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Abstract Based on the closed time path formalism, a deduced Feynman rule for directly calculating the retarded and ad-

vanced Green functions is given. This Feynman rule is used to calculate the two-point self-energy and three-point vertex cor-

rection in ¢ theory. The generalized fluctuation-dissipation theorem for three-point nonlinear response function is verified.
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The closed time path formalism (CTPF)"™ in
real-time finite-temperature field theory has been
widely used to investigate the equilibrium and non-

-1 of the thermal system.

equilibrium properties
Different from the imaginary time formalism (ITF),
the physical region can be reached Without analytical
continuation in the real time formalism. In the CTPF
two kinds of fields are defined according to the closed
time integral contour in the generating function of
Green function. The closed time integral contour con-
sists of the first branch which runs from negative in-
finity to positive infinity and the second branch which
runs back from positive infinity to negative infinity.
The fields located on the first and the second branch
are defined as physical (type-1) and ghost (type-2)
fields, respectively. The propagator is a 2 X 2 matrix
with components G;, Gi;, G,, Gy, their corre-
sponding self-energies are denoted as 211, 2125 2u21s
> according to the type-1 or type-2 external leg of
the Feynhman diagram. It is known that the self-en-
ergy with physical interpretation is not >, but the
retarded function 2. (or advanced function =)

which is the analytical continuation of the self-energy
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obtained in the ITF®). In order to calculate retarded
(or advanced) self-energy in the real time formalism,
the usual way is to calculate 21, 2212, 202 and 2
first, and then to use the relation 2™ = 2., + 2,
(or 2** =X, + 2,1). For the calculation of n-
point (n >2) retarded/advanced vertex' ' , for exam-
ple, the three-point fully retarded vertex I',, defined

in Ref.[12], one needs to calculate eight components
Fiis Tazs Tiots Tizas Tanys Dagas Ty and Iy first

and then to use the relation I',,, = %(Pm — Iy —

Py + Dy + Tyy — Tay — ypt + Tyyy ) . Such caleu-
lation becomes tedious. In this paper we deduce a
Feynman rule which can be used to calculate n-point
retarded/advanced Green function directly, and then
we verify the generalized Fluctuation-dissipation theo-
rem for three-point nonlinear response function by
calculating the vertex correction.

In the CTPF, for any field ¢ the four compo-
nents of the matrix propagator in the single-time rep-

resentation are defined as

G, ., (z1, 22) == T, (8, (z:)8,(x2))),
(1)
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where T, represents the time ordering operator along
the closed time path, it is normal and antichronolo
gical time ordering on the first and second branch of
the closed time path, respectively, a;,a, € {1,2} in-
dicate on which of the two branches the ¢ fields are
located. {--*) stands for the thermal expectation val-

ue. Following Ref.[3] we define
$,(z) = $,(z) - $,(x), N

$,(z) = 2(h() + $o(z)), @)

and the 2-point Green function in the above (r, a)
basis

Galaz(IIsIZ) =
- iznr_l<Tp(¢a1(x1)¢a2(12))>a (3)
where a,,a, € la,r!, and n, is the number of r

indices among {a;, a,}!. Inserting Eq (2) into (3),

we get
G, (x1,2,) = Gplxy,x2) + Gz, x,) =
—i[$(x1),8(2,)].0, (4)
G.(x,2,) = Gyulxy,x,) — Gz, x3) =
— i0(x} - 23){[#(x,), $(x,)15),
(5)

G, (x,x;) = Gyulxy,x,) — Gy(xy,x2) =
i0(zy — ) ([$(x1), $(x2)15),
(6)
Gulxi,z,) = 0. (7

Here [¢(x,), $(x2)]: = 8(x,)$(x,) £ $(2,) ().

The double sign + or ¥ in Egs. (4) — (6) corre-
sponds to Boson and Fermion field for the upper and
lower cases, respectively. Obviously G, (x;, x,)
and G, (x;, x,) are the usual retarded and advanced
Green functions.

