Model with strong $\gamma_{4} T$-violation*

R. Friedberg ${ }^{1}$ T. D. Lee ${ }^{1,2}$
1 (Physics Department, Columbia University, New York, NY 10027, U.S.A.)
2 (China Center of Advanced Science and Technology (CCAST/World Lab.), P.O. Box 8730, Beijing 100190, China)

Abstract

We extend the T violating model of the paper on "Hidden symmetry of the CKM and neutrinomapping matrices" by assuming its T-violating phases χ_{\uparrow} and χ_{\downarrow} to be large and the same, with $\chi_{1}=\chi_{\uparrow}=\chi_{\downarrow}$. In this case, the model has 9 real parameters: $\alpha_{\uparrow}, \beta_{\uparrow}, \xi_{\uparrow}, \eta_{\uparrow}$ for the \uparrow-quark sector, $\alpha_{\downarrow}, \beta_{\downarrow}, \xi_{\downarrow}, \eta_{\downarrow}$ for the \downarrow sector and a common χ. We examine whether these nine parameters are compatible with ten observables: the six quark masses and the four real parameters that characterize the CKM matrix (i.e., the Jarlskog invariant \mathcal{J} and three Eulerian angles). We find that this is possible only if the T violating phase χ is large, between -120° to -135°. In this strong T violating model, the smallness of the Jarlskog invariant $\mathcal{J} \cong 3 \times 10^{-5}$ is mainly accounted for by the large heavy quark masses, with $\frac{m_{\mathrm{c}}}{m_{\mathrm{t}}}<\frac{m_{\mathrm{s}}}{m_{\mathrm{b}}} \approx 0.02$, as well as the near complete overlap of t and b quark, with $(c \mid b)=-0.04$.

Key words Jarlskog invariant, CKM matrix, strong $\gamma_{4} T$-violation
PACS 12.15.Ff, 11.30.Er

1 Introduction

In a previous paper on the "Hidden symmetry of the CKM and neutrino-mapping matrices" ${ }^{[1]}$, we have posited a mass-generating Hamiltonian $H_{\uparrow}+H_{\downarrow}$ where

$$
\begin{align*}
& H_{\uparrow}=\alpha_{\uparrow}\left|q_{3}^{\uparrow}-\xi_{\uparrow} q_{2}^{\uparrow}\right|^{2}+\beta_{\uparrow}\left|q_{2}^{\uparrow}-\eta_{\uparrow} q_{1}^{\uparrow}\right|^{2}+\beta_{\uparrow}\left|q_{3}^{\uparrow}-\xi_{\uparrow} \eta_{\uparrow} q_{1}^{\uparrow}\right|^{2} \\
& H_{\downarrow}=\alpha_{\downarrow}\left|q_{3}^{\downarrow}-\xi_{\downarrow} q_{2}^{\downarrow}\right|^{2}+\beta_{\downarrow}\left|q_{2}^{\downarrow}-\eta_{\downarrow} q_{1}^{\downarrow}\right|^{2}+\beta_{\downarrow}\left|q_{3}^{\downarrow}-\xi_{\downarrow} \eta_{\downarrow} q_{\uparrow}^{\downarrow}\right|^{2} \tag{1.1}
\end{align*}
$$

with α, β, ξ, η real. This conserves T and leads to zero masses for the light quarks u and d. We then modified (1.1) by replacing $\xi_{\uparrow}, \xi_{\downarrow}$ with the corresponding T violating factors $\xi_{\uparrow} e^{i \chi_{\uparrow}}$ and $\xi_{\downarrow} e^{i \chi_{\downarrow}}$. To first order in χ_{\uparrow} and χ_{\downarrow} we found a relation of proportionality between \mathcal{J}, the Jarlskog invariant measuring T-violation, and a linear combination of square roots of the light masses. The ratio agreed roughly with known values. We shall call this the "weak $\gamma_{4^{-}}$ model" because to make the calculation we assumed $\chi_{\uparrow}, \chi_{\downarrow}$ to be small.

There were two reasons for dissatisfaction with this model. First, why not introduce the phase factor into η or $\xi \eta$, yielding different physics? And second, when we estimated not only \mathcal{J} but the individual matrix elements of U_{CKM}, we found that the data required χ_{\uparrow} and χ_{\downarrow} to be large angles, not small.

We now present a new model, the "strong $\gamma_{4}{ }^{-}$ model". In this model we introduce phase factors independently into all three terms, but require them to have the same values in H_{\uparrow} and H_{\downarrow}. Thus we take the mass-generating Hamiltonian to be $H_{\uparrow}+H_{\downarrow}$ where

$$
\begin{align*}
H_{\uparrow}= & \alpha_{\uparrow}\left|q_{3}^{\uparrow}-\xi_{\uparrow} e^{i \rho} q_{2}^{\uparrow}\right|^{2}+\beta_{\uparrow}\left|q_{2}^{\uparrow}-\eta_{\uparrow} e^{i \omega} q_{1}^{\uparrow}\right|^{2}+ \\
& \beta_{\uparrow}\left|q_{3}^{\uparrow}-\xi_{\uparrow} \eta_{\uparrow} e^{-i \tau} q_{1}^{\uparrow}\right|^{2} \tag{1.2}\\
H_{\downarrow}= & \alpha_{\downarrow}\left|q_{3}^{\downarrow}-\xi_{\downarrow} e^{i \rho} q_{2}^{\downarrow}\right|^{2}+\beta_{\downarrow}\left|q_{2}^{\downarrow}-\eta_{\downarrow} e^{i \omega} q_{1}^{\downarrow}\right|^{2}+ \\
& \beta_{\downarrow}\left|q_{3}^{\downarrow}-\xi_{\downarrow} \eta_{\downarrow} e^{-i \tau} q_{1}^{\downarrow}\right|^{2}
\end{align*}
$$

