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Entropy and equilibrium property of QCD-instanton

induced final state in deep-inelastic scattering *
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Abstract The scaling and additivity properties of Rényi entropy in rapidity space of the instanton final state

(IFS) and current jet identified by the r-sorting method from the QCDINS Monte Carlo event sample are

studied. Asymptotic scaling of the Rényi entropy H2 is observed for the IFS while H2 for the current jet tends

to saturation with decreasing phase space scale. Furthermore, it is found that the additivity of H2 holds well

for the IFS in narrow rapidity windows at different positions. These results indicate that the IFS produced in

the instanton-induced process of deep inelastic scattering has reached local equilibrium.
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1 Introduction

The basic theory of strong interaction — quan-

tum chromo-dynamics (QCD) — is a non-Abelian

gauge theory and as such has a complicated vacuum

structure. There are degenerate vacua of different

topologies, leading to a special effect — tunneling

transition between degenerate vacua —, referred to

as instanton[1—4]. Instantons are non-perturbative

fluctuations of the gluon field, which are expected to

contribute to deep-inelastic scattering (DIS) with a

sizable rate[5—7].

Deep-inelastic scattering (DIS) accompanied by

instanton-induced hard processes, cannot be de-

scribed by conventional perturbation theory. There-

fore, theoretical and experimental studies of the pro-

cesses induced by instantons are of fundamental sig-

nificance for a thorough understanding of the non-

perturbative sector of QCD[5, 6].

The two experimental groups, H1 and ZEUS,

of DESY-HERA in Germany have been searching for

instanton induced events in e+p deep inelastic scatter-

ing experiments, and only upper limits on the cross-

section of such processes were set[8, 9]. At present,

beside the experimental searches for the instanton in-

duced events, a Monte Carlo study of the physical

properties of IFS is also important.

Figure 1 shows the leading graph of QCD-

instanton induced e-p collisions. The incident lep-

ton emits a photon, with 4-momentum q, which in

turn transforms into a quark-antiquark pair. One of

these quarks with 4-momentum q′′ hadronizes to form

the current jet. The other quark, with 4-momentum

q′, fuses with a gluon (with 4-momentum g) from the

proton in the presence of an instanton (I). The hadron

system produced from the fusion of quark and gluon

in the presence of an instanton is referred to as in-

stanton final state, or IFS in short.

The quark-gluon fusion process with the instanton

as background gives rise to a high multiplicity final

state. The particles produced from this process, i.e.

the IFS, are expected to be isotropically distributed
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in their center of mass frame[10].

Fig. 1. The leading QCD-instanton induced
process in the DIS regime of e-p scattering.

A problem of high interest is whether the IFS has

reached equilibrium. Refs. [11, 12] have studied the

final-state momentum distribution of the IFS using

a Monte Carlo simulation. An approximate isotropic

distribution is found for the IFS in contrast to the

high anisotropy of the current jet. In the present

paper the equilibrium of IFS will be studied by us-

ing the Rényi-entropy analysis, based on Ma’s coin-

cidence probability.

2 Method of Rényi-entropy analysis

Let us first discuss shortly the concept of equi-

librium. For a closed macroscopic system, arriving

at (thermal) equilibrium, the corresponding ensem-

ble is the micro-canonical one, where the microscopic

states of the system are uniformly distributed in the

allowed region of phase space of the system (Γ-space).

Starting from this ensemble all the thermodynamical

properties of the system, including the thermodynam-

ical quantities — entropy, temperature, etc. —, are

derived.

The physical origin of thermal equilibrium of

a macroscopic system are random collisions among

the molecules constituting the system. In our

case, each parton produced in the instanton-induced

quark-gluon-fusion process develops a parton shower.

Hadrons only experience resonance decay, if any.

There is no rescattering and no random thermal

motion neither at parton level nor at hadron level.

