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Abstract The calculations of nucleus-nucleus potential are carried out in the framework of double folding

model with M3Y-Reid and M3Y-Paris effective nucleon-nucleon (NN) interactions. The exchange part of the

interaction, which is taken to be of finite range and the density dependence of NN interaction, is accounted for

in the folding procedure. The results are used as the real part of the optical potential for heavy ion scattering.

Besides, some general aspects of the folding model are reviewed and its theoretical processes are discussed.

The calculated potentials with all kinds of NN interactions are compared. It is shown that the real parts of

the optical potential for a large number of systems are obtained satisfactorily with our double folding model.

Therefore, this work provides a promising way for a systematic and comprehensive double folding calculation

of heavy ion interaction potential.
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1 Introduction

The understanding of peripheral heavy ion (HI)

collision processes in general, elastic scattering in

particular is an important part of an overall under-

standing of heavy ion reactions. One of the most

widespread approaches to this problem is based on

the use of an optical potential for the description of

the elastic scattering of two heavy ions. The opti-

cal model approach is both flexible and relatively fa-

miliar. While many of the systems of HI scattering

may be understood in terms of empirical parameteri-

zations of nuclear optical potential and its variation

with bombarding energy, nucleon number, etc., a sat-

isfactory microscopic understanding of HI collisions

should be founded on the underlying nucleon-nucleon

(NN) interaction. Within the framework of an op-

tical model description of HI scattering this means

calculating the nuclear optical potential from the NN

interaction.

Customarily phenomenological Woods-Saxon

forms are used for both the real and imaginary parts

of the optical potential. However, it would be desir-

able to relate the nucleus-nucleus nuclear interaction

to the nucleon-nucleon nuclear interaction. The nu-

clear potential may be obtained by integrating a

nucleon-nucleon interaction over the matter distribu-

tions of the two colliding nuclei. This approach is

called the folding model and has been reviewed by

Satchler and Love
[1]

. Among various models for the

potential of interaction between two nuclei, the fold-

ing model has been widely used to generate the real

parts of HI optical potentials. This model represents

the leading term in the expression for the optical
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potential. The success of this approach in describing

the observed elastic scattering of many systems sug-

gests that it produces the dominant part of the real

optical potential
[1, 2]

.

In the present work we compile the double folding

model, which covers the density independence NN in-

teractions, divided into M3Y-Reid, M3Y-Paris effec-

tive NN interactions and the density dependence NN

interactions. Our purpose here is to check our pro-

gram if it is applicable to calculate the real part of

nuclear interaction potential. We do not attempt to

justify formally the use of a folding model for fitting

HI elastic scattering. Rather, to test the new program

we check some cases to compare them with the results

from references. The real parts of nuclear interaction

potential for α+40Ca, 16O+16O and 6He+12C systems

are calculated in the present work using the new dou-

ble folding program. The calculations have used the

density independent and the density dependent NN

interactions, and are divided into two versions: the

exchange part is a δ function and the other is not δ

function. Finally we have also discussed some fea-

tures of the folding model and summarized these re-

sults together with a discussion of the validity of this

program and possible applications.

2 Double folding model

In the folding model, the nuclear interaction v is

taken to be a sum of effective (two-body) NN inter-

actions v12 between nucleon 1 in the projectile and

nucleon 2 in the target,

v =
∑

v12 , (1)

It is to consider interchange of the two interacting

nucleons. This process has been called knock-on ex-

change because in nucleon scattering from nuclei it

results in a target nucleon being ejected and replaced

by the projectile nucleon following their mutual in-

teraction. Including this knock-on exchange is equiv-

alent formally to replacing

v12 −→ v12(1−P12) , (2)

where P12 is the operator that exchanges all coordi-

nates of these two nucleons. In this approximation

the folding potential is written as

v(r) = vD +vE . (3)

Here vD and vE are direct potential and exchange

potential, respectively. If the knock-on exchange po-

tential could be estimated quite accurately by adding

a zero-range pseudo-potential to the interaction v12

in the formula (5), one can replace v12 by

v′

12 = v12(1−P12)−→ v12 + Ĵ(E)δ(r) . (4)

In the double folding model the real part of the

interaction potential is written as

v(r) =

∫
d3r1

∫
d3r2ρ1(r1)v12(s = |RRR+rrr2−rrr1|)ρ2(r2),

(5)

where, for simplicity, we have ignored spin and

isospin. Here ρ1(r1) and ρ2(r2) are the matter densi-

ties distribution of the projectile (P) and target (T)

nuclei ground states normalized so that∫
ρi(ri)drrri = Ai , (6)

v12 is the NN interaction between two nucleons. The

vector RRR+rrr2−rrr1 corresponds to the distance between

two specified interacting points of the projectile and

target, whose radius vectors are rrr1 and rrr2, respec-

tively. RRR denotes the vector between the centers of

mass of the two nuclei. This geometry is illustrated

in Fig. 1.

