Bohr-Mottelson 公式对超形 变带的比较研究*

郭建友^{1,2} 徐辅新¹ 阮图南² 1(安徽大学物理系 合肥 230039 2(中国科学技术大学近代物理系 合肥 230027)

摘要 用 Bohr-Mottelson 的两参数、三参数和四参数公式对 A~190 区 61 条超 形变带进行了系统分析.结果显示:3个公式都能较好地拟合 190 区超形变带的 E2 跃迁谱,而且带首自旋的确定基本一致.大部分带 Bohr-Mottelson 的三参数 数值关系符合 ab 公式的理论预期值,小部分带的三参数数值关系符合 Harris 公式的理论预期值.一半以上带的四参数数值关系与 ab 公式的预期值接近,而 与 Harris 公式的预期值偏离较大.表明两参数 ab 公式比 Harris 公式具有更广 泛的实用性.

关键词 超形变带 参数关系 I(I+1)展开

1 引言

原子核超形变带是目前核结构领域十分热门的前沿课题,迄今为止,已分别在 190, 150,130 以及 80 区测得 200 多条超形变带.探讨超形变带的性质及其能谱变化规律已成 为理论物理学家十分感兴趣的问题.目前,超形变带的研究主要基于正常形变带发展起 来的理论.将正常形变带的理论推广的超形变带,不仅能够研究超形变带的性质,也能检 验现有理论的可靠性.Bohr-Mottelson根据对称性的考虑,证明了轴对称转子的转动能是 *I*(*I*+1)展开的函数,给出了两参数,三参数和四参数转动谱公式¹¹

 $E(I) = AI(I+1) + BI^{2}(I+1)^{2}, \qquad (1)$

 $E(I) = AI(I+1) + BI^{2}(I+1)^{2} + CI^{3}(I+1)^{3}, \qquad (2)$

 $E(I) = AI(I+1) + BI^{2}(I+1)^{2} + CI^{3}(I+1)^{3} + DI^{4}(I+1)^{4}$ (3)

(1)--(3)式对于正常形变核的大量转动谱能够给出相当好的描述.

60 年代, Harris 提出用 ω^2 展开代替 I(I+1)展开^[2]

1999-06-21 收稿

* 国家自然科学基金(19677102 和 19775044),北京正负电子对擅机国家实验室基金,兰州重离子加速器国家实验 室原子核理论研究中心基金,安徽省自然科学基金和安徽省教委基金资助

829-838

$$E(\omega) = \alpha \omega^2 + \beta \omega^4, \qquad (4)$$

$$E(\omega) = \alpha \omega^2 + \beta \omega^4 + \gamma \omega^6, \qquad (5)$$

$$E(\omega) = \alpha \omega^2 + \beta \omega^4 + \gamma \omega^6 + \delta \omega^8. \qquad (6)$$

其中 ω 是原子核绕垂直于对称轴的任一轴(如 x 轴)的转动频率,可从实验谱中提取,

$$\hbar \omega = \frac{\mathrm{d}E}{\mathrm{d}I_x} , \quad I_x = \sqrt{(I+1/2)^2 - K^2}$$

Bohr 与 Mottelson 指出,对于正常形变核的转动谱,Harris 两参数公式(4)已能给出相当好的描述,Bohr-Mottelson 的四参数公式只有两个参数是独立的.即四参数满足如下的关系

$$\frac{C}{4A} = \left(\frac{B}{A}\right)^2, \quad \frac{D}{24A} = \left(\frac{B}{A}\right)^3.$$

或

$$\frac{AC}{4B^2} = 1, \quad \frac{A^2D}{24B^3} = 1.$$
 (7)

吴崇试和曾谨言从 Bohr 哈密顿量出发,计及稳定形变核较小的非轴对称性和振动小效应 的影响,得到一个简单的封闭的两参数(ab)公式^[3]

$$E(I) = a \left[\sqrt{1 + bI(I+1)} - 1 \right].$$
(8)

(8)式对 I(I+1)作幂级数展开,可得 Bohr-Mottelson 的四参数关系为^[4]

$$\frac{AC}{4B^2} = \frac{1}{2}, \quad \frac{A^2D}{24B^3} = \frac{5}{24}.$$
(9)

1989 年我们对锕系和稀土区偶偶核的 29 条转动谱的分析发现, Bohr-Mottelson 的四参数 关系符合 ab 公式的理论预期值,与 Harris 公式有系统的偏离.对于超形变带,文献[5]在 假定自旋已知的基础上,用 Bohr-Mottelson 的三参数公式拟合 190 区超形变带,提取 $R_1\left(R_1 = \frac{AC}{4B^2}\right)$ 的值,发现: R_1 值接近于 ab 式的预期值,而与 Harris 公式的预期值有较 大的偏离.为了进一步研究 Bohr-Mottelson 展式对于超形变带的合理性,分析超形变带 Bohr-Mottelson 公式的参数关系,检验 ab 公式和 Harris 公式的优劣.我们分别用 Bohr-Mottelson 的两参数,三参数和四参数公式对 190 区 61 条超形变带进行拟合,根据实验能 谱和计算能谱相对方均根差最小的方法确定超形变带的带首自旋,分析超形变带 Bohr-Mottelson 公式的参数关系.

