0 c23
−c03 c13 −c23 0









. (8)

The Lagrangian in a noncommutative theory is

fully covariant under observer Lorentz transforma-

tions: rotations or boosts of the observer inertial

frame leave the physics unchanged because both the

field operators and θµν transform covariantly[8]. In

this paper, we calculate in the mass center frame, in

which the motion of the electron is non-relativistic

and only θij are nonzero, and finally boost the re-

sults to the laboratory frame to compare with the

experiment. The direction of the external magnetic

field is ŷ in the laboratory frame, by means of the

Lorentz transformation, the electron feels an electric

field along −x̂ and a magnetic field along ŷ in the

mass center frame. The electric field has no influ-

ence on the noncommutativity caused by the LLL[5],

so that c0i = 0. The magnetic field is along ŷ and

the NCP takes (x, z)-plane, so that c13 = 1 and other

cij = 0.

Generally[2], we can implement the noncommuta-

tivity of space into path integral formulation through

the Weyl-Moyal correspondence, and the noncommu-

tative version of a field theory can be obtained by

replacing the product of the fields appearing in the

action by the star product:

(f ∗g)(x) = lim
ξ,η→0

[

e
i
2

∂µ
ξ θµν ∂ν

η f(x+ξ)g(x+η)
]

. (9)

Following the general argument, we argue that the

effective Lagrangian of QED with NCP (QED-NCP)

for the electrons with f(B) 6= 0 should be an extension

of the Lagrangian of NCQED with f(B):

L=−1

4
Fµν ∗F µν +ψ∗(iγµDµ−m)∗ψ , (10)

with

Dµ = ∂µ−ieAµ, Fµν = ∂µAν −∂νAµ− ie[Aµ,Aν ]∗ .

(11)

The above Lagrangian is invariant under the non-

commutative U(1) transformation:

Aµ →A′
µ(x) = U(x)∗Aµ ∗U(x)−1 +iU(x)∗∂µU(x)−1,

Fµν →F ′
µν = U(x)∗Fµν ∗U(x)−1,

Ψ(x)→Ψ ′(x) = U(x)∗Ψ(x),

U(x) = exp∗(iλ(x))≡

1+iλ(x)− 1

2
λ(x)∗λ(x)+o(θ2).

Note that when f(B) → 0, the Lagrangian of

QED-NCP goes back to the ordinary QED La-

grangian. When f(B) � 1, the deviation of QED-

NCP from QED can be calculated in perturbation,

but no vacuum phase transition takes place. When

B is extremely large (e.g. ∼ 109 T), f(B)∼ 1 and the

dynamical symmetry breaking may occur[3].

3 Backward Compton scattering

From the Lagrangian Eq. (10), the Feynman rules

of QED-NCP can be obtained. The propagators of

electron and photon remain unchanged, the vertices

in QED-NCP (see Fig. 1) pick up additional kine-

matic phases from the Fourier transformation of new

interactions. When the inverse Compton scattering

by external electromagnetic fields or the synchrotron

radiation is investigated, the Aµ in the Lagrangian of

QED-NCP should be replaced by Aµ +Aexternal
µ . In

this paper we do not study those processes, but only

interest in the Compton scattering process, hence the

Aexternal
µ and the four photon vertex are neglected.

Fig. 1. Feynman rules. (a) ieγµ exp(ip1θp2/2);
(b) 2e sin(k1θk2/2)((k1 − k2)

ρgµν + (k2 −

k3)
νgρµ +(k3−k1)

µgνρ)

Similar to the existed calculations of Compton

scattering in NCQED[9], the Feynman diagrams,

kinematics and the differential scattering cross sec-

tion for the backward Compton scattering process in

QED-NCP are as follows:

1. The Feynman diagrams of eγ-Compton scat-

tering in QED-NCP are shown in Fig. 2. Ai with

i= 1,2,3 denote the amplitudes of corresponding di-

agrams. Compared with that in QED, there is an

additional diagram A3 (see Fig. 2(c)).

Fig. 2. Feynman diagrams. (a) A1; (b) A2; (c) A3.

