高能所S波段45MW脉冲速调管研制 *

董东 周祖圣 张亮 李岗英 田双敏

(中国科学院高能物理研究所 北京 100049)

摘要 北京正负电子对撞机国家实验室(BEPC)二期工程使用的高功率脉冲速调管运行功率要求在 40MW以上,为此高能物理研究所在引进国外速调管的同时开展了高能所创新项目45MW脉冲速调管 设计、制造工作.这种新型速调管为5谐振腔、单一陶瓷输出窗结构,增益为50dB,效率为40%,工作 电压为310kV.2005年12月成功地完成了45MW速调管样管的测试,测试结果显示主要技术指标达到 了设计要求.

关键词 速调管 微波 高频 加速器

1 引言

中国科学院高能物理研究所正在进行北京正 负电子对撞机(BEPC)的二期改造工程^[1],其正负电 子直线加速器的束流能量由原来的1.55GeV提高到 1.89GeV,作为直线加速器微波功率源的高功率速调 管要求运行在40MW以上,为此高能物理研究所选择 了45MW速调管来满足功率需要,由于国内还没有这 个功率水平的速调管,高能所在引进外国速调管的同 时,开展了S波段45MW速调管的研发工作.经过一 年的努力,2005年高能所完成了45MW速调管样管的 制造与测试工作,该样管在300kV的工作电压下,输 出功率达到了45MW,效率达到42%,增益达到49dB, 测试结果显示其主要的技术指标达到了设计要求.

2 45MW速调管的设计

新型速调管的工作频率为2856MHz,共有5个高频谐振腔、相应的漂移管以及单窗输出结构.其缩减等离子波长约为1.23m.归一化电子注半径0.55,归一化漂移管半径0.73.主要技术指标见表1.

计算分析高频电流在5个谐振腔中的增长情况如 图1所示,理论分析预期该速调管在工作电压310kV 时,微波功率输出可以达到45MW,理论计算与实际 测试结果的比较见图5.

表 1 45MW 速调管主要设计指标以及样管的测试数据

	前	实验管	实验管实
	干型	设计指标	际测量值
工作频率	MHz	2856	2856
脉冲电压	kV	320	300
脉冲电流	А	400	366
导流系数	μP	2.0	2.1
重复频率	$_{\rm Hz}$	12.5	12.5
脉冲功率	MW	45	45
脉冲宽度	μS	2	2
效率	%	40	42
增益	$^{\mathrm{dB}}$	50	49

图 1 45MW速调管内部高频电流分析

考虑到速调管转换效率为40%,为此设计了一种 脉冲功率为120MW的电子枪来提供高能电子注^[3, 4]. 电子枪脉冲工作电压为320kV,电流400A,导流系数 为2.0,为获得较好的稳定性,通过优化结构设计将其 最大电场梯度降低到了19.5kV/cm,因此可以在相同

^{2006 - 01 - 25} 收稿

^{*}国家自然科学基金(10475094)和中国科学院高能物理研究所知识创新项目资助

的排气条件下,提高枪区的耐高压性能.电子枪结构 设计分析结果见图2、图3.

几种相近的速调管电子枪主要参数比较见表2,

从中可以看到120MW束流功率电子枪的电场梯度是 非常低的,这对提高电子枪的耐压是十分重要的.

由于BEPCII工程对速调管的稳定性以及寿命 要求极高,为此45MW速调管电子枪的阴极采用了直 径为85mm的钡钨阴极,这种阴极工作温度为1050°C, 具有出气率低、蒸发率低、工作稳定性好、寿命长, 可多次暴露大气等优点.

微波输出窗是速调管的关键部件,采用了纯度 为99.7%、tanδ为3.0×10⁻⁴陶瓷窗片,已有数据显示 该单一陶瓷窗片可承受200MW脉冲功率的检验,在 50MW以下可以可靠地长期连续运行,因此高能所 45MW设计采用了单一输出窗结构,满足了使用要求.

表 2	高能所几种速调管电子枪的参数比较

	单位	80MW 电子枪	80MW电子枪/A	150MW 电子枪	120MW 电子枪
束流功率	MW	80	80	150	120
工作电压	kV	270	280	350	320
阴极直径	$\mathbf{m}\mathbf{m}$	80	80	90	85
最大电场梯度	kV/cm	28.4	24.8	22.5	19.5
典型使用		30MW 速调管	30MW改进型速调管 ^[2]	65MW 速调管	45MW速调管
阴极类型	国产	国产氧化物	国产氧化物	国产钡钨阴极	
	进口	进口钡钨阴极	进口钡钨阴极		进口钡钨阴极

3 速调管的测试

45MW速调管完成制造后在高能所的150MW测试台上进行了老炼与测试,测试中使用了80MW的大功率水负载作为微波吸收负载,热电偶高功率计测量 平均功率,50dB波导定向偶合器测量波形与脉冲宽度,再根据占空比得到速调管的脉冲输出功率.测试 台装置见图4.