2 分析方法,结果与讨论

2.1 能谱拟合与自旋指定

用公式(1)—(3) 拟合 190 区超形变带的 E2 跃迁谱,采用线性最小二乘法确定超形 变带的自旋.选择合适的 I₀(带首自旋)使计算能谱和实验能谱的相对方均根差 σ 最小. 其中

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left[\frac{E_{\gamma}^{cal}(I_i) - E_{\gamma}^{ecp}(I_i)}{E_{\gamma}^{ecp}(I_i)} \right]^2}$$

Band	$E_{\gamma}^{I_0+2 \rightarrow I_0}$	Α	В	С	D	R_1	R_3	I ₀	σ
	keV		(×10 ⁻⁴)	(×10 ⁻⁸)	(×10 ⁻¹¹)				(×10 ⁻³)
~		5.267	-1.747					9.5	1.144
¹⁹¹ Au	229.5	5.281	- 1.982	1.055		0.355		9.5	1.293
		5.255	-1.203	- 7.216	2.865		12.37	9.5	0.691
		5.502	- 1.783					15.5	1.211
¹⁸⁹ Hg	366.4	5.462	- 1.203	-2.417		-2.281		15.5*	0.659
		6.011	-6.804	35.58	- 10.67		0.645	14.5	0.417
		5.606	- 2.372					13.0	3.172
190 Hg(1)	316.9	5.548	- 1. 727	- 1.962		- 0. 912		13.0	1.891
		6.096	-6.732	24.83	- 5.647		0.550	12.0*	0.639
		5.244	- 1.315					13.5	0.879
191 Hg(1)	310.9	5.261	- 1. 518	0.658		0.376		13.5	0.878
		5.230	~ 0.883	- 4.096	1.179		12.66	13.5	0.240
		5.259	- 1. 507					10.5	3.145
191 Hg(2)	252.4	5.307	- 2.075	1.799		0.555		10.5	0.537
		5.314	- 2.233	1.299	-0.291		0.489	10.5	0.393
		5.248	- 1.649					11.5	4.038
191 Hg(3)	272.0	5.313	-2.383	2.211		0.517		11.5	0.700
		5.331	-2.740	4.747	~ 0. 588		0.505	11.5	0.623
		5.848	- 2.303					10.5	3.531
191 Hg(4)	280.9	5.436	- 0.364	- 3.945		- 40. 56		11.5	1.748
		5.379	0.974	15.26	3.143		- 62.56	11.5*	0.625
		5.205	- 1.437					9.0	6.672
192 Hg(1)	214.4	5.677	3.947	5.092		0.464		8.0	2.391
		5.700	- 4.364	7.654	-0.502		0.491	8.0	1.525
		4.966	- 1. 493					13.0	12.53
192 Hg(2)	282.4	5.859	-6.645	11.65		0.387		11.0"	6.754
		5.298	- 1.307	- 14.69	4.640		12.93	12.0	5.661
		5.501	- 2.659		· · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • •	14.0	3.621
192 Hg(3)	333.1	4.307	3.725	- 14.89		- 1. 156		17.0	1.467
		6.130	- 11.54	77 .90	- 26.03		0.631	13.0*	0.439
		4.657	-0.710					11.5	11.37
193 Hg(1)	233.2	5.380	- 3.816	5.590		0.516		9.5*	4.818
		5.946	- 9.059	30.44	- 4. 171		0.469	8.5	3.141
		5.006	- 1. 136					11.5	4.949
193 Hg(2)	254.0	5.354	- 2.509	2.316		0.492		10.5*	0.563
		5.366	- 2.711	3.502	-0.225		0.504	10.5	0.296