2. Kinematics (see Fig. 3).
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Fig. 3. Kinematics. (a) The laboratory frame;
(b) The mass center frame.

i) The energies and momenta in the mass center

frame:

s = (p1 +k1)
2, t= (p1−p2)

2, u= (p1−k2)
2,

p1 =

(

s+m2

2
√
s
,0,0,

s−m2

2
√
s

)

, k1 =
s−m2

2
√
s

(1,0,0,−1),

p2 =
s−m2

2
√
s

(

s+m2

s−m2
,−sinϑcosφ,

−sinϑsinφ,−cosϑ

)

,

k2 =
s−m2

2
√
s

(1,sinϑcosφ,sinϑsinφ,cosϑ).

ii) Polarization: We are interested in the pro-

cess with polarized initial electrons, unpolarized or

α-polarized initial photons (α is the angle between

the magnetic field and the initial photon polariza-

tion), unpolarized final electrons and unpolarized fi-

nal photons. So the following notations and formulas

will be useful for our goal:

1) initial electron: u−1/2(p1)ū−1/2(p1) → ρ =
1

2
(6p1 +m)(1−γ5(−1)γ2)

2) final electron:
∑

i

ui(p2)ūi(p2)→ ρ′ =6p2+m

3) initial photon:
1

2

∑

i

εTiµ(k1)ε
T∗
iµ′(k1)→ ξµµ′

or α-polarized:

εTαµ(k1)ε
T∗
αµ′(k1)→ ξµµ′ , εTαµ = (0,sinα,cosα,0)

4) final photon:
∑

i

εTiν(k2)ε
T∗
iν′(k2)→ ξ′νν′

3. The differential cross section for the backward

Compton scattering in QED-NCP is

dσ

dφdcosϑ
=

e4

64π2s
ξµµ′ξ′νν′Tr(ρ′AµνρĀν′µ′

), (12)

where Aµν = Aµν
1 +Aµν

2 +Aµν
3 and Aµν

i , Āν′µ′

i (i =

1,2,3) are:

Aµν
1 = (−1)eip1θp2/2eik1θp2/2γµ 6p1+ 6k1 +m

(p1 +k1)2−m2
γν

Aµν
2 = (−1)eip1θp2/2e−ik1θp2/2γν 6p1− 6k2 +m

(p1−k2)2−m2
γµ

Aµν
3 = (−i)eip1θp2/22sin(k1θk2/2)γσ×

[gρσ/(k1−k2)
2][(k1 +k2)

ρgµν +

(k1−2k2)
νgρµ +(k2−2k1)

µgνρ]

Āν′µ′

1 = (−1)e−ip1θp2/2e−ik1θp2/2γν′ 6p1+ 6k1 +m

(p1 +k1)2−m2
γµ′

Āν′µ′

2 = (−1)e−ip1θp2/2e+ik1θp2/2γµ′ 6p1− 6k2 +m

(p1−k2)2−m2
γν′

Āν′µ′

3 = (i)e−ip1θp2/22sin(k1θk2/2)γσ′ ×
[gρ′σ′/(k1−k2)

2][(k1 +k2)
ρ′

gµ′ν′

+

(k1−2k2)
ν′

gρ′µ′

+(k2−2k1)
µ′

gν′ρ′

]

We define the phase factor ∆ ≡ k1θp2

2
= −k1θk2

2
=

f(s−m2)2

8Bes
sinϑcosφ (notation kθp ≡ kµθµνp

ν), and

then the differential cross sections of the backward

Compton scattering with polarized initial electrons,

unpolarized initial photons, unpolarized final elec-

trons and unpolarized final photons in QED-NCP are:

dσ

dφdcosϑ
=

e4

32π2s

(

(s−m2)2 +(u−m2)2−

4m2t(m4−su)
(s−m2)(u−m2)

)

×
(

− 1

(s−m2)(u−m2)
+

4sin2∆

t2

)

. (13)

Note that it’s f(B) dependent and goes back to that

in QED as f(B) → 0, and coincides with that in

NCQED[9] as m→ 0. Similarly, for the processes with

any polarization, the differential cross sections could

be calculated, some numerical results are as follows.