Denote the 2 X 2 matrix propagator in the single-

time representation as

G _ Gll GIZ) , (8)
Gn Gy
and the matrix propagator in the (7, a ) representa-
tion as
_ (GM Ga,) (0 G
¢ = G. G, \¢* c*I’ ©)

where G**, G are the advanced and retarded Green

functions. In the momentum space the correlation

function G™ is related to advanced and retarded
Green function by well-known fluctuation-dissipation

13,10] . .
theorem'™ ') in linear response theory,

G" (k) = (1 +2n(R°))G™ (k) — G*(k))  (10)
where n (k") = 1/(exp(B’) — 1) is the Bose-Ein-
stein distribution function.

Both the matrix propagators G and G satisfy the

following transformation relation™’ ;

G =Q" GQ, (11)
where Q is orthogonal Keldysh transformation matrix
Qi Q. 1 -1
Q- ( 1 2) - L . (12)
er QrZ */5 1 1
QL. Qi 1
*=[ X i}=i( .13
Q.. Qs ‘/E -1 1

From the transformation (11) we see that the
left side and the right side of the propagator G associ-
ate with the transformation matrix Q" and Q, re-
spectively. We can establish a deduced Feynman rule
in the following way : as illustrated in Fig. 1, the
matrix Q" can be absorbed into the left vertex with
the outgoing momentum line, and Q can be absorbed
into the right vertex with the incoming momentum
line, we leave G, in the (r, a) basis as a new propa-
gator of the propagating line. After absorbing all Q
or Q" from the propagating line, the new bare ver-
tex with all incoming momentum (as illustrated in
Fig.2(a)) can be defined as

Yoz (Psds- . 7) = QuQpy. - Qpgu...co (14)
where a,b,...c € 1,2 and B,58',...8 € a,r,
p+qg+... +r =0 because of energy-momentum
conservation. A summation over repeated indices is
understood in Eq. (14). In the single-time represen-
tation, gi.1 = — &x.2 = & (coupling constant), all
other components vanish. As shown in Fig. 2, we
change the orientation of the incoming momentum r
in Fig.2(a) as the outgoing line in Fig.2(b) with en-
ergy-momentum conservation p + ¢ +... — r =0.
After absorbing Q" associated with the outgoing mo-
mentum r and all Q associated with the incoming
momentums into the vertex, this new bare vertex in
Fig.2(b) should be
Yag(Psar... = 7) = QuQg. .. Q}cgab.,.c' (15)
From Egs. (12) and (13) we know Qp. = Q¢ .



692 BEHEYWES EY E (HEP & NP)

%28 %

Comparing Eq. (15) with Eq. (14), we see clearly
that the bare vertex Y. #(p,q,...7) with p+g¢q
+ ...+ 7 =0 is the same as the bare vertex Yy  »
(psq, ...

erty indicates that the new bare vertex defined here is

—r) with p+q+ ... —7»=0. This prop-

independent of the orientation of the momentum.

N
QlaGaﬂQﬁl

Fig.1. The new bare vertex and propagator qu after
absorbing Q* and Q into the left and right vertex in

our deduced Feynman rule.

(®)

Fig.2.
The difference between (a) and (b) is that

the orientation of momentum 7 is changed.

The bare vertex in the (7, a) basis.

In the following we drop the momentum argu-
ments for the bare vertex. Substituting Q.;, Q.2 Q1
Q,,in Eq. (12) into Eq. (14), we can express the n-
point new bare vertex in the (7, a) basis as
1
J2

where n, (ay, a3, ..

n

g[l_(_ 1)"a(“1’“2"""n)]’ (16)

Vajayia, =
n

172

., a,) is the number of a indices

among {a;, @s,..., a,|. As this number is even,
the bare vertex is zero, so in the (7, a) basis half of
the bare vertices vanish and the rest of them are only
related to the coupling constant. This property will
help us to simplify the calculation greatly. For exam-
ple, the explicit form of three-point bare vertices can

be expressed as

— - - £
arr T 7rm - yrar - ’
2

yaar - yara = yrrr = yma = 0 (17)

As the first application we use this deduced Feynman

Yoa = 7

rule to calculate the retarded (or advanced) self-ener-

gy in $° theory. As shown in Fig.3, all components

of the self-energy matrix in the (7, a) basis can be

expressed as
- iZg(q) = f(%(’ Y ) (D (p)) X

(= iYups ) (A5 (7)), (18)

Fig.3.