第 24 卷

						10 10 10 10 10 10 10 10 10 10 10 10 10 1	-	03 1.55	续表
Band	$E_{\gamma}^{I_0+2-I_0}$	А	В	С	D	R ₁	R_3	I_0	σ
	keV		(×10 ⁻⁴)	$(\times 10^{-8})$	(×10 ⁻¹¹)				$(\times 10^{-3})$
		5.005	- 1.145					10.5	5.870
193 Hg(3)	233.5	5.356	-2.541	2.386		0.495		9.5	1.418
		5.382	- 3.026	5.387	-0.596		0.532	9.5*	0.650
		5.225	- 1.258					12.5	6.516
193 Hg(4)	291.0	4.792	0.972	-4.757		-6.032		13.5*	4.122
		4.307	4.734	- 22.43	3.212		- 1.311	14.5	3.532
		5.438	- 1.232					9.5	2.904
193 Hg(5)	240.5	5.460	- 1. 484	0. 768		0.476		9.5	2.002
		5.479	- 1.886	3.698	- 0. 689		0.139	9.5	1.526
		5.155	- 1.428					11.0	5.917
194 Hg(1)	253.93	5.597	- 3 . 596	4.047		0.438		10.0	1.040
		5.614	- 3.876	5.607	-0.280		0.461	10.0*	0.393
		5.243	- 1. 578					8.0	6.553
¹⁹⁴ Hg(2)	200.79	5.331	- 2. 436	2.173		0.488		8.0	0.185
		5.239	- 2.403	1.966	0.040		0.488	8.0	0.136
		4.971	- 1.061					12.0	4.507
194 Hg(3)	262.67	5.312	- 2. 379	2.183		0.512		11.0*	0.373
		5.318	- 2.479	2.759	- 0. 107		0.514	11.0	0.182
		4.975	- 1.245					13.5	3.993
¹⁹⁵ Hg(a)	294.0	5.352	-2.890	2.867		0.459		12.5	1.085
		5.382	- 3.352	5.335	-0.428		0.502	12.5	0.677
		4.982	1.280					12.5	4. 192
¹⁹⁵ Hg(b)	273.9	5.364	-2.987	3.069		0.461		11.5*	0.327
		5.371	- 3.089	3.643	-0.104		0.470	11.5	0.274
		5.509	- 1. 909					9.5	6.801
¹⁹⁵ Hg(c)	244.0	5.052	0.362	- 4.342		- 41.92		10.5	2.410
		5.108	- 0. 590	1.258	- 1.062		-0.516	10.5*	1.107
		5.063	- 1.028					15.5	2.675
¹⁹⁵ Hg(d)	341.9	5.119	- 1.493	1.068		0.613		15.5	0.568
		5.103	- 1.261	-0.171	0.218		1.042	15.5	0.300
		5.388	- 1.921					13.5*	0.668
¹⁹¹ Tl(1)	317.9	5.390	- 1.936	7.314		0.026		13.5	0.668
		5.945	- 8.082	45.17	- 13.66		0.647	12.5	0.459
		5.391	-2.182					16.5*	0.548
¹⁹¹ Tl(2)	377.8	5.372	- 1.872	- 1.469		- 0. 563		16.5	0.406
		4.500	4.586	- 33, 73	7.175		- 2.432	18.5	0.322

		the second s							
									续表
Band	$E_{\gamma}^{I_0+2-1_0}$	Α	В	С	D	R ₁	R ₃		σ
	keV		(×10 ⁻⁴)	(×10 ⁻⁸)	(×10 ⁻¹¹)				$(\times 10^{-3})$
		4.864	-0.032					13.0	1.459
¹⁹² Tl(a)	283.0	4.485	1.860	- 4.878		- 1.582		14.0*	0.472
		4.467	2.279	- 8.485	1.042		-2.556	14.0	0.346
		4.827	-0.211					16.0	0.678
¹⁹² Tl(b)	337.5	4.491	1.22	- 3.219		426		17.0*	0.568
		4.456	1.899	- 8.432	1.374		- 4.265	17.0	0.382
		5.085	- 1.234					10.0	3.135
¹⁹² Tl(c)	233.4	5.139	- 1.955	2.578		0.865		10.0	1.063
		5.132	- 1.802	1.272	0.358		1.175	10.0	0.955
		5.093	- 1.291					9.0	2.240
¹⁹² Tl(d)	213.4	5.130	- 1.821	2.002		0.774		9.0	0.609
		5.123	- 1.640	0.365	0.477		1.356	9.0	0.460
		5.167	- 1.248					9.5	3.396
¹⁹³ Tl(1)	227.3	5.225	- 1.988	2.468		0.816		9.5	0.834
		5.211	- 1.661	-0.137	0.671		1.591	9.5	0.400
		5.167	- 1.496					8.5	3.463
¹⁹³ Tl(2)	206.6	5.226	- 2. 199	2.251		0.608		8.5	1.148
		5.206	- 1.749	-1.216	0.858		1.294	8.5	0.404
		4.997	-1.114					12.0	1.399
¹⁹⁴ Tl(1)	268.0	5.017	- 1.397	1.091		0.702		12.0	1.084
		5.005	- 1. 109	- 1.491	0.766		4.346	12.0	1.057
		5.211	- 1.540					10.0	3.535
104	•·• -								