It is now easily seen that the masses and CKM matrix depend on the phases only through the sum $\chi=\rho+\omega+\tau$. Accordingly, without loss of generality, we set $\rho=\omega=0, \tau=\chi$. The mass-generating Hamiltonian can then be written as

$$
\left(\bar{q}_{1}^{\uparrow}, \bar{q}_{2}^{\uparrow}, \bar{q}_{3}^{\uparrow}\right) M_{\uparrow}\left(\begin{array}{c}
q_{1}^{\uparrow} \\
q_{2}^{\uparrow} \\
q_{3}^{\uparrow}
\end{array}\right)+\left(\bar{q}_{1}^{\downarrow}, \bar{q}_{2}^{\downarrow}, \bar{q}_{3}^{\downarrow}\right) M_{\downarrow}\left(\begin{array}{c}
q_{1}^{\downarrow} \\
q_{2}^{\downarrow} \\
q_{3}^{\downarrow}
\end{array}\right)
$$

where $q_{i}^{\uparrow}, q_{i}^{\downarrow}$ and $\bar{q}_{i}^{\uparrow}, \bar{q}_{i}^{\downarrow}$ are related to the corresponding Dirac field operators $\psi\left(q_{i}(\uparrow)\right), \psi\left(q_{i}(\downarrow)\right)$ and their hermitian conjugate $\psi^{\dagger}\left(q_{i}(\uparrow)\right)$, $\psi^{\dagger}\left(q_{i}(\downarrow)\right)$ by

$$
\begin{equation*}
q_{i}^{\uparrow / \downarrow}=\psi\left(q_{i}(\uparrow / \downarrow)\right) \text { and } \bar{q}_{i}^{\uparrow / \downarrow}=\psi^{\dagger}\left(q_{i}(\uparrow / \downarrow)\right) \gamma_{4} \tag{1.3}
\end{equation*}
$$

[^0]\[

M_{\uparrow / \downarrow}=\left($$
\begin{array}{ccc}
\beta \eta^{2}\left(1+\xi^{2}\right) & -\beta \eta & -\beta \xi \eta e^{i \chi} \tag{1.4}\\
-\beta \eta & \beta+\alpha \xi^{2} & -\alpha \xi \\
-\beta \xi \eta e^{-i \chi} & -\alpha \xi & \alpha+\beta
\end{array}
$$\right)_{\uparrow / \downarrow}
\]

with the arrow-subscripts \uparrow, \downarrow referring to α, β, ξ, η, but not to χ.

In diagonalizing (1.4) we do not assume, as in the weak γ_{4}-model, that χ is small. We find that the smallness of \mathcal{J} is mainly accounted for by the large heavy masses with

$$
\begin{equation*}
\frac{m_{\mathrm{c}}}{m_{\mathrm{t}}}<\frac{m_{\mathrm{s}}}{m_{\mathrm{b}}} \approx 0.02 \tag{1.5}
\end{equation*}
$$

and by the nearly complete overlap of the statevectors for t and b since

$$
\begin{equation*}
|(u \mid b)|<|(c \mid b)| \cong 0.04 \tag{1.6}
\end{equation*}
$$

We have been able to carry out complete calculations in which the only approximations are based on the smallness of $\frac{m_{\mathrm{s}}}{m_{\mathrm{b}}}, \frac{m_{\mathrm{c}}}{m_{\mathrm{t}}}$ and $(c \mid b)$. These calculations are described in Sections 2 and 3; we give here a brief outline.

We diagonalize M_{\uparrow} and M_{\downarrow} with the aid of parameters $r_{\uparrow, \downarrow}, B_{\uparrow, \downarrow}, \Phi_{\uparrow, \downarrow}, \mathcal{S}, \mathcal{L}$ to be defined in the next two sections. They are shown there to satisfy the following ten equations (to first order in small quantities):

$$
\begin{array}{r}
\frac{1-r_{\uparrow}^{2}}{r_{\uparrow}^{2}} \sin ^{2} B_{\uparrow}=\frac{4 m_{\mathrm{u}} m_{\mathrm{c}}}{\left(m_{\mathrm{c}}-m_{\mathrm{u}}\right)^{2}}, \\
\frac{1-r_{\downarrow}^{2}}{r_{\downarrow}^{2}} \sin ^{2} B_{\downarrow}=\frac{4 m_{\mathrm{d}} m_{\mathrm{s}}}{\left(m_{\mathrm{s}}-m_{\mathrm{d}}\right)^{2}}, \\
\sin ^{2} \frac{1}{2} \chi=\frac{1-r_{\uparrow}^{2}}{\sin ^{2} 2 \Phi_{\uparrow}}=\frac{1-r_{\downarrow}^{2}}{\sin ^{2} 2 \Phi_{\downarrow}}, \\
\mathcal{L}=\frac{\sqrt{m_{\mathrm{s}} m_{\mathrm{d}}}}{m_{\mathrm{b}}}-\frac{\sqrt{m_{\mathrm{c}} m_{\mathrm{u}}}}{m_{\mathrm{t}}}, \\
\mathcal{S}=\sin \left(\Phi_{\uparrow}-\Phi_{\downarrow}\right)=(c \mid b), \\
\left|(u \mid b)+\mathcal{S} \sin \frac{1}{2} B_{\uparrow}\right|^{2}=\mathcal{L}^{2} \cos ^{2} \frac{1}{2} B_{\uparrow}, \\
\operatorname{Im}(u \mid b)=-\mathcal{L} \frac{\cos \frac{1}{2} B_{\uparrow} \cos \frac{1}{2} \chi}{r_{\uparrow}} \tag{1.13}
\end{array}
$$

and

$$
\begin{equation*}
(u \mid s)=\sin \frac{1}{2}\left(B_{\downarrow}-B_{\uparrow}\right) \tag{1.14}
\end{equation*}
$$