calculating the retarded and advanced

The one-loop Feynman diagram for

self-energy in $° theory.
where r = p + q. From Eq. (7) propagator 4, =0.
Noticing the poles of A, (p) A, {(r) and A, (p)
A, (r) are both on the same side of the real axis in

the complex p° plane, we have

+00

0
[ Faua.r) =

+00

[ Famay =0 a9

Using these relations, we derive the four components

of the self-energy matrix as

_is.(q) = gzjif’—in<romm<p>mm<r> -

(2n)*

Aar(r)] + n(PO)Ara(r)[Ara(P) -
A, (p)1t, (20)
—iS,(g) = gZJ(%ﬁinwomw(r)mm(p) -
A, (p)]+n(r))A.(p)A.(r) ~
A, ()1, (21)

- i3,(q) = [2n(q)) + 1][2,.(q) - Z.(g)],
(22)
-i3,(q) = 0. (23)

It is easy to show that 3, (g) and 3, (q) are the re-

tarded and advanced self-energies which correspond to
the retarded and advanced analytical continuation of
Eq. (22)

corresponds to the Fluctuation-Dissipation theorem in
[13]

the self-energy calculated in the ITF™.

linear response theory
The one-loop three-point vertex correction is il-
lustrated in Fig.4. The general expression for this vertex

correction in the (7, a) basis can be expressed as
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d'z,
- IPW(P9q’ 7‘) = I (2 l)4(

(— ivge) X [idgs (1;,)]
(- 7ar ) idsr (13)], (24)
where p+qg+r=0and [, +[,+1;=0.

m’a”)[iAa’ﬂ’(ll)]

It is similar to Eq. (19), the I}-integral over
terms Am(ll)Am(Zz)Am(l:;) and Aar(ll)Aar(ZZ)
A, (13) vanish because the poles of this two terms

are both on the same side of the real axis in the com-
plex ! plane. Neglecting these vanishing terms and
using A, =0, we deduce eight components of one-

loop vertex correction in $° theory as

3 4
i (prghr) = (—ngﬂ d by DOLA. (L) -

(2n)*
A,(1)]4,.(1,)A, (L) +
n(loz)[Am(lz) - Aar(lz)]Am(lx)

B (13) + n(l)[ A, (13) -
A, (13)]4, (14, (1), (25)

—iI’,a,(P,q,r) = _2—g'—J d Ly {71(101)[Am(l1) -

2% 2o
Aar(ll)]Am(ZZ)Ara(l:i) +
n(ZOZ)[Am(ZZ) _Aar(lz)]Aar(ll)

A, (L) + n(lp) (A, (1) -
A, (1)]A, (L)AL, (26)

— i (prgur) = iLj () (A (Ly) -

W2)*) (2
A, (114, (1)A,(13) +
n(ZUZ)[Am(ZZ) _Aar(ZZ)]Am(ll)

A, (1) + n(ie)A, (1) -
A, (1)]A,.(1)A (L), (2T)

. d'l,
— il (prq,r) = (\/—)3J (2n )4{[Am(ll)
- N;IN, +

Ara(ZZ)Aar(l3)[N2
[Am(ll) - Aar(ll)]Aar(ZZ)Aar(ZS)
[1- N N1+ [4.(0) - A, UD)]
8o (18, (L)INN; — 11}, (28)

. d*l,
— T (prgrr) = M)SJ Gy [4n (s

A, (U))A(I;)[NN, —1] +
[4,(1,) - A, (12)]4,(11)A, (1)
[N;N; = N;N 1+ [4,.(8) -
A, (1,)]14,.(1)A4, (L)

A, ()]

) = 4, (1))

[1 - N.N,]t, (29)

. 'l
— T (pyq,7) = (/_)4 2 1413

) = A, ()]

Aar(ll)Aar(ZZ)[l - N1N3] +

[4,.(13) - A, (13)]4. (1)
Aar(ZZ)[N1N3 - N2N3] +
[4,.(15) = A, (13)]14,.(1)

Am(lz)[N2N3_1]l’ (30)

3 4
- ip,m(p,q,r) = _(—‘/gi?_[ (dzﬂl)IA{N1N2N3[Am(ll)

A (1)A, (1) - A, (1) A, (L)
A, (13)1+ (Ny — NyN,N;)
[4,(1) - 4, )]4A. (L)
A, (l;) + (N, — NN,N;)
[A. (1) — A, (1:)]A, (1)
A, (13) + (N5 = N;N;Ny)
[4,.(1;) — A4, (13)]

A4, (L)1, (31)
- zI",,,(p, q,

r)y=0. (32)

Fig. 4.
calculating one-loop vertex correction

The Feynman diagram for

in the (7, a) basis in $° theory.

