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Abstract We study the composition, the temperature and the equation of state of isoentropic protoneutron

star matter in the mean field approximation of the relativistic σ-ω-ρ model. It is shown that, fixing the

baryon density, the fraction of neutron at S = 2 is smaller than that at S = 1 and the fractions of proton,

electron, and muon at S = 2 are larger than those at S = 1, respectively, especially in the region of low

baryon density. Keeping baryon density invariant, the fractions of hyperons at S = 2 are larger(smaller)

than those at S = 1 in the region of relative low(high) density of baryons. Also the temperature, the energy

density and the pressure at S = 2 are larger than those at S = 1, respectively. In addition, we demonstrate

that the finite entropy impose more influence on the fractions of particles as well as the temperature than on

the equation of state of the protoneutron star matter. As a consequence, the contributions of antiparticles

are very small under our consideration.
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1 Introduction

After seconds of supernova explosion, a hot com-

pact remnant which is the so-called protoneutron

star(PNS)is left. The PNS evolutes to a cold neu-

tron star in two stages. In the first stage which lasts

for about 12s
[1]

, the PNS is not transparent to the

thermal neutrinos and must cool through the neu-

trino diffusion to the surface. And in the second stage

which lasts perhaps one million years, neutrino emis-

sion dominates the cooling but the star is observable

only through its thermal photonic emission.

The entropy in the interior of PNS is moderately

high during the early evolution, and the entropy per

baryon is about 1—2(in units of Boltzman constant),

which corresponds to a temperature in the range

T=(20—50)MeV. Many thermodynamic quantities of

PNS matter may vary with the temperature, such as

the pressure, the abundance of various baryons and

the chemical potential. Although finite temperature

effects on these quantities are practically negligible

when considering the overall structure of evolved neu-

tron stars, they are important in assessing the ther-

mal history of these celestial bodies and properties of

their interior matter
[2, 3]

.

In view of the uncertainties in the actual tempera-

ture profiles within the hot interior of PNS, an isoen-

tropic or an isothermal state was usually assumed
[4, 5]

.

The first case is characterized by a constant entropy

per baryon S=const. And the second case which cor-

responds to a vanishing heat flux in a static star is

more complicated(for detail, see the Ref. [6]). In the

current theory, the isothermal state within the hot

interior will be reached on a time scale correspond-

ing to thermal equilibrium which is much longer than

the lifetime of a PNS, so that it is usually discarded

in studying the thermal properties of PNS matter.

In the present paper, we study the properties of

isoentropic PNS matter including hyperons Λ, Σ, Ξ,

∆(PNHS), and also the matter of the PNS composed
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only of the nucleons, electrons and µ
−(PNNS) for

comparison. The contributions of antiparticles are

considered in the work. Because the internal con-

stitution of the hot PNS depends on the nature of

strong interaction, we employ the relativistic σ-ω-ρ

model
[7, 8]

, in which the strong interaction is mediated

by exchanging σ, ω and ρ mesons.

In Sec. 2, we present the basic theory. The results

of numerical calculation are given in Sec. 3, and the

summary appears in Sec. 4.

2 The basic theory

The Lagrangian density in the relativistic σ-ω-ρ

model is written as
[9]

,

L =
∑

B

ψ̄
B
(iγµ ∂µ

+mB−gσBσ−gωBγµω
µ
−

1

2
gρBγµτ •ρ

µ)ψ
B

+
1

2
(∂σ)2−

1

2
m2

σ
σ2

−

1

4
FµνF

µν +
1

2
m2

ω
ωµω

µ
−U(σ)−

1

4
ρµνρ

µν +

1

2
m2

ρ
ρµρ

µ +
∑

l

ψ̄
l
(iγµ ∂µ

−ml)ψl, (1)

where

U(σ) =
1

3!
cσ3 +

1

4!
dσ4, (2)

Fµν = ∂µων −∂ν ωµ, (3)

ρµν = ∂µ ρν −∂ν ρµ, (4)

ψ
B

and ψl are the field operators of baryon B(B=n,

p, Λ, Σ, Ξ, ∆) and lepton l(l=e, µ), respectively, σ,

ω
µ and ρ

µ the field operators of σ, ω and ρ me-

son, respectively, g
σB

, g
ωB

and g
ρB

the coupling con-

stants between σ, ω, ρ meson and baryon B, respec-

tively, and m
B
, ml and mi(i = σ, ω, ρ) the mass

of baryon, lepton and σ, ω, ρ meson, respectively.