Fig. 1. The coordinate system used in the dou-

ble folding model. The vector between the

centers of the projectile (P) and target (T)

nuclei is denoted by R, while r1, r2 are the

radius vectors of points separated by s in the

nucleon distributions of the projectile and tar-

get nuclei.

2.1 Density independence interaction

It remains necessary to have a realistic effective

NN interaction before the success of the folding model
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can be reliably assessed. A popular choice for the ef-

fective NN interaction is two of the M3Y interactions

which were designed to reproduce the G-matrix ele-

ments of the Reid
[3]

and Paris
[4]

NN potentials in an

oscillator basis. We refer to these as the M3Y-Reid

and M3Y-Paris interactions, respectively. These den-

sity independence M3Y interactions have been used

with some success in folding model calculations of

the HI optical potential. Explicit forms follow below.

The direct parts are:

M3Y-Reid :v00(r) =

[

7999
e−4r

4r
−2134

e−2.5r

2.5r

]

MeV,

(7)

M3Y-Paris :v00(r) =

[

11062
e−4r

4r
−2538

e−2.5r

2.5r

]

MeV,

(8)

and the knock-on exchange parts are:

M3Y-Reid:

v̂00(r) =

[

4631
e−4r

4r
−1787

e−2.5r

2.5r
−

7.847
e−0.7072r

0.7072r

]

MeV, (9)

M3Y-Paris:

v̂00(r) =

[

−1524
e−4r

4r
−518.8

e−2.5r

2.5r
−

7.847
e−0.7072r

0.7072r

]

MeV. (10)

However, many other calculations use the zero-

range pseudo-potential of formula (4) to represent the

knock-on exchange. The results of Ĵ00(E) using the

Reid interaction and the Paris interaction can be ex-

pressed as

M3Y-Reid :Ĵ(E)≈−276[1−0.005(E/A)]MeV •fm3,

(11)

M3Y-Paris :Ĵ(E)≈−590[1−0.002(E/A)]MeV •fm3,

(12)

where E/A is the bombarding energy per projectile

nucleon in MeV.

2.2 Density dependence interaction

However, refractive nuclear scattering is charac-

terized by the observation of ‘rainbow’ features, which

were seen first for α-particles
[5, 6]

and later for other

light HI systems
[7—9]

. Here, the simple M3Y-type

interactions failed to give a good description of the

data. This has motivated the inclusion of an ex-

plicit density-dependence into the original M3Y inter-

actions, to account for the reduction in the strength

of the interaction that occurs as the density of the

surrounding medium increases. It has long been rec-

ognized that the effective interaction between two nu-

cleons in a nucleus depends on the density of the sur-

rounding medium. Indeed, this density dependence is

required for nuclear matter to saturate rather than

collapse. Saturation requires that the attraction

weakens as the density increases.

A variety of density dependence interactions have

been introduced. Here we discuss some based on the

M3Y interactions of the preceding section. It is as-

sumed that the radial dependence is independent of

the density and energy, so we can use a factored form

v(ρ,r) = f(ρ)v(r), (13)

where v(r) is the original M3Y interactions (includ-

ing the knock-on pseudo-potential) described in the

preceding section. The density dependence adopted is

f(ρ) = C[1+αe−βρ−γρ]. (14)

In the course of these applications to scattering data,

it was found necessary to introduce an additional mild

energy dependence over that provided by localizing

the exchange potential
[10]

. This is parameterized as a

linear function

g(E) = [1−γ ′(E/A)], (15)

with γ′=0.002MeV−1 (Reid) or 0.003MeV−1 (Paris).

