23 Al及其邻近丰质子核的奇异结构研究 *

马春旺^{1,2} 方德清^{2;1)} 郭威^{1,2} 王鲲² 颜廷志^{1,2} 马余刚² 蔡翔舟² 沈文庆² 孙志宇³ 任中洲⁴ 陈金根² 田文栋² 王宏伟² 马二俊^{1,2} 刘桂华^{1,2} 石钰^{1,2} 苏前敏^{1,2} 钟晨² M. Hosoi⁵ T. Izumikawa⁶ R. Kanungo⁷ S. Nakajima⁵ T. Ohnishi⁸ T. Ohtsubo⁶ T. Suda⁸ K. Sugawara⁵ T. Suzuki⁵ A. Ozawa⁹ A. Takisawa⁶ K. Tanaka⁸ T. Yamaguchi⁵ I. Tanihata⁷ 1(中国科学院研究生院 北京 100049)2(中国科学院近代物理研究所 兰州 730000)4(南京大学物理系 南京 210008)5(Department of Physics, Saitama University, Saitama 338-8570, Japan) 6(Department of Physics, Niigata University, Niigata 950-2181, Japan)

7 (TRIUMF, 4004 Wesbrook Mal, Vancouver, British Columbia V6T 2A3, Canada) 8 (Institute of Physical and Chemical Research(RIKEN), Wako-shi, Saitama 351-8571, Japan)

9 (Department of Physics, Tsukuba University, Ibaraki 305-8571, Japan)

摘要 在RIKEN-RIPS上测量了²³Al等丰质子核素的核反应总截面(σ_R)和平行动量分布($P_{//}$).观察 到了²³Al核反应总截面的增强,与以前的实验结果相符.同时得到了²³Al等丰质子核素擦掉一个质子 后的 $P_{//}$.在Few-body Glauber模型下对实验结果进行了讨论. $P_{//}$ 的宽度显示²³Al基态的外层质子处 于d态,这与g因子测量实验结果一致.为了同时解释 $P_{//}$ 和 σ_R 的实验测量结果,我们认为²³Al可能有 核芯增大的现象.

关键词 丰质子核 奇异结构 动量分布 核反应总截面

1 引言

自从1985年Tanihata等人首次发现¹¹Li具有奇 异的"中子晕"以来^[1],很快其它许多具有"晕"或者 "皮"结构的核被人们理论预言或者实验发现.人们对 奇异核结构进行了很多的研究,但主要集中在中子晕 上,对于质子晕结构的研究相对较少.由于库仑作用, 质子晕的形成比中子晕更复杂和困难.人们从理论和 实验对一些可能存在晕结构的丰质子核进行了研究, 比如单质子晕核⁸B^[2-4],¹⁷Ne^[5],²³Al^[6,7],^{26,27,28}P^[8,9] 和双质子晕核^{27,28,29}S^[10-12]等.

蔡 翔 舟 等 人 在 兰 州 RIBLL 上 测 量 了 中 能

²³Al (~35*A* MeV)等的 $\sigma_{\rm R}$,发现²³Al 的 $\sigma_{\rm R}$ 有反常增 大^[13,14].结合²³Al特别小的结合能($S_{\rm p}$ =0.125MeV), 有较强的理由认为²³Al有晕结构.但仍然需要其他方 面的证据.实验上没有²³Al平行动量分布的结果,为 了从 $P_{//}$ 进行验证,我们在RIKEN-RIPS上同时测量 了其 $\sigma_{\rm R}$ 和 $P_{//}$.

2 实验方法

用透射法测量 σ_R ,截面计算公式为

$$\sigma_{\rm R} = \frac{1}{t} \ln \left(\frac{\gamma_{\rm o}}{\gamma_{\rm i}} \right) \,, \tag{1}$$

^{*}国家自然科学基金(10405032, 1053510, 10405033, 10475108, 10328259, 10135030), 上海科技发展基金(06QA14062, 05XD14021, 03QA14066)和国家重大基础研究研究发展项目(G200077404)资助

¹⁾ E-mail: dq fang@sinap.ac.cn

*t*为C反应靶的厚度(核子数/cm²), γ_o和γ_i分别为空 靶和有靶情况下离子在靶上出射和入射的比率.同 时通过测量炮弹核擦掉一个质子后碎片的飞行时 间(TOF)得到平行动量.