Therefore, no thermal equilibrium in the strict sense

is possible. However, the distribution of the final

states in the allowed region of phase space may be uni-

form. Such a distribution mimics the micro-canonical

ensemble, and the “thermodynamical” properties of

the system in consideration can be derived therefrom.

We will refer to such a uniform distribution in phase

space also as equilibrium. The “equilibrium”, if any,

of the IFS and current jet that we will check in the

following should be understood in this sense.

To check the equilibrium of IFS and jet we will

make use of the Rényi-entropy analysis based on Ma’s

coincidence probability[13—15]. According to Ma[16]

an event is characterized by a set of integer numbers

s ≡ {mi}, i = 1, · · · ,M , where a certain phase space

region ∆ is partitioned equally into M bins with the

size of each bin δ =
∆

M
, mi is the number of particles

in the ith bin. When two events have the same set

of numbers {mi}, we say that they are coincident. If

there are ns events in the whole sample having the

same set s≡{mi}, then we define the number of co-

incidences of k configurations as

Nk =
∑

s

ns(ns−1) · · · (ns−k+1). (1)

The coincidence probability of k configurations is

given by

Ck =
Nk

N(N −1) · · ·(N −k+1)
, (2)

where N is the total number of events in the sample,

and the Rényi entropies are defined as[17]

Hk ≡−
lnCk

k−1
. (3)

The Rényi entropies are closely related to the

Shannon entropy (S), which is formally equal to

the limit of Hk as k → 1 and can be obtained

through extrapolation[14, 15]. It has been shown

that the extrapolation method for determining S is

in general not unique and will produce additional

uncertainty[14, 15], while the Rényi entropies are of in-

terest by themselves and can provide information on

the equilibrium of the system, cf. Eqs. (5), (6) be-

low. So our study will concentrate on the behavior of

Rényi entropies, in particular on H2.

For a system close to equilibrium the Rényi en-

tropies obey the scaling property:

Hk(M) = Hk(M0)+d ln
M

M0

(4)

for a sufficiently fine-grained subdivision of phase

space[13, 14], where d is a constant related to the di-

mension of space, M is bin number with the size of

each bin δ = ∆/M , M0 is another bin number with

the size of each bin δ0 = ∆/M0. Substituting M =
∆

δ
,

we can rewrite Eq. (4) as

Hk(M) = A−d lnδ for M →∞ , (5)

where A = Hk(M0)+d lnδ0 is a constant.

Furthermore, the additivity property[15]:

H(R)
k (2M) = H (R1)

k (M)+H (R2)
k (M) , (6)

should hold for two non-overlapping and independent

phase space regions R1 and R2 with R the union.
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Note that the equality of the two sides of Eq. (6) is

examined at the same scale δ =
∆

M
=

2∆

2M
.

3 Results and discussions

The above-mentioned method has been applied

to hadron-hadron (h-h) collision data from both

PYTHIA-JETSET Monte Carlo generator[18] and

NA22 experiment[19]. It turns out that in both cases

the Rényi entropy H2 plotted versus − lnδy tends to

saturate instead of approaching a straight line to be

expected by the scaling law Eq. (5) and the additiv-

ity Eq. (6) does not hold. This shows that there is no

equilibrium in the final state system of hadron-hadron

collisions.

In the present paper we apply the method to the

hadron system produced in the quark-gluon fusion

process q′ +g −→(I) X in the background of an instan-

ton. Our study is based on the Monte Carlo code

QCDINS[20, 21], which is a package for instanton in-

duced events embedded in the HERWIG[22, 23] event

generator. The default parameters of the QCDINS

2.0 version are used in our study, i.e. x′ > 0.35, Q′2 >

113 GeV2 and the number of quark flavors is set to

be nf = 3.