The full interaction now has the form

v(ρ,E,r) = g(E)f(ρ)v(r) . (16)

2.3 Double folding process

In the folding model because there is integration

over two densities, the formula (5) is often called dou-

ble folding. Although involving a six-dimensional in-

tegral, it is very simple to evaluate if v12 does not

depend on the densities. Then we use Fourier trans-

form to work in momentum space.
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V (k) =

∫∫
drrr1drrr2ρ1(r1)ρ2(r2)

∫
v(RRR+rrr2−rrr1)e

−ikkk·RRRdRRR =

∫∫
drrr1drrr2ρ1(r1)ρ2(r2)

∫
v(r3)e

−ikkk·(rrr3+rrr1−rrr2)drrr3 =

∫
ρ1(r1)e

−ikkk·rrr1drrr1

∫
ρ2(r2)e

−i(−kkk)·rrr2drrr2

∫
v(r3)e

−ikkk·rrr3drrr3 = ρ̃1(k)ρ̃2(k)ṽ(k) . (17)

Thereby reducing the integral to a product of

three one-dimensional integrals. When v12 depends

on the densities, equally simple forms can be ob-

tained. It is also reduced the integral to a product

of several one-dimensional integrals like formula (17).

In the density dependent term one simply replaces

each ρi(ri) by

ρ′

i(ri) = ρi(ri)e
−βρi(ri), (18)

ρ′′

i (ri) = ρi(ri)×ρi(ri). (19)

In our program the Fourier transform is given by

f̃(k) = 4π

∫
∞

0

f(r)j0(kr)r2dr , (20)

when k = 0, f̃(0) = 4π

∫
∞

0

f(r)r2dr, for delta function

the Fourier transform by F (vδ(r)) = v. With inverse

transform

f(r) =
1

2π
2

∫
∞

0

f̃(k)j0(kr)k2dk. (21)

In order to obtain conveniently the real part of

nuclear optical potential, firstly all of the terms (in-

cluding densities and the effective NN interaction) are

transformed to momentum space by Fourier trans-

form. Then the potential is shown in the momen-

tum space just like the formula (17). At last we can

acquire the real part of nuclear potential when the

potential is transformed from the momentum space

to coordinate space by inverse Fourier transform. In

our calculation there are two versions. One is that the

knock-on exchange potential is a zero-range pseudo-

potential, the other is that the calculation follows the

formula (3). The effective NN interactions are also di-

vided into M3Y-Reid and M3Y-Paris types in every

version, including density independence and density

dependence NN interaction potentials. For the sec-

ond version, the direct part can be obtained by using

the formula (20) and (21). While the exchange part

is calculated by

vE(r) = 4πCg(E)

∫
∞

0

G0(r,s)j0(K(r)s/M)v̂00(s)s
2ds.

(22)

Here K(r) is the local momentum of relative motion,

M is the reduced mass number, where

K2(r) =
2µα

~2
[Eα−v(Eα, r)−vc(r)], (23)

M = mPmT/(mP+mT), mP and mT are mass number

of projectile and target, respectively. µα = 931.5×M ,

is the reduced mass, its unit is MeV. The total folding

potential is

v(Eα, r) = vD(Eα, r)+vE(Eα, r), (24)

the Coulomb potential
[11]

is

vc =















Z1Z2e
2

2R

(

3−
r2

R2

)

r < R

Z1Z2e
2

r
r > R

, (25)

e2=1.44§R = 1.2×A
1

3

2 , A2 is the mass number of

target nucleus,

G0(r,s) =
1

2π
2

∫
∞

0

{

fa(k,s)fA(k,s)+

αf̄a(k,s)f̄A(k,s)−γ
[

fa(k,s)f̃A(k,s)+

f̃a(k,s)fA(k,s)
]}

j0(kr)k2dk , (26)

fa(A)(k,s) = 4π

∫
∞

0

ρa(A)
0 (r)j1(kFa(A)(r)s)j0(kr)r2dr,

(27)

f̄a(A)(k,s) = 4π

∫
∞

0

ρa(A)
0 (r)exp(−βρa(A)

0 (r))×

j1(kFa(A)(r)s)j0(kr)r2dr , (28)

and

f̃a(A)(k,s) = 4π

∫
∞

0

[

ρa(A)
0 (r)

]2

j1(kFa(A)(r)s)j0(kr)r2dr.

(29)

kF(r) =

{[

3

2
π

2ρ(r)

]2/3

+
5Cs[∇ρ(r)]2

3ρ2(r)
+

5∇2ρ(r)

36ρ(r)

}1/2

,

(30)

Cs
∼= 1/4. Thus we can obtain the exchange part

vE(r), then the total nuclear potential v(r) = vD(r)+

vE(r).
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3 Calculation of the real part of heavy

ion systems

In the following, we use the double folding pro-

gram to calculate the real parts of nucleus-nucleus

scattering for several systems. The interactions are

divided into density independence M3Y-Reid inter-

action, and density dependence DDM3Y1, BDM3Y1,

CDM3Y2, CDM3Y4 and CDM3Y6 interaction. From

the above process, the basic inputs to a folding calcu-

lation are the nuclear densities of the colliding nuclei

and the effective NN interaction. We have calculated

nuclear densities, by means of some available nuclear

models (for example, Hatree-Fock calculation) or di-

rectly from electron scattering data. In the present

work, we examine a few representative cases about

the real part of nuclear potential. These data are

very helpful to test the new folding program and its

basic ingredients.