4 Numerical results

In this section, the data of BL38B2 in Spring-8

will be used to discuss the QED-NCP predictions of

backward Compton scattering numerically. The ac-

celerator diagnosis beamline BL38B2 in Spring-8 has

a bending magnet light source, 10 MeV γ ray photons

are produced in the magnetic field by the backward

Compton scattering of far-infrared (FIR) laser pho-

tons. The energy of electron in the storage ring is

8 GeV, the perimeter of the ring is 1436 m, the wave-

length of FIR laser photon is 119 µm and the mag-

netic field is 0.68 T. Then, in the mass center frame,

the Lorentz factor γ ≈ 15645.6, the magnetic field is

2×106 eV2 ≈ 10639 T (hence the LLL effect is rele-

vant), θL is 1.6×10−6 eV−2 ≈ (2.5Å)2 and the phase

factor becomes ∆ ≈ 0.0844f sinϑcosφ. Substituting

all of these into Eq. (12), the realistic calculations are

doable. Fig. 4 shows a measurement of the differential

cross section to final photon energy of the backward
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Compton scattering in Spring-8, in order to compare

with it, the φ-integrated energy dependence of the

differential cross section is calculated.

Fig. 4. Spring-8 data for eγ → e′γ′[10]. The
γ ray spectrum from the backward Compton
scattering process has been deduced after the
subtraction of the “FIR laser off” spectrum
from the “FIR laser on” spectrum. They are
shown by the solid circles and proportional to
dσ(Eγ)

dEγ
.

Suppose the initial photon is unpolarized, from

Fig. 4, we can roughly see:

R|expt =
dσ(5 MeV)/dEγ

dσ(9 MeV)/dEγ

∣

∣

∣

expt
≈ 0.15

0.22
≈ 0.68 . (14)

However, we find out that R|expt is significantly

larger than the QED prediction (Fig. 5(a)):

R|QED =
dσ(5 MeV)/dEγ

dσ(9 MeV)/dEγ

∣

∣

∣

QED
≈ 48.87

77.43
≈ 0.63 .

(15)

A natural interpretation to this deviation is that

the possibility that the electrons stay on LLL is

nonzero, and there is a NCP in the external magnetic

field, which hasn’t been taken into account in QED.

By means of QED-NCP, and adjusting the effective

filling factor f(B), a suitable R|QED-NCP consistent

with R|expt can be obtained. The corresponding pre-

diction with f(B) = 0.0015 is shown in Fig. 5(a):

R|QED-NCP =
dσ(5 MeV)/dEγ

dσ(9 MeV)/dEγ

∣

∣

∣

QED-NCP
≈

52.88

78.24
≈ 0.68 . (16)

However, photon polarization, detector ineffi-

ciency and radiation corrections due to mirror and

windows will all affect the shapes of experimental

data, the uncertainties of current experimental data

are too large to separate two calculations. It is still

too early to decide the existence of the NCP effects.

A further precise measurement is needed.

Fig. 5. Energy dependence of the differential
cross section. (a) Unpolarized initial photon;
(b) x̂, ŷ-polarized initial photon.

Theoretically, for a 2D electronic system, f =
eB

2πρ
proved in Ref. [4] can be used. The electron beam of

BL38B2 in Spring-8, whose charge is around 1.44 nC,

length is 13 ps, horizontal size is 114 µm and verti-

cal size is 14 µm (� horizontal size), is a near 2D

electronic system. Hence, a rough prediction of f(B)

could be calculated:

ρ≈ 1.44 nC/(1.6×10−19C)

13 ps×(3×108 m/s)×114 µm
≈ 2×1012 cm−2 ,

(17)

f ≈
0.68 T×(2×0.511 MeV×5.788×10−11 MeV/T)

2π×2×1012cm−2×(197.3 MeV× fm)2
≈

0.008 . (18)

