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Abstract In the case that the mean value of Poisson distribution is a function of an unknown parameter to

estimate, the commonly adopted maximum likelihood estimate of the parameter based on a single measurement

is generally biased. With the aid of moment expressions, an unbiased estimator is proposed for the Poisson

distribution.
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1 Introduction

The Poisson distribution is widely used as a model

for the counting experiment. The probability of find-

ing exactly k events in a single measurement is given

by

p(k) =
λk

k!
e−λ. (1)

The distribution is determined by its mean value λ,

which is mostly in turn a function of another param-

eter, µ, to be determined by the measurement:

λ = f(µ). (2)

Once k events are observed in a single measurement,

the purpose of the experiment is to give an estimate

of the parameter µ based on the observation.

To estimate a parameter, a function of observa-

tions which is called the estimator is chosen in statis-

tics. The numerical value of the estimator for a par-

ticular set of observations is the estimate of the pa-

rameter. For our case here, as k is the only exper-

imental information observed, one may expect that

the estimator should be a function of k.

The most popular estimator used is based on max-

imum likelihood (ML) estimation. For the Poisson

distribution, when k events are observed, ML implies

that the estimate maximizes Eq. (2). The solution is

k = f(µ). (3)

So the ML estimator can be expressed as

µ(k) = f−1(k), (4)

where f−1 is the inverse function of f .

Though it is simple and widely adopted in prac-

tice, the ML estimator given in Eq. (4) suffers from

the fact that it usually gives biased estimate of the

parameter µ. This fact can be seen from, unless f−1

is a linear function,

µ(k)≡
∞∑

k=0

µ(k)p(k) 6= µ . (5)

If the number of expected events λ is large, the ML

estimator becomes asymptotic unbiased. However it

is somehow inadequate to use the ML estimator for

cases when only small number of events are present.

In this work, we will propose an unbiased estimator

for the Poisson distribution. The article is organized

as follows: after this introduction, we recall some ba-

sic properties of the Poisson distribution in Section 2.
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A simple example is introduced in Section 3, where

we discuss the problem and possible solutions in an

intuitive way. The procedure for constructing an un-

biased estimator is formally presented in Section 4.

The last section is devoted to some discussions and a

brief conclusion.

2 Notations

We collect some basic notations and formulae rele-

vant for further discussions of the Poisson distribution

in this section . The details on how they are derived

can be found, for example, from the statistical text

book
[1]

.

The expectation of any function g of the random

variable k is defined to be

EEE[g(k)] =

∞∑

k=0

g(k)p(k) . (6)

And the n-th moment of the variable k is defined by

kn =EEE[kn] . (7)

For Poisson distribution, one can easily verify that

the n-th moment can be expressed as a polynomial of

λ of order n

kn =

n∑

l=0

ξlλ
l . (8)

In practice, the coefficients {ξl} can be deduced from

the generating function defined as

φ(t) =EEE[tk] = eλ(t−1) . (9)

We list the expression of moments up to the 4th order

here for further useµ

k = λ, (10)

k2 = λ+λ2, (11)

k3 = λ+3λ2 +λ3, (12)

k4 = λ+7λ2 +6λ3 +λ4. (13)

Inversely, the n-th power of λ can be expressed as

the linear combination of the moments

λn =

n∑

l=0

ηlkl , (14)

where {ηl} are known coefficients once {ξl} have been

obtained. The first few such expressions, for example,

are:

λ = k, (15)

λ2 = −k+k2, (16)

λ3 = 2k−3k2 +k3, (17)

λ4 = −6k+11k2−6k3 +k4. (18)

3 An example

For illustration, we introduce a simple case in this

section. The relation between λ and µ is given by

λ =
√

µ−1 . (19)

The ML estimator implies λ = k. When applied

to the case under study, we find

µ(k) = (1+k)2 . (20)

With a little algebra, one can verify that

µ = EEE[µ(k)] = 1+2k+k2 =

(1+λ)2 +k = µ+k. (21)

The extra k term in the last equation shows clearly

that the ML estimator is biased. It also suggests that

a new estimator,

µ̃ = (1+k)2−k (22)

is statistically unbiased because of

µ̃ =EEE[µ̃(k)] = µ . (23)

Going a little further, one can examine the effi-

ciency of each estimator given above. We calculate

the variance of the estimator, which is regarded as

the measure of the efficiency. In general, the one with

smaller variance will be regarded as more efficient.