3.1 α+40Ca system

The system had already been calculated using the

double folding model by J. Cook
[12]

. In our program

the real part of interaction potential is calculated by

the double folding program for 40MeV α+40Ca. The

density distributions of α and the target 40Ca are de-

fined as the function ρ1(r) = 0.4229exp(−0.7024r2)

and the Woods-Saxon function ρ2(r) = 0.1688/[(1+

exp(r − 3.58))/0.55], respectively. The effective NN

interaction is used as the density independence M3Y-

Reid interaction, in which all of parameters are taken

as the same as that from J. Cook’s calculation
[12]

.

Fig. 2. Radial shapes of the folded potential

for the α+40Ca system at Elab=40MeV, which

was calculated using the M3Y-Reid interac-

tion (solid line) and Cook’s result is shown by

the dashed line for comparison.

Our calculated potential is very agreeable with

Cook’s result in Fig. 2. It is shown that the pro-

gram with the density independence mode could be

applied to the HI optical potential calculation at rel-

atively low energy.

3.2 6He+12C system

The structure of neutron halo nuclei is an im-

portant research topic in recent years. Because the

optical potential is the basic input integral in many

calculations of various reactions, the optical poten-

tial of halo nuclei attracts much attention now a day.

The parameters of optical potential can be extracted

from the elastic scattering. The angular distribu-

tion of elastic scattering for the system 6He+12C has

been measured. So it is meaningful to investigate

the optical potential of the halo nucleus 6He. In

this case we calculate the real part of the interac-

tion potential with the folding model which includes

the effective interaction CDM3Y6. The ground state

matter density of 12C is taken as a two-parameter

Fermi function, with ρ0=0.207fm−3, CP=2.1545fm

and aP=0.425fm
[13]

. The halo-type density for 6He

is obtained from Ref. [13], with the Gaussian density

reproduced rms radii of 2.2fm (ro density). The re-

sult is plotted in Fig. 3. Our calculated result is very

alike that of Ref. [13] except that the depth of the

solid line is larger than that of Ref. [13]. However,

the sensitive region of optical potential lies at 3—5fm

for fitting the elastic scattering data. The differences

between the two in the region are less than 1%. Due

to using almost all of the same parameters, including

Fig. 3. Real folded potentials calculated with

the CDM3Y6 interaction and the Gaussian

ro density for 6He+12C at 38.3MeV/u (solid

line), compared with the result in Ref. [13]

(points).
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not only the densities of the 6He particle and the 12C

one, but also the effective NN interaction, it is shown

that the new folding program about density depen-

dence NN interaction is proved to be reliable and ap-

plicable.

So we also calculate the real part of the inter-

action potential of 38.3MeV/u 6He+12C, which in-

cludes the effective NN interaction BDM3Y1 (Paris)

or CDM3Y6, folded with the matter density of a halo

type for 6He, denoted as fc6, obtained by three-body

model calculations
[14]

. The other Gaussian density,

reproduced rms radii of 2.54fm, is also used instead

of the fc6 density to generate the folding potential.

Results given by the real folded potential are plotted

in Fig. 4.

Fig. 4. Real folded potentials calculated with

the CDM3Y6 and BDM3Y1 interactions for
6He+12C at 38.3MeV/u.

We compare the results calculated with BDM3Y1

and CDM3Y6, and with the different densities for
6He. Both BDM3Y1 and CDM3Y6 with the same

density for 6He (Gaussian form or fc6 form) give

nearly the same potential. The potential of CDM3Y6

with the Gaussian ro density for 6He is deeper than

that with Gaussian density for 6He in the region of be-

low about 3fm, inversely, is shallower than that with

Gaussian density for 6He in the region of above about

3—7fm. We also compare the folded CDM3Y6 po-

tential by fc6 density with that by Gaussian density

(both densities have the same rms radii). The poten-

tial by Gaussian density is deeper than that of fc6

density in the region of below about 4fm. From the

above results it is shown that the different densities

for halo nuclei lead to the different potentials.