Here N, =1+2n(l,;). Eqgs. (23) and (32) indicate
that the two-point self-energy and three-point vertex
with all indices being r vanish. This property is also
true for n-point (n >3) vertex!!

Denote Ny = 1 +2n (k") for ° = p°,¢°, ro.

Asp+q+r=0and !, + I, +1; =0, we have

Npo[N3_N1] = N3N; - 1, (33)
Nq°[N1"N2]:N1N2‘1’ (34)
N,O[NZ_N3] =N2N3_1. (35)

Using Egs. (33) — (35) we can verify that three-

point vertex corrections in Egs. (25)—(32) satisfy
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the following relations:

L = No(Ty, = T) + No(Ty,, = L), (36)
I, = No(I',, -T.,) + No(I's, - T,.,), (37)
r, = No(I',, -T,)+Npo(l,, —T,), (38)
r,, =r,,+r,+rI.,,+NsNo (T, +T.,.)+
NpoNpo(L,, +T'5) + NONO(L,, + T2). (39)

These relations are just the generalized Fluctuation-

Dissipation theorem obtained in our previous work™!!
for three-point nolinear response function. Eqgs.
(36)—(39) together with Eq. (32) indicate that,
among these vertex functions {I',, s Dorrs Do s
Tpos Dars Do s T, | only three components are inde-
pendent.

In Ref.[9] Aurenche and Becherrawy developed
a Feynman rule labelled by R, A to calculate retarded
and advanced vertex function. The main differences
between their and our Feynman rule are the follo
wing: in the (R, A) Feynman rule, the matrix
propagator is diagonal and independent of the thermal
distribution function; the bare vertex is related with
the thermal distribution function and relies on the rel-
ative orientation of the momenta; only two of the
vertex components vanish. In our (r, a) Feynman
rule, the matrix propagator is non-diagonal, one ele-
ment A,, is related to the thermal distribution func-
tion; the bare vertex is independent of the thermal
distribution function and doesn’t rely on the orienta-
tion of the momenta; one half of the bare vertex com-
ponents vanish. In the practical calculation both (R,
A) and (7, a) Feynman rule have their own advan-
tage and disadvantage. However, we should emphas-
ize that, in our (7, a) basis the Green function is de-
fined with time-ordering and have explicit physical in-
terpretation (see Eqgs. (4) — (7) and Ref. [11]), it

works in both coordinate and momentum space. The
(R, A) Feynman rule, as stated by the authors
themselves in Ref. [9], only works in the momentum
space, the (R, A) Green function has no explicit ref-
erence to a definite time-ordering.

By suitable combination we can get the (R, A)
vertex from the (r, a) vertex. For three-point vertex

the relation between them can be expressed as

Targ = asa = 0, (40)

Prga = I (41)

f‘RAR = Frar’ (42)

T = s (43)

Pow = %[N,,o +NpITL,  (44)
Py = %[NPO + NoIrL, (45)
Pas =— L[N + No Il (46)

2 ¢

In summary, a deduced Feynman rule in the (r,
a ) basis is given from the Keldysh transformation in
the CTPF. This Feynman rule can be used to calcu-
late the retarded and advanced Green function direct-
ly. In this deduced Feynman rule, the bare vertex is
only related with the coupling constant and indepen-
dent of the orientation of the momenta, one half of
the bare vertex components vanish; the new propaga-
tor depends on the retarded, advanced propagator and
the thermal distribution function. As applications,
the one-loop self-energy and three-point vertex cor-
rection in $° theory are calculated in the (7, a) basis,
and the Fluctuation-Dissipation theorem is verified in
the two-point and three-point cases. The diffierence
between our {7, a ) Feynman rule and the (R, A)
Feynman rule introduced by Aurenche and Becher-

rawy"’ is discussed.
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