Our strategy of solution is as follows. We take $m_{\mathrm{s}}, m_{\mathrm{c}}, m_{\mathrm{b}}, m_{\mathrm{t}}$, as well as $(u \mid s),(u \mid b)$ and $(c \mid b)$, to be given from data (see Table 1). Then we have eleven unknowns $r_{\uparrow, \downarrow}, B_{\uparrow, \downarrow}, \Phi_{\uparrow, \downarrow}, \mathcal{S}, \mathcal{L}, \chi, m_{\mathrm{d}}, m_{\mathrm{u}}$ constrained by ten independent equations given above
(with (1.9) and (1.11), each counted as two equations). Taking a trial value of $\sin \frac{1}{2} B_{\uparrow}$, we are able to solve numerically for the other ten unknowns by a self-correcting double iteration that converges to 4 decimal stability after $36=6 \times 6$ passes. We find that m_{u} is particularly sensitive to variations in $\sin \frac{1}{2} B_{\uparrow}$; a variation of 30% in the latter carries m_{u} through the whole of its experimental range from 1.5 to $3.0 \mathrm{MeV} / c^{2}$. Meanwhile m_{d} varies by only 25%, from 5.2 to $6.5 \mathrm{MeV} / c^{2}$, well within the experimental range, 3.0 to $8.0 \mathrm{MeV} / c^{2}$. The value of χ must be taken as negative and is in the neighborhood of -125°, between -120° and -135°. We have also tried deviations in $m_{\mathrm{s}}, m_{\mathrm{b}},(c \mid b), \operatorname{Re}(u \mid b)$ and $\operatorname{Im}(u \mid b)$. Only in the case of m_{s} does it appear that a maximal deviation (-25%) from the "best value" might push m_{d} outside the range given by data. (See Tables 1 and 2, and Fig. 1).

Table 1*.

Parameter	"Best" value
m_{s}	95 MeV
m_{b}	4.5 GeV
$(c \mid b)$	0.04
$\operatorname{Re}(u \mid b)$	0.002
$\operatorname{Im}(u \mid b)$	-0.003

*These values are used to obtain the top two rows in Table 2.

Fig. 1. $\quad m_{\mathrm{d}}$ versus m_{u} for $m_{\mathrm{s}}=95 \mathrm{MeV},(c \mid b)=$ $0.04,(u \mid b)=0.002-0.003 i$ and $m_{\mathrm{b}}=4.2 \mathrm{GeV}$, 4.5 GeV and 4.7 GeV .

The next two sections are devoted to defining the parameters that appear in (1.7)—(1.14) and proving that these equations are satisfied. In Section 2, we discuss the separate diagonalization of M_{\uparrow} and M_{\downarrow}, and in Section 3, we examine the CKM matrix.

In Section 4, we discuss briefly a third model ${ }^{[2]}$, which we may call a $i \gamma_{5}$ model, because its Hamiltonian contains a term in $i \gamma_{4} \gamma_{5}$ as well as the usual one in γ_{4}.

Table 2. Values of $m_{\mathrm{u}}, m_{\mathrm{d}}$ and χ calculated from the strong γ_{4}-model*.

Input parameters		$m_{\mathrm{u}} / \mathrm{MeV}$	$m_{\mathrm{d}} / \mathrm{MeV}$	$\cos \frac{1}{2} \chi$
As in Table 1	$m_{\mathrm{s}}=85 \mathrm{MeV}$	1.45	5.18	0.487
		3.16	6.50	0.428
Table 1 except		1.39	5.43	0.479
		3.29	6.86	0.418
Table 1 except	$m_{\mathrm{s}}=105 \mathrm{MeV}$	1.52	5.00	0.490
		3.09	6.22	0.433
Table 1 except	$m_{\mathrm{b}}=4.2 \mathrm{GeV}$	1.63	4.83	0.483
		3.33	6.02	0.427
Table 1 except	$m_{\mathrm{b}}=4.7 \mathrm{GeV}$	1.61	5.68	0.476
		3.53	7.14	0.417
Table 1 except	$(c \mid b)=0.035$	1.40	4.86	0.507
		2.98	5.96	0.454
Table 1 except	$(c \mid b)=0.045$	1.51	5.52	0.468
		3.36	7.07	0.405
Table 1 except	$\operatorname{Re}(u \mid b)=0.0015$	1.63	4.74	0.525
		3.33	5.96	0.463
Table 1 except	$\operatorname{Re}(u \mid b)=0.0025$	1.72	6.09	0.432
		2.96	7.06	0.397
Table 1 except	$\operatorname{Im}(u \mid b)=-0.0025$	1.64	4.93	0.428
		2.75	5.81	0.389
Table 1 except	$\operatorname{Im}(u \mid b)=-0.0035$	1.73	5.96	0.510
		2.93	6.83	0.473

* The values of five input parameters are taken as in Table 1, except for single departures as shown in the left-hand column here. For each setting of the input parameters, there is a one-parameter family of solutions of Eqs. (1.7)-(1.14). We show two members of each family, chosen roughly to span the experimental range of m_{u} from 1.5 to 3.0 MeV . The corresponding values of m_{d} stay within its experimental range from 3 to 8 MeV , and χ remains large from -120° to -135°.

2 Diagonalization of M_{\uparrow} and M_{\downarrow}

In this section, we shall drop the arrow-subscripts and write (1.4) as

$$
M=\left(\begin{array}{ccc}
T^{2} \beta & -T \beta \cos \Phi & -T \beta \sin \Phi e^{i \chi} \tag{2.1}\\
-T \beta \cos \Phi & \alpha \tan ^{2} \Phi+\beta & -\alpha \tan \Phi \\
-T \beta \sin \Phi e^{-i \chi} & -\alpha \tan \Phi & \alpha+\beta
\end{array}\right)
$$

where

$$
\begin{gather*}
\Phi=\tan ^{-1} \xi \tag{2.2}\\
T=\eta \sqrt{1+\xi^{2}} \tag{2.3}
\end{gather*}
$$

so that $T^{2} \beta=\beta \eta^{2}\left(1+\xi^{2}\right), \sin \Phi=\xi / \sqrt{1+\xi^{2}}, \cos \Phi=$ $1 / \sqrt{1+\xi^{2}}$ and $(2.1)=(1.4)$. We denote the eigenvalues of M by $m_{1}, m_{\mathrm{m}}, m_{\mathrm{h}}$ (light, medium, heavy), and seek a unitary matrix \boldsymbol{W} (with $\boldsymbol{W} \boldsymbol{W}^{\dagger}=1$) such that

$$
M=\boldsymbol{W}\left(\begin{array}{ccc}
m_{1} & 0 & 0 \tag{2.4}\\
0 & m_{\mathrm{m}} & 0 \\
0 & 0 & m_{\mathrm{h}}
\end{array}\right) \boldsymbol{W}^{\dagger}
$$

