Search for Signature Inversion in the $\pi i_{13/2} \otimes \nu i_{13/2}$ Bands in ^{182,184,186}Au^{*}

ZHANG Yu-Hu^{1;1)} ZHOU Xiao-Hong¹ HE Jian-Jun¹ LIU Zhong¹ FANG Yong-De¹ GUO Wen-Tao¹

 $\label{eq:less_loss} \text{LEI Xiang-Guo}^1 \quad \text{GUO Ying-Xiang}^1 \quad \text{MA Long}^1 \quad \text{M. Moyo Ndontchueng}^1 \quad \text{M. Oshima}^2 \quad \text{Y. Toh}^2$

M. Koizumi² A. Osa² A. Kimura² Y. Hatsukawa² H. Hayakawa² T. Shizuma² J. Katakura²

M. Matsuda² T. Morikawa³ M. Sugawara⁴ H. Kusakari⁵ G. de Angelis⁶ N. Marginean⁶

A. Gadea⁶ D.R. Napoli⁶ M. Axiotis⁶ C. Rusu⁶ T. Martinez⁶ F. R. Xu⁷

1 (Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China)

2 (Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan)

3 (Department of Physics, Kyushu University, Fukuoka, 812-81, Japan)

 $4~({\rm Chiba\ Institute\ of\ Technology,\ Narashino,\ China\ 275-0023,\ Japan)}$

5 (Chiba University, Inage-ku, Chiba 263-8512, Japan)

6 (Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro, Italy)

7 (Department of Technical Physics, Peking University, Beijing 100871, China)

Abstract Search for low-spin signature inversion in the $\pi i_{13/2} \otimes \nu i_{13/2}$ bands in odd-odd ^{182,184,186}Au has been conducted through the standard in-beam γ -spectroscopy techniques via the ¹⁵²Sm(³⁵Cl,5n)¹⁸²Au, ¹⁷²Yb(¹⁹F,5n)¹⁸⁶Au, and ¹⁵⁹Tb(²⁹Si,4n)¹⁸⁴Au reactions, respectively. The $\pi i_{13/2} \otimes \nu i_{13/2}$ bands in these three nuclei have been identified and extended up to high-spin states. In particular, the inter-band connection between the $\pi i_{13/2} \otimes \nu i_{13/2}$ band and the ground-state band in ¹⁸⁴Au has been established, leading to a firm spin-and-parity assignment for the $\pi i_{13/2} \otimes \nu i_{13/2}$ band. The low-spin signature inversion is found in the $\pi i_{13/2} \otimes \nu i_{13/2}$ bands according to our spin-assignment and the signature crossing observed at high-spin states.

Key words high-spin states, in-beam γ spectroscopy, signature inversion, odd-odd nuclei

High-spin states in odd-odd nuclei have recently become an important subject of many theoretical^[1] and experimental^[2] investigations. Most interesting topic currently investigated is the so called low-spin signature inversion which has been widely observed throughout the chart of nuclides in the $\pi g_{9/2} \otimes \nu g_{9/2}$, $\pi h_{11/2} \otimes \nu h_{11/2}$, $\pi h_{11/2} \otimes \nu i_{13/2}$ and $\pi h_{9/2} \otimes \nu i_{13/2}$ configurations. Present work aims at searching for the signature inversion phenomenon in a new configuration, i.e., the $\pi i_{13/2} \otimes \nu i_{13/2}$ coupling. Prior to this work, no high-spin data are available in literature for ¹⁸²Au. The $\pi i_{13/2} \otimes \nu i_{13/2}$ bands in ¹⁸⁴Au and ¹⁸⁶Au have been observed^[3, 4] but without firm spin-assignment for the energy levels. We concentrated on the observation of signature crossing at high-spin states, which could be regarded as an indirect evidence for the low-spin inversion. Meanwhile, great efforts have been made to establish the inter-band connection in ¹⁸⁴Au since its ground state has been determined experimentally to be a 5⁺ formed by the $\pi 3/2^{-}[532](h_{9/2}) \otimes \nu 7/2^{-}[514]$ configuration^[5, 6].