τ is the isospin operator. In general, the coupling

constants between different meson(σ, ω and ρ) and

nucleon are equal. They are determined by either the

saturated property or the symmetry energy of nuclear

matter. The coupling constants between mesons and

hyperons have to be assumed in accordance with a

few experimental data
[10]

and the nucleon coupling

constants due to our poor knowledge. As for leptons,

we assume them to be free fermi gas.

According to the thermodynamical statistical

physics
[11]

, the thermodynamic potential is denoted

by

Ω=−
1

β
lnZG =−

1

β
lnTrexp[−β(Ĥ−µN̂)], (5)

where ZG is the grand partition function, β =
1

kT
, k

the Boltzman constant, T the temperature. Halmito-

nian Ĥ is given by,

Ĥ =

∫
d3xT 00 =

∫
d3x

(

∂0
φ

∂L
∂(∂0

φ)
−g00L

)

, (6)

where N̂ is the particle number operator. The parti-

cle number density n is obtained by

n=−

(

∂Ω
∂µ

)

TV

, (7)

so the number densities of baryons and leptons, de-

noted by nB and nl, respectively, can be calculated by

nB =
γ

B

(2π)3

∫
d3k

[

1

1+expβ(Ẽ+
B −µ

B
)
−

1

1+expβ(Ẽ−

B +µ
B
)

]

, (8)

Ẽ±

B =

√

M̃ 2
B +k2±g

ωB
Ṽω±

1

2
I3BgρB

Ṽρ, (9)

nl =
γl

(2π)3

∫
d3k

[

1

1+expβ(El−µl)
−

1

1+expβ(El +µl)

]

,

(10)

El =
√

m2
l +k2, (11)

with the energy density ε and pressure p being

ε =
∑

B

µ
B
n

B
−

∂ lnZG

∂β
=

∑

B

γ
B

(2π)3

∫
d3k

[

EB

1+expβ(Ẽ+
B −µ

B
)
+

EB

1+expβ(Ẽ−

B +µ
B
)

]

+
1

2
m̃2

σ
ṽ2

−
1

2
m2

ω
Ṽ 2

ω
+

Ṽω

∑

g
ωB
n

B
−

1

2
m2

ρ
Ṽ 2

ρ
+

Ṽρ

∑

I3BgρB
nB +U(σ), (12)

p = −

(

∂Ω
∂V

)

Tµ

=

∑

B

1

β

γ
B

(2π)3

∫
d3k

[

ln(1+exp[−β(Ẽ+
B −µ

B
)])+

ln(1+exp[−β(Ẽ−

B +µ
B
)])

]

−
1

2
m̃2

σ
ṽ2 +

1

2
m2

ω
Ṽ 2

ω
+

1

2
m2

ρ
Ṽ 2

ρ
−U(σ). (13)
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Then, the entropy density s is given by

Ts= p+ε−
∑

B

µ
B
n

B
. (14)

For convenience, we further define S as the entropy

per baryon, namely,

S=
s

ρ
, ρ=

∑

B

n
B
. (15)

Due to the chemical equilibrium and the neutrality in

PNS, the chemical potential and the fraction of each

particle are constrained by following relations:

µ
B

= bµ
n
−q

B
µ

e
, (16)

∑

B

q
B
n

B
+

∑

l

q
l
n

l
= 0, (17)

where µ
B
, µ

n
and µ

e
are the chemical potentials of

baryon B, neutron and electron, respectively, b and

q
B

are the baryonic number and the charge of the

baryon B, respectively, and q
l

is the charge of the

lepton l.

3 Numerical results

In the calculation, we take gs = 8.43, gω = 8.70,

gρ = 8.55, c = 3912.31MeV, d = 402.73, and assume

g
Hs

g
s

=
g

Hρ

g
ρ

= 0.6 and
g

Hω

g
ω

= 0.66(H=Λ, Σ, Ξ, ∆)
[12]

.