实验用135A MeV ²⁸Si轰击⁹Be产生次级束流,次级束能量~70A MeV. 次级束流在1mm厚的 $(377g/cm^2)^{12}$ C靶上反应(本文中以后的"靶"均指C 反应靶). 靶前和靶后分别用 $B\rho$ -ToF- ΔE -E和ToF- ΔE -E的方法联合鉴别离子.

3 实验结果及讨论

3.1 实验结果

测得的 $\sigma_{\rm R}$ 大小见表1,误差包括统计误差和部分 系统误差.与邻近核相比,²³Al的 $\sigma_{\rm R}$ 增大.把RIBLL 实验截面的结果用Shen公式归一到本次实验能量 时,两次实验的结果符合的很好(图1).我们测得²³Al 的 $P_{//}$ 的结果,并没有出现像¹¹Li那样非常窄的分布. ²³Al和邻近核的 $P_{//}$ 测量结果见表2.

	表 1 $\sigma_{\rm R}$ 实验测量结果	
核素	能量/($A \operatorname{MeV}$)	$\sigma_{\rm R}/{\rm mb}$
²³ Al	73.7	1609 ± 79
^{24}Al	77.0	1527 ± 60
^{22}Mg	77.0	1512 ± 168

表 2 ²³Al 和邻近核的 $P_{//}$ (FWHM)

反应道	$P_{//}/({ m MeV}/c)$	
$2^{3}\text{Al} \rightarrow ^{22}\text{Mg+p}$	232 ± 18	
$^{22}Mg \rightarrow ^{21}Na+p$	310 ± 20	
$^{21}\mathrm{Na} \rightarrow ^{20}\mathrm{Ne+p}$	236 ± 32	
$^{24}\mathrm{Al} \rightarrow ^{23}\mathrm{Mg+p}$	278 ± 16	

图 1 与RIBLL实验结果的比较 实心圆圈为RIBLL实验结果^[13],空心圆圈为本次实 验结果,实心方块为RIBLL实验能量归一到本次实 验能量的结果.

3.2 结果讨论

少体 Glauber 模型 (FBGM) 作为研究奇异核结构 有效的模型之一,采用"核芯+价核子"方法,可以同 时计算 $\sigma_{\rm R}$ 和 $P_{//}$. 这里我们用 FBGM 讨论²³ Al 的实验 结果.

尽管²³Al的 $\sigma_{\rm R}$ 反常增大,但 $P_{//}$ 宽度与Gold-haber模型计算一致(图2).从图2可以看出,FBGM 计算 $P_{//}$ 显示²³Al外层质子应处于d态,与最近测量 ²³Al g因子的结论一致^[14].

2 AIMF// 实心方块为实验值,实心圆圈为外层质子处于d态的理论值,空心圆圈为处于s态的理论值,点线为 Goldhaber模型结果.

为了解释 $\sigma_{\rm R}$ 和 $P_{//}$ 的实验结果,尝试修正"核 芯"²²Mg,拉大其半径.计算显示,当核芯大小为 3.44±0.24fm,即比自然的²²Mg大20±7%时(图3),与 $\sigma_{\rm R}$ 实验结果一致.

图 3 拉大²³Al核芯"²²Mg"的FBGM σ_R计算结果

点划线为实验值, 阴影为误差范围; 方块为核芯拉大的FBGM计算结果.

4 结论

实验测量了丰质子核²³Al及其邻近核的核反应总 截面和平行动量分布,观察到了²³Al反应总截面的增 大,与以前的实验测量结果一致.从平行动量分布的 结果得出²³Al基态价核子处于*d*态,这与最近测量其*g*因子结果一致.在少体Glauber模型下,采用增大核芯

的办法解释了²³Al反应总截面增大却具有正常的平行 动量分布的实验结果.