The standard in-beam γ -spectroscopy experiments for ¹⁸²Au and ¹⁸⁶Au were carried out in the Japan Atomic Energy Agency (JAEA) via the

^{*} Supported by National Natural Sciences Foundation of China (10375077, 10025525, 10221003), Major State Basic Research Development Program of China (G2000077400) and Chinese Academy of Sciences

¹⁾ E-mail: yhzhang@impcas.ac.cn

¹⁵²Sm(³⁵Cl,5n\gamma)¹⁸²Au and ¹⁷²Yb(¹⁹F,5n\gamma)¹⁸⁶Au reactions, respectively. A study of ¹⁸⁴Au was performed in the Laboratori Nazionali di Legnaro (LNL), Italy using the ${}^{159}\text{Tb}({}^{29}\text{Si},4n\gamma){}^{184}\text{Au}$ reaction. The targets were $1 \sim 2 \text{mg/cm}^2$ thickness with Pb or Au backing in order to avoid the Doppler shift of emitting γ rays. The γ -ray detector arrays GEMINI in JAEA and GASP in LNL were used. Detailed experimental conditions and data analysis will be described later. On the basis of γ - γ coincidence relationships, level schemes of the $\pi i_{13/2} \otimes v i_{13/2}$ bands in ^{182,184,186} Au have been established and presented in Fig. 1. The level scheme of ¹⁸²Au is newly established in this work, and the bands in ¹⁸⁴Au and ¹⁸⁶Au have been extended up to higher- and lower-spin states comparing to the results of previous publications [3, 4].

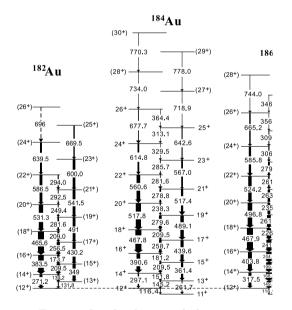


Fig. 1. Level schemes of the $\pi i_{13/2} \otimes \nu i_{13/2}$ bands in ^{182,184,186}Au deduced in this work. Levels are normalized to the 12⁺ states and γ -ray intensities to the 18⁺ \rightarrow 16⁺ transitions for each band.

The spectroscopic connection between the $\pi i_{13/2} \otimes \nu i_{13/2}$ excited band and the $\pi 3/2^t [532](h_{9/2}) \otimes \nu 7/2^t [514]$ ground-state band in ¹⁸⁴Au has been firmly established in this work due to observations of several interband transitions. Consequently, the lowest member of the $\pi i_{13/2} \otimes \nu i_{13/2}$ band can be assigned as 11⁺. As the ground-state spins and parities of ¹⁸²Au and ¹⁸⁶Au are unknown, and the $\pi i_{13/2} \otimes \nu i_{13/2}$ bands observed here are floated in energy, their spins

and parities indicated in Fig. 1 have been assigned mainly on the basis of the level spacing systematics, quasi-particle alignments, and signature splitting, respectively. The level spins of the $\pi i_{13/2} \otimes \nu i_{13/2}$ band in ¹⁸⁶Au are thus increased by one unit comparing to the previous assignment^[4].

A plot of signature splitting, defined as S(I) =E(I) - E(I-1) - 1/2[E(I+1) - E(I) + E(I-1) - E(I-2)],as a function of level spin I is given in Fig. 2 for the $\pi i_{13/2} \otimes \nu i_{13/2}$ bands in ^{182,184,186}Au. The expected favored signature is $\alpha_{\rm f}(\pi - \nu) = \alpha_{\rm f}(\pi) +$ $\alpha_{\rm f}(\mathbf{v}) = 1/2 + 1/2 = 1$ for the $\pi i_{13/2} \otimes \mathbf{v} i_{13/2}$ configuration. It can be seen in this figure that, it is the unfavored-signature branch (i.e., $\alpha_{\rm u}(\pi - \nu) = \alpha_{\rm f}(\pi) +$ $\alpha_{\rm u}(\mathbf{v}) = 1/2 - 1/2 = 0$ that is favored energetically at low and medium spins rather than the $\alpha_{\rm f}(\pi-\nu)=1$ transition sequence. Such a behavior has been referred to as the low-spin signature inversion^[7]. With increasing angular momentum, the inverted signature splitting becomes decreasing, and the two signature branches cross with each other at $I_{\rm C} \sim 22^+$ beyond which normal signature splitting is observed. The similar staggering pattern shown in Fig. 2 seems to suggest that the low-spin signature inversion occurs in the three $\pi i_{13/2} \otimes \nu i_{13/2}$ bands and the proposed level spins for ^{182,186}Au are reasonable.

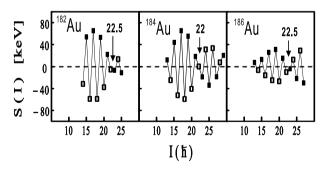


Fig. 2. Signature splitting for the $\pi i_{13/2} \otimes \nu i_{13/2}$ bands in ^{182,184,186}Au. The arrows indicate signature inversion spins.