The W matrix will be built up in stages, as we shall discuss. First we isolate the heavy mass by writing

$$
M=\Omega\left(\begin{array}{c:c}
(\boldsymbol{n}) & L \tag{2.5}\\
\hdashline L^{*} & 0
\end{array} \mu_{\mathrm{h}}\right) \Omega^{\dagger},
$$

where

$$
\begin{gather*}
\Omega^{\dagger}=\left(\begin{array}{c:cc}
1 & 0 & 0 \\
\hdashline 0 & \mathrm{e}^{\mathrm{i} \Phi \tau_{y}} \\
0 &
\end{array}\right), \tag{2.6}\\
\mu_{\mathrm{h}}=\alpha \sec ^{2} \Phi+\beta, \tag{2.7}\\
L=T \beta \cos \Phi \sin \Phi\left(1-e^{i \chi}\right) \tag{2.8}
\end{gather*}
$$

and

$$
\begin{align*}
& (\boldsymbol{n})= \\
& \beta\left(\begin{array}{cc}
T^{2} & -T\left(\cos ^{2} \Phi+\sin ^{2} \Phi \mathrm{e}^{\mathrm{i} \chi}\right) \\
-T\left(\cos ^{2} \Phi+\sin ^{2} \Phi \mathrm{e}^{-\mathrm{i} \chi}\right) & 1
\end{array}\right) . \tag{2.9}
\end{align*}
$$

Thus, (2.1) can be obtained by a simple substitution of (2.6) - (2.9) into (2.5).

Next, we diagonalize the 2×2 matrix (\boldsymbol{n}) of (2.9) by setting

$$
\begin{equation*}
\cos ^{2} \Phi+\sin ^{2} \Phi \mathrm{e}^{\mathrm{i} \chi}=r \mathrm{e}^{\mathrm{i} A} \tag{2.10}
\end{equation*}
$$

with r, A both real. Then

$$
\begin{align*}
(\boldsymbol{n})= & \beta\left(\begin{array}{cc}
T^{2} & -T r \mathrm{e}^{\mathrm{i} A} \\
-T r \mathrm{e}^{-\mathrm{i} A} & 1
\end{array}\right)= \\
& \mathrm{e}^{\frac{1}{2} \mathrm{i} \tau_{z} A} \mathrm{e}^{-\frac{1}{2} \mathrm{i} \tau_{y} B}\left(\begin{array}{cc}
\mu_{l} & 0 \\
& \mu_{m}
\end{array}\right) \mathrm{e}^{\frac{1}{2} \mathrm{i} \tau_{y} B} \mathrm{e}^{-\frac{1}{2} \mathrm{i} \tau_{z} A}, \tag{2.11}
\end{align*}
$$

provided that

$$
\begin{gather*}
\mu_{\mathrm{m}}+\mu_{\mathrm{l}}=\beta\left(1+T^{2}\right) \\
\left(\mu_{\mathrm{m}}-\mu_{\mathrm{l}}\right) \cos B=\beta\left(1-T^{2}\right) \tag{2.12}\\
\left(\mu_{\mathrm{m}}-\mu_{\mathrm{l}}\right) \sin B=2 \beta T r
\end{gather*}
$$

By quadratic combination of (2.12) we obtain

$$
\begin{equation*}
\mu_{\mathrm{m}} \mu_{\mathrm{l}}=\beta^{2} T^{2}\left(1-r^{2}\right) \tag{2.13}
\end{equation*}
$$

then, by dividing the above equation by the square of the last line of (2.12), we have

$$
\begin{equation*}
\frac{4 \mu_{\mathrm{m}} \mu_{\mathrm{l}}}{\left(\mu_{\mathrm{m}}-\mu_{\mathrm{l}}\right)^{2}}=\frac{1-r^{2}}{r^{2}} \sin ^{2} B \tag{2.14}
\end{equation*}
$$

which leads to (1.7) and (1.8).
Also, by applying the Law of Sines to the complex triangle described by (2.10), followed by trigonometric identities, we find

$$
\begin{equation*}
\cos \left(\frac{1}{2} \chi-A\right)=\frac{\cos \frac{1}{2} \chi}{r} \tag{2.15}
\end{equation*}
$$

a relation that will be useful later.
Applying (2.11) to (2.5), we now have

$$
\begin{align*}
& M=\Omega V \times \\
& \left(\begin{array}{ccc}
\mu_{1} & 0 & L \Delta^{*} \cos \frac{1}{2} B \\
0 & \mu_{\mathrm{m}} & -L \Delta^{*} \sin \frac{1}{2} B \\
L^{*} \Delta \cos \frac{1}{2} B-L^{*} \Delta \sin \frac{1}{2} B & \mu_{\mathrm{h}}
\end{array}\right) V^{\dagger} \Omega^{\dagger}, \tag{2.16}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta=\mathrm{e}^{\frac{1}{2} \mathrm{i} A} \tag{2.17}
\end{equation*}
$$

and

$$
V^{\dagger}=\left(\begin{array}{c:c}
\left(\mathrm{e}^{\frac{1}{2} \tau_{y} B} \mathrm{e}^{-\frac{1}{2} \mathrm{i} \tau_{z} A}\right. & 0 \tag{2.18}\\
\hdashline 0 & 0
\end{array}: 1 .\right.
$$