With a typical f(B) = 0.008, we further consider

experiments with polarized initial photon. The ini-

tial laser photons move along the direction of ẑ and

their polarization is taken either parallel or perpen-

dicular to the magnetic field direction of ŷ. As shown

in Fig. 5(b), the energy dependence of the differen-

tial cross sections with the x̂-polarized (⊥ B) and

the ŷ-polarized (‖ B) initial photons are the same

in QED, and different in QED-NCP. This strongly

suggests that a precise backward Compton scatter-

ing experiment in Spring-8 with differently polarized

initial photons is most favorable for testing the NCP

effects. The experiment with different initial photon

polarization is practicable to reveal the NCP effects,

because the subtraction of the ⊥ B-polarized spec-

trum from the ‖B-polarized spectrum can reduce the

experimental uncertainties.
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Furthermore, we consider the total cross sections

(barn) by integrating Eγ from 5.1 MeV to 10.2 MeV

(or integrating ϑ from 0 to π/2):

σQED =σ⊥B
QED =σ‖B

QED ≈ 0.586936,

σ⊥B
QED-NCP ≈ 0.586936+2828.44f 2,

σQED-NCP ≈ 0.586936+4384.20f 2,

σ‖B
QED-NCP ≈ 0.586936+5939.96f 2,

σQED-NCP−σQED ≈ 7469.64f 2σQED,

σ‖B
QED-NCP−σ⊥B

QED-NCP ≈ 5301.30f 2σQED.

From above we can see that the difference between

the total cross sections of QED and QED-NCP is pro-

portional to f 2, and the difference between the total

cross sections with the ⊥B-polarized initial photons

and with the ‖ B-polarized ones is proportional to

f 2, too, hence f(B) characterizing the NCP effects

could also be determined in the eγ-total cross section

measurements.

5 Summary and discussion

In this paper, the NCP caused by the LLL effect

in the strong uniform perpendicular magnetic field,

and QED with NCP are studied. For the process of

backward Compton scattering in the magnetic field

of the storage ring magnet in accelerator, the ampli-

tudes and the differential cross sections in QED-NCP

are calculated. Numerical predictions of the energy

dependence of the differential cross sections in QED-

NCP and in QED are calculated with the parameters

of BL38B2 in Spring-8, and compared with the exist-

ing data of BL38B2. It indicates that a precise mea-

surement of the energy dependence of the differential

cross sections of backward Compton scattering with

polarized photon in a strong perpendicular magnetic

field would be practicable to distinguish the predic-

tion of QED with NCP from the prediction of QED

without NCP and may reveal the effects of NCP. Such

an experiment is expected.

Being similar to the noncommutative Chern-

Simons theory of the fractional quantum Hall ef-

fect, an effective filling factor f(B) is introduced to

characterize the possibility that the electrons stay

on the LLL. In this paper f(B) is treated as a phe-

nomenology parameter and expected to be deter-

mined experimentally. A further task is to estimate

it theoretically. In Section 4, we present a rough

estimation of it for BL38B2 in Spring-8. It seems

to be reasonable for near 2D correlated electrons

with non-relativistic motion in the external magnetic

field, and supports the NCP discussion of backward

Compton scattering in accelerator. However, the

Eq. (17) is a rough approximative estimation of the

2D electron density under the assumption that the

electron beam is evenly distributed in a finite 2D

rectangle, i.e., ρ(x,z)|(x,z)∈ rectangle = constant. In a

real beamline, however, the 2D density should be

electron-distribution dependent, e.g., with a Gaus-

sian distribution, we may need to correct the density

ρ in Eq. (17) with a factor α, i.e., ρ → αρ, where

α= 1/2π or 1/4π. In this case, the numerical results

of dσ/dEγ in Fig. 5 will receive a correction from

α. We argue that this correction would not lead to

the change of the basic scenario of dσ/dEγ due to

QED-NCP. The discussions in Section 4 are instruc-

tive, but a more sound theoretical study on f(B)

for the electrons in accelerator is still wanted, and a

detailed discussion on the effects of NCP remains to

be further explored.

We would like to acknowledge Prof. Mamoru Fu-

jiwara for discussion. One of us (MLY) would like to

thank Prof. Yong-Shi Wu for helpful discussions on

the quantum Hall effects.
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