The low-spin signature inversion in the $\pi i_{13/2} \otimes \nu i_{13/2}$ bands has been investigated in the framework of 2-quasiparticle plus rotor model^[8, 9]; it has been determined that the inversion phenomenon is caused by the proton-neutron residual interactions, in which the particle-hole component plays a key role. However the low-spin signature inversion in the $\pi h_{11/2} \otimes \nu h_{11/2}$ bands in the A=130 region has been investigated recently by Gao et al^[10] in the framework of a triaxial projected shell model. Without invoking the pn residual interactions, the signature inversion data in the odd-odd Cs isotopes, not only the signature inversion spins but also the magnitude of signature splitting, have been nicely reproduced by introducing a sizable nuclear triaxial deformation. As for

References

- 1 XU F R et al. Nucl. Phys., 2000, A669: 119
- 2 Cardona M A et al. Phys. Rev., 1999, C59: 1298
- 3 Ibrahim F et al. Phys. Rev., 1996, **C53**: 1547
- 4 Janzen V P et al. Phys. Rev., 1992, C45: 613

^{182,184,186}Au, two signature-inversed bands have been observed in each nucleus, and the $\pi i_{13/2} \otimes v i_{13/2}$ configuration is very similar to the $\pi h_{11/2} \otimes v h_{11/2}$ coupling (i.e. both proton and neutron occupy the same highj orbit with proton in the $\Omega=1/2$ down-sloping Nilsson orbit), the signature inversion data in ^{182,184,186}Au provide certainly a crucial testing ground for this new physical interpretation.

- 5 Ibrahim F et al. Z. Phys., 1994, A350: 9
- 6 Blanc F Le et al. Phys. Rev. Lett., 1997, 79: 2213
- 7 Bengtsson R et al. Nucl. Phys., 1984, **A415**: 189
- 8 Bark R A et al. Phys. Rev., 2003, C67: 014320
- 9 Hojman D et al. Phys. Rev., 2003, ${\bf C67}:$ 024308
- 10 GAO Zao-Chun et al. Phys. Lett., 2006, $\mathbf{B634}{:}$ 195

张玉虎^{1;1)}周小红¹何建军¹刘忠¹方永得¹郭文涛¹雷祥国¹郭应祥¹马龙¹
M. Moyo Ndontchueng¹ M. Oshima² Y. Toh² M. Koizumi² A. Osa² A. Kimura²
Y. Hatsukawa² H. Hayakawa² T. Shizuma² J. Katakura² M. Matsuda²
T. Morikawa³ M. Sugawara⁴ H. Kusakari⁵ G. de Angelis⁶ N. Marginean⁶
A. Gadea⁶ D.R. Napoli⁶ M. Axiotis⁶ C. Rusu⁶ T. Martinez⁶ F. R. Xu⁷

1 (中国科学院近代物理研究所 兰州 730000)

2 (Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan)

3 (Department of Physics, Kyushu University, Fukuoka, 812-81, Japan)

4 (Chiba Institute of Technology, Narashino, China 275-0023, Japan)

5 (Chiba University, Inage-ku, Chiba 263-8512, Japan)

6 (Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro, Italy)

7 (北京大学技术物理系 北京 100871)

摘要 为了搜寻 ¹⁸²Au, ¹⁸⁴Au, ¹⁸⁶Au 核中 $\pi i_{13/2} \otimes \nu i_{13/2}$ 转动带的旋称反转, 我们通过 ¹⁵²Sm(³⁵Cl,5n)¹⁸²Au, ¹⁷¹Yb(¹⁹F,4n)¹⁸⁶Au 和 ¹⁵⁹Tb(²⁹Si,4n)¹⁸⁴Au 反应对¹⁸²Au, ¹⁸⁴Au, ¹⁸⁶Au 核进行了在束 γ 谱学研究. 本工作扩展 了这 3 个核 $\pi i_{13/2} \otimes \nu i_{13/2}$ 带的能级纲图, 特别是确定了¹⁸⁴Au 核 $\pi i_{13/2} \otimes \nu i_{13/2}$ 带的能级纲图, 发现了低 自旋旋称反转现象.

关键词 高自旋态 在束γ谱学 旋称反转 双奇核

1) E-mail: yhzhang@impcas.ac.cn

^{*}国家自然科学基金(10375077, 10025525, 10221003),国家重点基础研究发展发展规划(G2000077400)和中国科学院资助