Thus M is almost diagonalized. Let us study the magnitude of L. From (2.13) and (2.10) we find

$$
\begin{equation*}
\mu_{\mathrm{m}} \mu_{\mathrm{l}}=\beta^{2} T^{2}\left(1-r^{2}\right)=2 \beta^{2} T^{2}(1-\cos \chi) \cos ^{2} \Phi \sin ^{2} \Phi \tag{2.19}
\end{equation*}
$$

and comparing this with (2.8) we have

$$
\begin{equation*}
|L|=2\left|T \beta \cos \Phi \sin \Phi \sin \frac{1}{2} \chi\right|=\sqrt{\mu_{\mathrm{m}} \mu_{\mathrm{l}}} . \tag{2.20}
\end{equation*}
$$

Hence, if we write

$$
\begin{align*}
& \left(\begin{array}{ccc}
\mu_{1} & 0 & L \Delta^{*} \cos \frac{1}{2} B \\
0 & \mu_{\mathrm{m}} & -L \Delta^{*} \sin \frac{1}{2} B \\
L^{*} \Delta \cos \frac{1}{2} B & -L^{*} \Delta \sin \frac{1}{2} B & \mu_{\mathrm{h}}
\end{array}\right)= \\
& P\left(\begin{array}{ccc}
m_{1} & 0 & 0 \\
0 & m_{\mathrm{m}} & 0 \\
0 & 0 & m_{\mathrm{h}}
\end{array}\right) P^{\dagger} \tag{2.21}
\end{align*}
$$

the elements of P will differ from those of the unit matrix by $O\left[\frac{\sqrt{m_{1} m_{\mathrm{m}}}}{m_{\mathrm{h}}}\right] \ll 1$. A careful examination
shows that all the m's may be approximated by μ 's; in particular, we also have $\left|\frac{\mu_{1}}{m_{1}}-1\right| \sim O\left[\frac{m_{\mathrm{m}}}{m_{\mathrm{h}}}\right]$. Therefore (2.14) becomes

$$
\begin{equation*}
\frac{4 m_{\mathrm{m}} m_{1}}{\left(m_{\mathrm{m}}-m_{1}\right)^{2}}=\frac{1-r^{2}}{r^{2}} \sin ^{2} B \tag{2.22}
\end{equation*}
$$

and (1.7) and (1.8) are established.
Also, (1.9) is a direct consequence of (2.13) and (2.20). We may take (1.10) as the definition of \mathcal{L}, and from (2.20) we may write it as

$$
\begin{equation*}
\mathcal{L}=\frac{\left|L_{\downarrow}\right|}{m_{\mathrm{b}}}-\frac{\left|L_{\uparrow}\right|}{m_{\mathrm{t}}} . \tag{2.23}
\end{equation*}
$$

The first equality of (1.11) is the definition of \mathcal{S}. Thus what remains is to establish the second part of (1.11), and (1.12)-(1.14). This requires studying the CKM matrix which relates "up" to "down" eigenstates, as we shall see.

3 The CKM matrix

In this section we restore the arrow subscripts \uparrow, \downarrow. On account of (2.16) and (2.21), the matrix \boldsymbol{W} defined in (2.4) is given by

$$
\begin{equation*}
\boldsymbol{W}_{\uparrow, \downarrow}^{\dagger}=P_{\uparrow, \downarrow}^{\dagger} V_{\uparrow, \downarrow}^{\dagger} \Omega_{\uparrow, \downarrow}^{\dagger} . \tag{3.1}
\end{equation*}
$$

If we define

$$
\begin{equation*}
U=\boldsymbol{W}_{\uparrow}^{\dagger} \boldsymbol{W}_{\downarrow}=P_{\uparrow}^{\dagger} U_{0} P_{\downarrow} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{align*}
U_{0}= & V_{\uparrow}^{\dagger} \Omega_{\uparrow}^{\dagger} \Omega_{\downarrow} V_{\downarrow}=\left(\begin{array}{c:c}
\left(\mathrm{e}^{\frac{1}{2} \tau_{y} B_{\uparrow}} \mathrm{e}^{-\frac{1}{2} \mathrm{i} \tau_{z} A_{\uparrow}}\right) & 0 \\
\hdashline \hdashline 0 & 0 \\
\hdashline 0 & \left(\begin{array}{c:cc}
1 & 0 & 0 \\
\hdashline 0 & \mathrm{e}^{\mathrm{i}\left(\Phi_{\uparrow}-\Phi_{\downarrow}\right) \tau_{y}} \\
0 & 0
\end{array}\right)\left(\begin{array}{c:c}
\left(\mathrm{e}^{\frac{1}{2} \mathrm{i} \tau_{z} A_{\downarrow}} \mathrm{e}^{-\frac{1}{2} \mathrm{i} \tau_{y} B_{\downarrow}}\right. & 0 \\
\hdashline & 0
\end{array}\right) \times \\
\hdashline \hdashline 0 & 0 \\
\hdashline 0 & 1
\end{array}\right),
\end{align*}
$$

then U transforms eigenstates of M_{\downarrow} into eigenstates of M_{\uparrow}, provided that the phases of the eigenstates are suitably chosen. To obtain the CKM matrix $U_{\text {CKM }}$, which relates eigenstates whose phases follow a standard convention, we shall need an additional transformation

$$
\begin{equation*}
U_{\mathrm{CKM}}=Q_{\uparrow}^{\dagger} U Q_{\downarrow} \tag{3.4}
\end{equation*}
$$

where $Q_{\uparrow, \downarrow}$ are diagonal unitary matrices to be chosen presently.