Using the results given in Eqs. (10—13), one can

obtain:

σ2 =EEE[(µ(k)−µ)2] = 9λ+14λ2 +4λ3 , (24)

and

σ̃2 =EEE[(µ̃(k)− µ̃)2] = 4λ+10λ2 +4λ3 . (25)

So that

σ̃2−σ2 =−(5λ+4λ2) < 0 . (26)

Although it is very simple, the example discussed

here suggests some interesting points to which we

must pay attention. First of all, it shows that the



662 p U Ô n � Ø Ô n ( HEP & NP ) 1 31 ò

ML estimator is indeed biased even for such a simple

case; Secondly, one can find an unbiased estimator by

some modifications applied to the ML estimator; Last

but not the least, the unbiased estimator so obtained

is also more efficient than the ML estimator.

4 The unbiased estimator

Guided by the experience got from the simple ex-

ample, we start the procedure to obtain an unbiased

estimator in this section. Suppose µ̃(k) is an unbiased

estimator of the parameter µ under consideration, it

should by definition follow

µ̃≡EEE[µ̃(k)] = µ = f−1(λ) . (27)

Unless f−1 is a linear function, the ML estimator

given in Eq. (4) does not satisfy such a requirement:

EEE[µ(k)] 6= f−1(EEE[k]) = f−1(λ) . (28)

Though it shows that the ML estimator does not have

the unbiased nature required, Eq. (28) is quite intu-

itive. It actually teaches us how an unbiased estima-

tor could be constructed by some modifications ap-

plied to the ML estimator. Such a modification can

be achieved by the aid of the moments.

Assuming f−1 can be expanded as a Taylor’s se-

ries,

µ =
∑

m

f−1,(m)(0)

m!
λm , (29)

where

f−1,(m)(0)≡ dmf−1(λ)

dλm
|λ=0 ,

the ML estimator is simply

µ(k) =
∑

m

f−1,(m)(0)

m!
km . (30)

Since EEE[km] 6= k
m

for m > 2, one cannot recover

Eq. (29) by taking the expectation value of µ(k). This

is the reason why the ML estimator is biased in gen-

eral.

Replacing λm’s in Eq. (29) by the moments, as

given in Eq. (14), µ can be re-expressed as

µ =
∑

m

f−1,(m)(0)

m!

m∑

l=0

ηlkl . (31)

At this point, we can easily get an unbiased estimator

of µ. It is

µ̃(k) =
∑

m

f−1,(m)(0)

m!

m∑

l=0

ηlk
l . (32)

The proof of the unbiasedness of µ̃(k) is rather simple:

EEE[µ̃(k)] =
∑

m

f−1,(m)(0)

m!

m∑

l=0

ηlkl =

∑

m

f−1,(m)(0)

m!
λm = µ. (33)

Applying the above procedure to the example

given in Section 3, using Eqs. (15, 16) we have

µ = 1+2λ+λ2 = 1+2k+k2−k . (34)

The unbiased estimator

µ̃(k) = 1+k+k2

is simply the one given in Eq. (22). For this simple

case, we have shown that the unbiased estimator so

obtained is also more efficient than the ML estima-

tor. However, it might be difficult to prove that such

a statement could hold for more general cases. We

would leave this question for future study.

5 Discussions and conclusion

With the aid of the moments, we have shown that

an unbiased estimator of Poisson statistics does exist,

as given in Eq. (32). We also realize that Eq. (29) is

somehow a strong assumption. One may from time

to time meet with the cases that f−1 does not have

such a nice feature. This is clearly the weakness of

the method given in this article. However, we ar-

gue that within the experimental precision, one can

usually approximately replace f−1 by a finite order

polynomial. So in practice the task for an unbiased

estimation would not be so much different than the

simple example given in Section 3.

To conclude, we have proposed an estimator to

replace the commonly used maximum likelihood es-

timator for Poisson statistics, and shown such an

estimator is statistically unbiased.

We thank Y. S. Zhu for helpful discussions.
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