In total 493400 instanton-induced DIS events are

generated with the energies of electron and proton

being equal to 27.5 and 820 GeV, respectively. The

IFS and current jet are identified using the r-sorting

method proposed in Ref. [11]. The method is to define

a distance in the θ-φ-plane in the hadronic center-of-

mass frame, i.e.

r(θ,φ) =

√

√

√

√

√

(

θ−θ0

π

)2

+

(

φ−φ0

π

)2

2
, (7)

where (θ0,φ0 = 0) is the position of the current quark.

This variable measures how far is every final state

particle from the jet axis. Choosing an appropriate

value for r0, the particles with r(θ,φ) < r0 are at-

tributed to the jet and those with r(θ,φ) > r0 to the

IFS. First discard the proton remnant by an 1D cut.

Renumber the left n particles by their r values, let

r1 < r2 < · · ·< rn. Choose the value of r0 in between

rk and rk+1 (rk < r0 < rk+1), i.e. assign 1, · · · ,k to the

particles of the current jet and k+1, · · · ,n to the IFS.

Accumulating the energies from particle 1 to particle

k gives Ek =
∑k

i=1
εi; simultaneously accumulating

the energies from k+1 to n gives E ′

k =
∑n

i=k+1
εi. The

energy reconstruction errors for jet and instanton are

∆Ejet =
Ek −EC

EC

×100% and ∆EI =
E′

k−EI

EI

×100%,

respectively, where EC is the energy of the current

parton, EI is that of the quark and gluon included

in the IFS at partonic level. Then choose the value

of k to optimize the energy reconstruction, i.e. make

∆E = 0.4× |∆Ejet|+ 0.6× |∆EI| minimal. For the

entropy analysis the particles in the IFS and those in

the current jet are then transformed into their own

rest frame and therefore the rapidity we are dealing

with in the following also refer to these rest frames.

Fig. 2 shows the reconstruction error ∆Ejet for the jet

energy and ∆EI for the instanton energy. It can be

seen that the reconstruction is good and the resulting

IFS and jet are reliable.

Fig. 2. Distributions of the reconstruction error
∆Ejet for the jet energy (a) and ∆EI for the
instanton energy (b) in the r-sorting method.

Figure 3(a) and 3(b) show the Rényi entropy H2

versus − lnδy in the central rapidity regions |y| < 2

(circles) and |y|< 0.5 (triangles) for the IFS and cur-

rent jet, respectively. A striking feature is that for

the IFS the behavior of H2 versus − lnδy differs qual-

itatively from that of the DIS-current jet and the h-h

collision final states. It bends upwards and tends to a

straight line for large − lnδy, cf. Fig. 3(a), in contrast

to the downward bending and saturation tendency for

the current jet (Fig. 3(b)) and h-h collision final-state

systems[18, 19]. This is a strong indication that, unlike

the violation of the scaling law in the case of the DIS-

current jet and h-h collision final-states, the scaling

law Eq. (5) is satisfied for the IFS for a sufficiently

fine-grained subdivision of the phase space.
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Fig. 3. The Rényi entropy H2 versus − lnδy in
central rapidity regions |y| < 2 (circles) and
|y| < 0.5 (triangles) for (a) IFS and (b) cur-
rent jet. The straight lines in (a) are linear
fits to the high − lnδy part of H2 as a func-
tion of − lnδy. The slopes of the two lines are
6.820 ± 0.013 (upper line) and 6.304 ± 0.005
(lower line), respectively.

Let us now check the additivity property Eq. (6)

for the instanton final state IFS. In Fig. 4 are shown

the Rényi entropies H2 of the IFS obtained from tak-

ing the sum of the results calculated from two regions

R1 and R2 in comparison with those directly calcu-

lated from the union R = R1 + R2. The legend in

the figure shows the rapidity regions corresponding

to each set of points. For example, the solid circle

in Fig. 4(a) is the sum of the H2’s from the regions

−2 < y < 0 (R1) and 0 < y < 2 (R2), while the

open circle is the H2 from the union R = R1 + R2

(−2 < y < 2). It can be seen from Fig. 4(a) that for

regions of narrow widths R1 and R2 (∼ 0.5) the addi-

tivity holds excellently, while for wider widths (∼ 2)

the additivity holds only approximately, especially for

large M . In Fig. 4(b) the additivity is investigated

for R1 and R2 of the same width (=1) but located at

different places. It can be seen that for adjacent R1

and R2 the additivity holds well, however, if they are

separated by a gap it holds only approximately.