In evaluating (3.3) it is convenient to introduce new symbols:

$$
\begin{gather*}
\delta=\Delta_{\uparrow} \Delta_{\downarrow}^{*}=\mathrm{e}^{\frac{1}{2}\left(A_{\uparrow}-A_{\downarrow}\right)}, \tag{3.5}\\
\Gamma=\cos \frac{1}{2} B_{\uparrow}, \quad \gamma=\cos \frac{1}{2} B_{\downarrow}, \tag{3.6}
\end{gather*}
$$

$$
\begin{gather*}
\Sigma=\sin \frac{1}{2} B_{\uparrow}, \quad \sigma=\sin \frac{1}{2} B_{\downarrow}, \tag{3.7}\\
\mathcal{S}=\sin \left(\Phi_{\uparrow}-\Phi_{\downarrow}\right) \text { and } C=\cos \left(\Phi_{\uparrow}-\Phi_{\downarrow}\right) . \tag{3.8}
\end{gather*}
$$

We note that the first equation in (3.8) is the same in (1.11). By using (3.5)-(3.8), we find U_{0} of (3.3) can be written as

$$
U_{0}=\left(\begin{array}{ccc}
\delta^{*} \Gamma \gamma+C \delta \Sigma \sigma & -\delta^{*} \Gamma \sigma+C \delta \Sigma \gamma & \mathcal{S} \Delta_{\uparrow} \Sigma \\
-\delta^{*} \Sigma \gamma+C \delta \Gamma \sigma & \delta^{*} \Sigma \sigma+C \delta \Gamma \gamma & \mathcal{S} \Delta_{\uparrow} \Gamma \\
-\mathcal{S} \Delta_{\downarrow}^{*} \sigma & -\mathcal{S} \Delta_{\downarrow}^{*} \gamma & C
\end{array}\right) .
$$

The next step is to prepare for a perturbative treatment of (3.2) by writing

$$
\begin{equation*}
P_{\uparrow, \downarrow} \cong I+p_{\uparrow, \downarrow}, \tag{3.10}
\end{equation*}
$$

where (in arrowless notation)
$p^{\dagger}=\frac{1}{m_{\mathrm{h}}}\left(\begin{array}{ccc}0 & 0 & -\Delta^{*} L \cos \frac{1}{2} B \\ 0 & 0 & \Delta^{*} L \sin \frac{1}{2} B \\ \Delta L^{*} \cos \frac{1}{2} B-\Delta L^{*} \sin \frac{1}{2} B & 0\end{array}\right)$.
We note that by putting (3.11) into (3.10), we can satisfy (2.21) to first order in L.

Thus we have

$$
\begin{equation*}
U \cong U_{0}+U^{\prime} \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
U^{\prime}=p_{\uparrow}^{\dagger} U_{0}+U_{0} p_{\downarrow} . \tag{3.13}
\end{equation*}
$$

$$
U^{\prime} \cong\left(\begin{array}{ccc}
0 & 0 & +\left(\frac{L_{\downarrow}}{m_{\mathrm{b}}}-\frac{L_{\uparrow}}{m_{\mathrm{t}}}\right) \Delta_{\uparrow} \Gamma \tag{3.16}\\
0 & 0 & -\left(\frac{L_{\downarrow}}{m_{\mathrm{b}}}-\frac{L_{\uparrow}}{m_{\mathrm{t}}}\right) \Delta_{\uparrow} \Sigma \\
-\left(\frac{L_{\downarrow}^{*}}{m_{\mathrm{b}}}-\frac{L_{\uparrow}^{*}}{m_{\mathrm{t}}}\right) \Delta_{\downarrow} \gamma+\left(\frac{L_{\downarrow}^{*}}{m_{\mathrm{b}}}-\frac{L_{\uparrow}^{*}}{m_{\mathrm{t}}}\right) \Delta_{\downarrow} \sigma & 0
\end{array}\right)
$$

But from (2.8), taking $T, \beta, \cos \Phi, \sin \Phi$ positive, we find

$$
\begin{equation*}
\frac{L_{\downarrow}}{\left|L_{\downarrow}\right|}=\frac{L_{\uparrow}}{\left|L_{\uparrow}\right|}=\frac{1-\mathrm{e}^{\mathrm{i} \chi}}{\left|1-\mathrm{e}^{\mathrm{i} \chi}\right|} \tag{3.17}
\end{equation*}
$$

and so

$$
\begin{equation*}
\frac{L_{\downarrow}}{m_{\mathrm{b}}}-\frac{L_{\uparrow}}{m_{\mathrm{t}}}=\frac{1-\mathrm{e}^{\mathrm{i} \chi}}{\left|1-\mathrm{e}^{\mathrm{i} \chi}\right|} \mathcal{L} \tag{3.18}
\end{equation*}
$$

by (2.23). We now anticipate that χ will have to be negative in order to make everything come out right. Hence,

$$
\begin{equation*}
\frac{1-\mathrm{e}^{\mathrm{i} \chi}}{\left|1-\mathrm{e}^{\mathrm{i} \chi}\right|}=\frac{\mathrm{e}^{\frac{1}{2} \mathrm{i} \chi}\left(-2 \mathrm{i} \sin \frac{1}{2} \chi\right)}{\left|2 \sin \frac{1}{2} \chi\right|}=+\mathrm{i}^{\frac{1}{2} \mathrm{i} \chi} \tag{3.19}
\end{equation*}
$$

Let us carefully evaluate the lower left element of $p_{\uparrow}^{\dagger} U_{0}:$

$$
\begin{align*}
\left(p_{\uparrow}^{\dagger} U_{0}\right)_{31}= & \frac{1}{m_{\mathrm{t}}}\left(L_{\uparrow}^{*} \Delta_{\uparrow} \cos \frac{1}{2} B_{\uparrow}\right)\left(\delta^{*} \Gamma \gamma+C \delta \Sigma \sigma\right)+ \\
& \frac{1}{m_{\mathrm{t}}}\left(-L_{\uparrow}^{*} \Delta_{\uparrow} \sin \frac{1}{2} B_{\uparrow}\right)\left(-\delta^{*} \Sigma \gamma+C \delta \Gamma \sigma\right)= \\
& \frac{L_{\uparrow}^{*} \Delta_{\uparrow}}{m_{\mathrm{t}}}\left[\Gamma\left(\delta^{*} \Gamma \gamma+C \delta \Sigma \sigma\right)+\right. \\
& \left.\Sigma\left(\delta^{*} \Sigma \gamma-C \delta \Gamma \sigma\right)\right]= \tag{3.9}\\
& \frac{L_{\uparrow}^{*} \Delta_{\uparrow}}{m_{\mathrm{t}}} \delta^{*}\left(\Gamma^{2}+\Sigma^{2}\right) \gamma=\frac{L_{\uparrow}^{*}}{m_{\mathrm{t}}} \Delta_{\downarrow} \gamma . \tag{3.14}
\end{align*}
$$