3.3 α+40Ca and 16O+16O systems

An accurate folding analysis of α nucleus refrac-

tive scattering can be a very effective method to de-

termine the incompressibility of cold nuclear matter.

From this analysis, we obtain the result of the folded

potential for the α+40Ca system at Elab=104MeV,

plotted in Fig. 5. The densities of α and 40Ca are

taken as the same as what we have mentioned above

but the NN interaction is used as density dependence

interaction. Their incompressibility coefficients K are

176, 204, 228, 252 and 270 for DDM3Y1, CDM3Y2,

CDM3Y4, CDM3Y6 and BDM3Y1, respectively
[15]

.

In contrast to α-nucleus scattering, the elastic scat-

tering of HI is usually of peripheral character. Thus

it is also of interest to test new folding program de-

veloped in the present work against the 16O+16O sys-

tem. The real parts of interaction potential are folded

with the DDM3Y1, CDM3Y2, CDM3Y4, CDM3Y6

and BDM3Y1, which include the matter density of

the colliding nucleus 16O, denoted as two-parameter

Fermi distribution

ρ(r) = ρ0/[1+exp(r−c)/a] , (31)

with parameters suggested by electron scattering

data[16]. The folded results are shown in Fig. 6.

Fig. 5. Radial shapes of different folded poten-

tials for the α+40Ca system at Elab=104MeV

which were calculated using the various den-

sity dependence M3Y-Paris interactions
[15]

.

Fig. 6. Radial shapes of different folded poten-

tials for the 16O+16O system at Elab=350MeV

which were calculated using the various

density-dependence M3Y-Paris interactions
[15]

.
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From Fig. 6 one can see that the changes of

the folding potentials are the same as those of the

Fig. 5, with the NN interactions, the potentials are

getting deeper according to the sequence BDM3Y1,

CDM3Y6, CDM3Y4, CDM3Y2 and DDM3Y1, and

hence with the various values of associated incom-

pressibility K of cold nuclear matter. In α+40Ca sys-

tem, we have a density as high as ρ ' 2ρ0 in the

center of 4He nucleus, and ρ ' ρ0 in the center of
40Ca nucleus, given by the above form used in our

folding model. ρ0 is a saturation density of nuclear

matter, ρ0 ' 0.17fm−3. This means that the total

density for a α particle overlapping a target nucleus

may reach as much as 3ρ0. From Ref. [15] one can see

that for the α+40Ca system the overlap density begins

to approach 3ρ0 already at a separation of r=4fm. In
16O+16O system, we expect that the total density of a
16O nucleus overlapping a 16O target nucleus may be

as much as 2ρ0. One can see that the highest overlap

density which can be reached in this occurs when r

is less than about 3fm from Ref. [15]. This difference

leads to a different picture of the folded potentials

(caused by the higher density profile of α nucleus)

obtained for these two cases, the differences between

five type interactions for α+40Ca system are much

greater than those of 16O+16O system. The observed

phenomena are similar to the results of Ref. [15]. This

change can affect the elastic scattering for α+40Ca

system at 104MeV
[15]

. However, for 16O+16O system

at 350MeV, this has much less effect on the elastic

scattering. On the other hand it is also shown that

the new program can calculate rightly the real part of

interaction potential at the various NN interaction.

In summary, we have introduced explicitly some

generalized and realistic calculation process of the

double folding model, including the density indepen-

dence interaction and the density dependence inter-

action in various types. The new program is applied

to calculate the real parts of interaction potential of

several HI reaction systems, including the halo nu-

cleus reaction, at low and medium energies. All of

the results are agreeable with those from references.

In this way, we present the real folded potential of

neutron-halo nucleus 6He on 12C target including

BDM3Y1 and CDM3Y6 NN interaction and three

kinds of densities for 6He in order to find information

for elastic scattering of halo nuclei. We find that both

of NN interactions lead to the same folded potential

with the frame of Gaussian density and fc6 density.

With the analysis of 6He we show that they are well

suited to the elastic scattering of halo nuclei. At the

same time we also probe the sensitivity of the real

part of interaction potential to different forms of the

density dependence. We find that the sensitivity of

HI system is less than that of α system because the

maximum overlap density in HI system is less than

that formed in α system. Above all, our present dou-

ble folding model shows clearly the realistic results of

folding model calculations for various systems. It is

reliably suited to calculate the real folded potential

and allows us to apply it to explore HI elastic scat-

tering, especially for halo nuclei.
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