The asymptotic scaling and additivity of the IFS

are special and impressive. These properties have

never been observed in other systems, e.g. hadronic

jets and h-h collision final states, studied up to now.

They strongly indicate that the system produced in

quark-gluon fusion in the background of an instanton,

i.e. the IFS, has reached local equilibrium.

Our Monte Carlo study is based on the QCDINS

code, where the 4-momenta of the n = 2nf − 1 + ng

produced partons in the instanton rest frame (for

convenience we will refer in the following to the par-

tons produced in the instanton-induced quark-gluon-

fusion process as IQGF) are uniformly generated

in energy-weighted phase space[20] according to the

leading-order matrix element[24] with different energy

weights for gluons and quarks. Every event of IQGF

is a realization of the instanton-induced fusion pro-

cess and can be regarded as a microscopic state of the

system. The fact that the 4-momenta of the partons

in IQGF are uniformly generated in energy-weighted

phase space means that the microscopic states of

IQGF are uniformly distributed in phase space, mim-

icking the micro-canonical ensemble of a macroscopic

system in thermal equilibrium. In this sense the local

equilibrium in parton level is built-in into the model

due to theoretical considerations of the property of

the instanton.

Fig. 4. The sum of the Rényi entropies H2 from
IFS versus − lnδy for two regions R1 and R2

and that directly calculated from the whole
region R = R1 + R2. The legend shows the
rapidity regions corresponding to each set of
points.

In this letter we have investigated the equilibrium

properties of the IFS, i.e. the hadron system after

the hadronization of IQGF. It is unclear whether and

how the equilibrium property of IQGF is preserved
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in the hadronization process. Our work shows that

the local equilibrium is present in the IFS and can

be represented by the scaling and additivity of Rényi

entropy.

Since the IQGF and/or IFS are in local equilib-

rium we can derive the “thermodynamical” quanti-

ties for them according to the usual thermodynamic

formalism. However, the meaning of the obtained

values of these quantities are different from those of

a macroscopic system. For example, the tempera-

ture of a macroscopic system measures the average

kinetic energy of molecules, but the “temperature”

in our case does not have this kind of meaning. This

explains why the hadron system IFS can have a tem-

perature much higher than the critical temperature

(∼160— 170 MeV) of the deconfining phase transi-

tion, as shown in Ref. [11].

4 Conclusion

We have studied the scaling and additivity prop-

erties of Rényi entropy H2 for the IFS and current

jet in the instanton-induced process of deep inelastic

scattering produced from the QCDINS Monte Carlo

generator, identified by the r-sorting method.

The Rényi entropy H2 for IFS is found to obey

the scaling law Eq. (5) for a sufficiently fine-grained

phase space region and the additivity property Eq. (6)

holds in narrow phase space windows at different po-

sitions, especially in adjacent intervals. These results

provide a strong indication that the IFS has reached

local equilibrium.

In order to get a better understanding of the equi-

librium of the IFS, further investigations along this

line are suggested, e.g. to study the entropy proper-

ties in 3 dimensional momentum space, transforming

the variables to the corresponding cumulant ones[13],

or to use other characteristics of equilibrium, e.g.

|Kl(E,n)|2/l � K2(E,n), l = 3,4, · · · ,[25—27] which

guarantees the smallness of the higher-order energy

correlations Kl(E,n) = 〈
∏l

k=1(εk−〈ε〉)〉 with εk being

the energy of the kth particle.

The authors thank Li Zhiming for helpful discus-

sions.
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14 Bia las A, Czyż W. Phys. Rev., 2000, D61: 074021
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