(Note how the calculation converts Δ_{\uparrow} to Δ_{\downarrow} and Γ to γ.) The corresponding element of $U_{0} p_{\downarrow}$ is trivial:

$$
\begin{equation*}
\left(U_{0} p_{\downarrow}\right)_{31}=C\left(\frac{1}{m_{\mathrm{b}}} \Delta_{\downarrow}^{*} L_{\downarrow} \cos \frac{1}{2} B_{\downarrow}\right)^{*}=-\frac{L_{\downarrow}^{*}}{m_{\mathrm{b}}} \Delta_{\downarrow} \gamma C . \tag{3.15}
\end{equation*}
$$

Anticipating that B_{\uparrow} will turn out fairly small, ~ 0.2, we now observe that the matrix element U_{23} is going to be dominated by $\left(U_{0}\right)_{23}=\mathcal{S} \Delta_{\uparrow} \Gamma \sim \mathcal{S} \Delta_{\uparrow}$. Therefore, \mathcal{S} must have magnitude $\sim .04$. It follows that $C \sim 1-\frac{1}{2} \mathcal{S}^{2}$ can be replaced by 1 , and that all elements of U^{\prime} other than $\left(U^{\prime}\right)_{13,23,31,32}$ being of order $\mathcal{S} \cdot \frac{\sqrt{m_{\mathrm{d}} m_{\mathrm{s}}}}{m_{\mathrm{b}}}$, can be neglected.

Thus, by repeating for $\left(U^{\prime}\right)_{13,23,32}$ the calculations leading to (3.14) and (3.15), we have
and (3.16) leads to
$U^{\prime} \simeq\left(\begin{array}{ccc}0 & 0 & +\mathrm{ie}^{\frac{1}{2} \mathrm{i} \chi} \mathcal{L} \Delta_{\downarrow}^{*} \Gamma \\ 0 & 0 & -\mathrm{ie}^{\frac{1}{2} \mathrm{i} \chi} \mathcal{L} \Delta_{\downarrow}^{*} \Sigma \\ +\mathrm{ie}^{-\frac{1}{2} \mathrm{i} \chi} \mathcal{L} \Delta_{\downarrow} \gamma-\mathrm{ie}^{-\frac{1}{2} \mathrm{i} \chi} \mathcal{L} \Delta_{\downarrow} \sigma & 0\end{array}\right)$.
For reasons shortly to be evident, let us now introduce the phase factors

$$
\begin{equation*}
\varepsilon_{\uparrow, \downarrow}=-\mathrm{ie}^{\frac{1}{2} \chi \chi}\left(\Delta_{\uparrow, \downarrow}^{*}\right)^{2}=\mathrm{e}^{-\frac{\mathrm{i} \sigma}{2}} \mathrm{e}^{\mathrm{i}\left(\frac{1}{2} \chi-A_{\uparrow, \downarrow}\right)} . \tag{3.21}
\end{equation*}
$$

Then we have

$$
U^{\prime}=\left(\begin{array}{ccc}
0 & 0 & -\varepsilon_{\uparrow} \mathcal{L} \Delta_{\uparrow} \Gamma \tag{3.22}\\
0 & 0 & +\varepsilon_{\uparrow} \mathcal{L} \Delta_{\uparrow} \Sigma \\
+\varepsilon_{\downarrow}^{*} \mathcal{L} \Delta_{\downarrow}^{*} \gamma-\varepsilon_{\downarrow}^{*} \mathcal{L} \Delta_{\downarrow}^{*} \sigma & 0
\end{array}\right) .
$$

In treating (3.9), let us note that since $\Phi_{\uparrow}-\Phi_{\downarrow} \approx$ $\sin ^{-1} \mathcal{S}$ is small, $A_{\uparrow}-A_{\downarrow}$ is also small by (2.10). Hence $|\operatorname{Im} \delta|$ is small (see(3.5)) and $1-\operatorname{Re} \delta$ is second order. So $\operatorname{Re} \delta$ can be taken $=1$, and the imaginary parts of $\left(U_{0}\right)_{11,12,21,22}$ can be adjusted by small adjustments in $Q_{\uparrow}, Q_{\downarrow}$. We shall treat such adjustments imprecisely and simply neglect these imaginary parts. By taking $C \rightarrow 1$ and using (3.6)-(3.7), we find

$$
\begin{align*}
& \left(\begin{array}{cc}
\left(U_{0}\right)_{11}\left(U_{0}\right)_{12} \\
\left(U_{0}\right)_{21} & \left(U_{0}\right)_{22}
\end{array}\right)=\left(\begin{array}{cc}
\Gamma \gamma+\Sigma \sigma & -\Gamma \sigma+\Sigma \gamma \\
-\Sigma \gamma+\Gamma \sigma & \Sigma \sigma+\Gamma \gamma
\end{array}\right)= \\
& \left(\begin{array}{cc}
\cos \frac{1}{2}\left(B_{\downarrow}-B_{\uparrow}\right) & -\sin \frac{1}{2}\left(B_{\downarrow}-B_{\uparrow}\right) \\
\sin \frac{1}{2}\left(B_{\downarrow}-B_{\uparrow}\right) & \cos \frac{1}{2}\left(B_{\downarrow}-B_{\uparrow}\right)
\end{array}\right) . \tag{3.23}
\end{align*}
$$