参考文献(References)

- 1 Tanihata I et al. Phys. Rev. Lett., 1985, 55: 2676
- 2 Warner R E et al. Phys. Rev., 1995, C52: R1166
- 3 Blank B et al. Nucl. Phys., 1997, A624: 242
- 4 Minamisono T et al. Phys. Rev. Lett., 1992, 69: 2058
- 5 Ozawa A et al. Phys. Lett., 1994, **B334**: 18

6 WANG J S et al. Nucl. Phys., 2001, A691: 618

- 7 FANG De-Qing et al. Chin. Phys. Lett., 2005, **22**: 572
- 8 Navin A et al. Phys. Rev. lett., 1998, **81**: 5089
- 9 FANG D Q et al. Eur. Phys. J., 2001, A12: 335
- 10 CHEN B Q et al. J. Phys., 1998, **G24**: 97
- 11 REN Z Z et al. Phys. Rev., ${\bf C53}:$ R572
- 12 Brown B A et al. Phys. Lett., 1996, B381: 391
- 13 CAI X Z et al. Phys. Rev., 2002, C65: 024610
- 14 Ozawa A, Matsuta K et al. Phys. Rev., C74: 021301

Study of Exoticness of Proton-Rich Nuclei ²³Al and it's Neighboring Nuclei^{*}

MA Chun-Wang^{1,2} FANG De-Qing^{2;1}) GUO Wei^{1,2} WANG Kun² YAN Ting-Zhi^{1,2} MA Yu-Gang²
CAI Xiang-Zhou² SHEN Wen-Qing² SUN Zhi-Yu³ REN Zhong-Zhou⁴ CHEN Jin-Gen²
TIAN Wen-Dong² WANG Hong-Wei² MA Er-Jun^{1,2} LIU Gui-Hua^{1,2} SHI Yu^{1,2}
SU Qian-Min^{1,2} ZHONG Chen² M. Hosoi⁵ T. Izumikawa,⁶ R. Kanungo⁷
S. Nakajima⁵ T. Ohnishi⁸ T. Ohtsubo⁶ T. Suda⁸ K. Sugawara⁵ T. Suzuki⁵
A. Ozawa⁹ A. Takisawa⁶ K. Tanaka⁸ T. Yamaguchi⁵ I. Tanihata⁷
1(Graduate School of Chinese Academy of Sciences, Beijing 100049, China)
2(Shanghai Institute of Applied Physics, CAS, Shanghai 201800, China)
3(Institute of Modern Physics, CAS, Lanzhou 730000, China)
4(Department of Physics, Saitama University, Nanjing 210008, China)
5(Department of Physics, Saitama University, Saitama, 338-8570, Japan)

 $6\,({\rm Department}\ of\ Physics,\ Niigata\ University,\ Niigata,\ 950-2181,\ Japan)$

 $7\,({\rm TRIUMF},\,4004$ Wesbrook Mal, Vancouver, British Columbia V6T 2A3, Canada)

8 (Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-8571, Japan)

9 (Department of Physics, Tsukuba University, Ibaraki, 305-8571, Japan)

Abstract We measured the reaction cross sections($\sigma_{\rm R}$) and parallel momentum distributions($P_{//}$) of ²³Al and it's neighboring nuclei at RIKEN-RIPS. An enhanced $\sigma_{\rm R}$ of ²³Al is observed, which is consistent with the previous experimental result. And the $P_{//}$ of fragment from the projectile breakup nuclei have been obtained at the same time. We discuss our experimental data under the Few-Body Glauber Model. The $P_{//}$ of ²³Al shows the ground state of the valence proton is a *d*-wave, which is consistent with the recent measurement of ²³Al's *g* factor. To explain the experimental $\sigma_{\rm R}$ and $P_{//}$ of ²³Al at the same time, we suggest an enlarged core of ²³Al.

Key words proton-rich nuclei, exotic structure, parallel momentum distribution, reaction cross section

^{*} Supported by National Natural Science Foundation of China (10405032, 1053510, 10405033, 10475108, 10328259, 10135030), Shanghai Development Foundation for Science and Technology (06QA14062, 05XD14021, 03QA14066) and Major State Basic Research Development Program in China (G200077404)

¹⁾ E-mail: dqfang@sinap.ac.cn