图 4 高能所 45MW 速调管测试台

45MW速调管在测试台进行了10天的老炼与测试,导流系数为2.0μρ,在300kV工作电压下,微波输出功率达到了45MW,效率达到42%,增益达到49dB. 测量数据见表1.测试数据分析见图5,测量波形见 图6.测试结果显示45MW速调管主要技术指标达到 了设计要求.

4 讨论

高能所45MW速调管设计采用了结构紧凑的五 谐振腔高频作用段,其理论分析结果显示该结构工 作在350kV电压时,微波输出功率可以达到60MW以 上^[5],输出结构若采用双窗结构,可以获得更高功率输 出.而采用单一陶瓷输出窗结构时,由于目前非钻石 级的陶瓷窗微波谐振环检测功率可到200MW,一般 长期稳定连续运行在50MW下,因此高能所的新速调 管定位在五谐振腔、单一陶瓷输出窗结构、相对制造 成本较低的45MW速调管.

高能所北京正负电子对撞机及其同步光实验室对 长期连续运行的稳定性和束流的品质都有很高的要 求,因此要求速调管的长期连续稳定运行.而我们此 前所遇到的速调管不稳定性主要来自枪区的打火,为 此设计了低电场梯度的120MW束流功率电子枪,其 最大电场梯度为19.5kV/cm,相比之下美国的5045型 速调管电子枪的电场梯度为22.5kV/cm,国产30MW 速调管的电场梯度为28.4kV/cm.一般而言,较低的 电场梯度可以在相同的速调管排气条件下获得更好 的稳定性.实际上该实验样管仅经过两天的简单的 烘烤排气,在速调管的老炼过程中用了两天时间达到 了220kV,六天时间达到300kV,微波输出功率达到 45MW,也体现出了低电场梯度的优点.可预期速调

参考文献(References)

- 1 The Beijing Electron Positron Collider Upgrade Project (BEPCII) First Design-Linac Part. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2003. IHEP-BEPCII-SB-03-2
- 2 HONG B, DONG D et al. BEPC Klystron Improvements. APAC 98. Tsukuba, Japan, 23—27 Mar 1998
- 3 ZHOU Z S, DONG D. High Power Laser and Particle Beams, 2006, 18(3): 277—280 (in Chinese)

管的烘排条件的改善还可进一步提高速调管的稳定性.

由于高能所 45MW 速调管设计采用了五谐振腔 高频作用段,结构短而紧凑,高频作用段长度仅为 40cm,缩减等离子波长(λ_q)约为123cm,因此以等离 子波长计算其长度为 $0.33\lambda_q$,相比之下,30MW速调管 为 $0.37\lambda_q$,美国SLAC5045型速调管为 $0.43\lambda_q^{[6]}$.速调 管本身结构的紧凑可以有效减轻速调管系统的质量.

5 结束语

为满足新北京正负电子对撞机的运行需要,高能 所研制了高性能的45MW速调管,样管测试结果显示 其主要的技术指标达到了设计要求,为顺利完成高能 所的创新项目奠定了基础.

感谢高能所工厂高质量地完成速调管的加工制造 工作,感谢高能所加速器中心真空组同志的密切合作.

(周祖圣, 董东. 强激光与粒子束, 2006, 18(3): 277-280)

- 4 ZHOU Z S, DONG D. High Power Laser and Particle Beams, 2005, 17(7): 1075—1078 (in Chinese)
 (周祖圣, 董东. 强激光与粒子束, 2005, 17(7): 1075—1078)
- 5 DONG D. Novel Conception of Beam Temperature in Accelerator and Applications, Beam Dynamics Conference, 2005, China
- 6 Konrad G T. High Power RF Klystrons for Linear Accelerators. 1984 Linear Accelerator Conference. Seeheim/Darmstadt, West Germany 1984

IHEP S-band 45MW Pulse Power Klystron Development^{*}

DONG Dong ZHOU Zu-Sheng ZHANG Liang LI Gang-Ying TIAN Shuang-Min (Institute of High Energy Physics, CAS, Beijing 100049, China)

Abstract S-band 45MW pulse power klystron has been developed in the Institute of High Energy Physics (IHEP) for the Beijing Electron Positron Collider (BEPC) upgrade projects (BEPC-II). This new klystron has 5 cavities in its RF-beam interaction and single RF output window, and the RF output power is 45MW at 310kV, the gain is 50dB, the efficiency 40%. The manufacturing, training and testing of a prototype klystron has been finished in IHEP and RF power 45MW at 300kV has been reached. The testing results show that all the parameters of the 45MW klystron reach the design goal.

Key words klystron, microwave, RF, accelerator

Received 25 January 2006

^{*} Supported by National Natural Science Foundation of China (10475094) and Knowledge Innovation Project of IHEP, CAS