Now $B_{\downarrow}-B_{\uparrow}$ must be positive to fit U_{13} and U_{31}, and so U_{12} is negative, whereas the standard presentation gives $\left(U_{\mathrm{CKM}}\right)_{12}$ positive. Therefore, we shall use the Q-transformation to change the sign of the first row and column, and also to remove the factors $\Delta_{\uparrow}, \Delta_{\downarrow}^{*}$ now appearing in the third row and column. Thus

$$
Q_{\uparrow}^{\dagger}=\left(\begin{array}{ccc}
-1 & 0 & 0 \tag{3.24}\\
0 & 1 & 0 \\
0 & 0 & \Delta_{\downarrow}
\end{array}\right), \quad Q_{\downarrow}^{\dagger}=\left(\begin{array}{ccc}
+1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \Delta_{\uparrow}^{*}
\end{array}\right)
$$

and

$$
\begin{align*}
& U_{\mathrm{CKM}}=Q_{\uparrow}^{\dagger} U_{0} Q_{\downarrow}+Q_{\uparrow}^{\dagger} U^{\prime} Q_{\downarrow}= \\
& \left(\begin{array}{ccc}
\cos \frac{1}{2}\left(B_{\downarrow}-B_{\uparrow}\right) & \sin \frac{1}{2}\left(B_{\downarrow}-B_{\uparrow}\right) & -\mathcal{S} \Sigma+\varepsilon_{\uparrow} \mathcal{L} \Gamma \\
-\sin \frac{1}{2}\left(B_{\downarrow}-B_{\uparrow}\right) & \cos \frac{1}{2}\left(B_{\downarrow}-B_{\uparrow}\right) & \mathcal{S} \Gamma+\varepsilon_{\uparrow} \mathcal{L} \Sigma \\
\mathcal{S} \sigma-\varepsilon_{\downarrow}^{*} \mathcal{L} \gamma & -\mathcal{S} \gamma-\varepsilon_{\downarrow}^{*} \mathcal{L} \sigma & 1
\end{array}\right) \tag{3.25}
\end{align*}
$$

where we have again allowed a slight imprecision of phase in the $(3,3)$ element.

Comparing (3.25) with the array

$$
U_{\mathrm{CKM}}=\left(\begin{array}{ccc}
(u \mid d) & (u \mid s) & (u \mid b) \tag{3.26}\\
(c \mid d) & (c \mid s) & (c \mid b) \\
(t \mid d) & (t \mid s) & (t \mid b)
\end{array}\right)
$$

we obtain the second half of (1.11) and (1.12) — (1.14).
Note: there is an ambiguity, $\Phi_{\uparrow, \downarrow}>$ or $<\frac{\pi}{4}$. We take both Φ^{\prime} 's $>\frac{\pi}{4}$, so that $|A|>|\chi-A|$ and hence $|A|>\left|\frac{1}{2} \chi\right|$. Since χ and A are negative, $\frac{1}{2} \chi-A>0$
and hence $\operatorname{Re} \varepsilon_{\uparrow, \downarrow}>0$, as required in $(u \mid b)$ and $(t \mid d)$. Because $\operatorname{Im} \varepsilon_{\uparrow}=-\cos \left(\frac{1}{2} \chi-A\right)$, we can then derive (1.13) by using (2.15).

4 The "Timeon" model

The merit of the "strong $\gamma_{4} T$-violation model" examined in this paper suggests that there may be large T-violation somewhere in physics although its manifestation in the quark mass sector is small. In the "strong $\gamma_{4} T$-violation model" the T-violating effects are produced by the phase χ which enters nonlinearly into the Hamiltonian. This non-linear interaction makes it difficult to construct a renormalizable quantum field theory that can be extended beyond the mass matrix. For this and other reasons, we have considered a different model ${ }^{[3]}$ in which the T-violating effect enters linearly; therefore, the model can lead to a renormalizable field theory, called "timeon".

In the timeon theory, the mass-generating Hamiltonian can be written by replacing $M_{\uparrow / \downarrow}$ in (1.4) by

$$
\begin{equation*}
G_{\uparrow / \downarrow}+\mathrm{i} \gamma_{5} F_{\uparrow / \downarrow} \tag{4.1}
\end{equation*}
$$

where $G_{\uparrow / \downarrow}$ and $F_{\uparrow / \downarrow}$ are real symmetric matrices, and the $F_{\uparrow / \downarrow}$ term in $i \gamma_{5}$ arises from coupling to the vacuum expectation value of a new T-negative and P negative field $\tau(x)$, the timeon field. Thus, the whole field theory conserves T, but T-violation arises from the spontaneous symmetry breaking that makes the vacuum expectation value

$$
\begin{equation*}
\tau_{0}=\langle\tau(x)\rangle_{\mathrm{vac}} \neq 0 \tag{4.2}
\end{equation*}
$$

The timeon field $\tau(x)$ is real, so that there is no Goldstone boson ${ }^{[4]}$. However, the oscillation of $\tau(x)$ around its vacuum expectation value τ_{0} gives rise to a new particle, called "timeon", whose production can lead to large T-violating effects. In Ref. [3], it is shown that the parameters determining $G_{\uparrow / \downarrow}$ and $F_{\uparrow / \downarrow}$ can be adjusted to simulate an arbitrary complex γ_{4} model, as far as the quark masses are concerned, but not the CKM matrix. Thus, for example, in the timeon γ_{5}-model the light quark masses in the small mass limit turn out to be proportional to \mathcal{J}, whereas in the γ_{4}-model, they are proportional to \mathcal{J}^{2}.

References

1 Friedberg R, Lee T D. Ann. Phys., 2008, 323: 1087

2 Particle Data Group. J. Phys. G, 2006, 33: 1
3 Friedberg R, Lee T D. arXiv:0809.3633
4 Goldstone J. Nuovo Cimento, 1961, 9: 154

[^0]: Received 13 October 2008

 * Supported in part by the U.S. Department of Energy (DE-FG02-92-ER40699)