Fig. 1 and Fig. 2 depict the relation between the frac-

tions of various particles and the baryon density at

S = 1 and S = 2 in PNHS. At a specific baryon den-

sity, the fraction of neutron at S = 2 is smaller than

that at S = 1 and the fractions of proton, electron,

and muon at S = 2 are larger than those at S = 1,

respectively, especially in the region of low baryon

Fig. 1. The fractions of neutrons, protons, elec-

trons and µ
− with respect to the baryon den-

sity in PNHS. The solid and dashed curves

represent the cases S = 1 and S = 2, respec-

tively.

Fig. 2. The fractions of Λ, Σ, ∆, Ξ with re-

spect to baryon density, the solid and dashed

curves represent the cases S = 1 and S = 2,

respectively.

density. Keeping the baryon density invariant, the

fractions of hyperons at S = 2 are larger(smaller)

than those at S= 1 in the region of relative low(high)

density of baryons, respectively. The fractions of

∆++, ∆+, ∆0 are so small that we do not plot them

in Fig. 2. We plot the energy densities of the isoen-

tropic PNNS and PNHS matter with respect to the

baryon density in Fig. 3. The energy density of the

isoentropic PNNS(or PNHS) matter at S= 2 is a lit-

tle larger than that at S= 1 when the baryon density

is fixed, especially in the high baryon density region.

And at the same baryon density and S, the PNNS

matter has a larger energy density than the PNHS

matter does. In Fig. 4, we present the relation be-

tween the pressure and the baryon density. Its char-

acter is similar to that of the energy density shown

in Fig. 3. We can see from this figure that the curve

for the PNNS matter is much stiffer than that for

Fig. 3. The energy densities of isoentropic

PNNS and PNHS matter with respect to

baryon density, the solid and dashed curves

represent the cases S = 1 and S = 2, respec-

tively.
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Fig. 4. The pressures of isoentropic PNNS and

PNHS matter with respect to baryon density,

the solid and dashed curves represent the cases

S =1 and S = 2, respectively.

the PNHS matter. In Fig. 5, the temperature of

isoentropic PNNS(or PNHS) matter at S= 2 is much

higher than that at S = 1 when the baryon density

is fixed. The temperature has a maximum value at

the center of the star and decreases with decreasing

density. Besides, the PNNS matter is hotter than the

PNHS matter at a fixed S.

Fig. 5. The temperature in the interior of isoen-

tropic PNNS and PNHS, the solid and dashed

curves represent the cases S = 1 and S = 2,

respectively.

4 Summary

We study the thermal properties of PNS matter

at a finite entropy. At a specific baryon density, the

fraction of neutron at S = 2 is smaller than that at

S= 1 and the fractions of proton, electron, and muon

at S = 2 are larger than those at S = 1, respectively,

especially in the region of low baryon density. Also

the fractions of hyperons at S= 2 are larger(smaller)

than those at S= 1 in the region of relative low(high)

density of baryons, respectively. It follows that the

temperature of isoentropic PNNS(or PNHS) matter

at S = 2 is much higher than that at S = 1. And the

temperature has a maximum value at the center of

the star and decreases as decreasing density. In addi-

tion, the PNNS matter is hotter than the PNHS mat-

ter when their entropy per baryon are equal. Finally,

the energy density or pressure of PNNS(or PNHS)at

S = 2 is slightly larger than that at S = 1 when the

baryon density is fixed. And the PNNS matter has

larger energy density and pressure than the PNHS

matter does when their entropy per baryon are the

same. We can see from above analysis that the finite

entropy imposes more influence on the particle abun-

dance and temperature than on the energy density

and pressure(namely the equation of state). The con-

tributions of antiparticles are also studied. The result

shows that they are very small. In the calculation, the

coupling constants between mesons and baryons are

assumed to be constants. They can be varied accord-

ing with baryon density
[13]

. And we will study the

influence of the density dependency of coupling con-

stants on the thermal properties of protoneutron star

matter in our next work.
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