		5.200	1.747	1.210	0.000		1.074	0.5	0.404
		4.997	- 1. 114					12.0	1.399
¹⁹⁴ Tl(1)	268.0	5.017	- 1.397	1.091		0.702		12.0	1.084
		5.005	- 1. 109	- 1.491	0.766		4.346	12.0	1.057
		5.211	- 1. 540					10.0	3.535
¹⁹⁴ Tl(2)	240.5	4.834	0.215	- 3.683		- 96.05		11.0	2.116
		4.784	1.441	- 14.38	058		- 18.04	11.0*	0.833
		4.914	- 1.048						3.764
¹⁹⁴ Tl(3)	187.9	4.953	-1.777	3.599		1.412			1.724
		4.987	- 2. 929	17.20	- 5. 191		0.360		0.769
		4.997	- 1. 146					9.0	1.134
¹⁹⁴ Tl(4)	209.3	5.015	- 1.425	1.166		0.720		9.0	0.378
		5.012	- 1.342	0.342	0.265		1.386	9.0	0.364
		5.206	- 1.518					9.0	4.599
¹⁹⁴ Tl(5)	220.3	5.264	-2.422	3.771		0.846		9.0*	1.945
		4.757	2.135	- 21.85	5.659		- 11. 19	10.0	1.453
		4.919	-0.961						2.809
¹⁹⁴ Tl(6)	207.0	4.945	-1.470	2.642		1.510			1.743
		4.999	- 3.331	25.41	-9.100		0.299	9.0	0.947

第 24 卷

									续表
Band	$E_{\gamma}^{I_0+2-I_0}$	Α	В	С	D	R ₁	R ₃		σ
	keV		(×10 ⁻⁴)	(×10 ⁻⁸)	(×10 ⁻¹¹)				$(\times 10^{-3})$
		5.228	- 1. 489					5.5	1.932
¹⁹⁵ Tl(1)	146.2	5.256	-1.853	1.236		0.473		5.5	1.288
		5.241	- 1. 469	-1.943	0.836		1.839	5.5	0.892
		5.225	- 1. 762					6.5	3.003
¹⁹⁵ Tl(2)	167.5	5.273	- 2.351	1.901		0.453		6.5	1.568
		5.240	- 1. 584	- 4. 119	1.505		2.184	6.5	0.780
		5.702	- 3.304					8.0	6.618
¹⁹² Pb	215.6	5.818	- 5.710	13.35		0.596		8.0*	2.907
		6.557	- 17.41	122.6	- 39.13		0.5305	7.0	2.658
		4.991	-0.242					12.5	2.706
¹⁹³ Pb(1)	277.2	4.941	0.509	- 3.107		- 14.80		12.5	0.754
		4.908	1.350	- 11. 11	2.538		- 17.84	12.5	0.281
		5.334	- 0. 465						3.651
¹⁹³ Pb(2)	190.5	5.292	0.354	- 4. 179		- 44.05			1.630
(f)=.(f),	7.4	5.256	1.643	- 19.93	6.214	146 1	-25.84	7.5	1.192
		5.244	- 1.306					10.5	1.532
¹⁹³ Pb(3)	250.6	5.273	- 1.758	1.911		0.816		10.5	0.430
		5.273	- 1.765	1.985	-0.024		0.789	10.5	0.432
		5.277	- 1.827						3.330
¹⁹³ Pb(4)	273.0	5.340	-2.753	3.685		0.649			0.513
244	0.21 88	5.348	-2.967	5.672	-0.608	961 11	0.584	11.5	0.438
		5.326	- 1.901					8.5	3.459
¹⁹³ Pb(5)	212.9	5.385	~ 2.973	5.133		0.782		8.5	0.509
		5.381	-2.826	3.452	0.621		0.913	8.5	0.482
		5.311	- 1.766					9.5	4.837
¹⁹³ Pb(6)	234.1	5.387	- 2.928	4.708		0.740		9.5	0.774
		5.406	- 3.444	9.670	- 1. 549		0.640	9.5	0.495
		5.615	- 2.998					8.0	4.102
¹⁹⁴ Pb(1)	213.2	5.683	- 4.602	10.05		0.675		8.0	0.998
		5.713	- 5.841	28.46	-8.907		0.584	8.0	0.628
		5.284	- 2.192					10.0	1.688
¹⁹⁴ Pb(2a)	241.2	4.771	2.279	- 18.60		- 4.270		11.0	0.959
		5.357	- 5.440	53.42	- 29.16		0.251	10.0*	0.890
		5.283	- 2.129					11.0	1.473
94 Pb(2b)	260.9	5.310	-2.742	3.920		0.692		11.0*	1.163
		5.956	- 12.56	102.8	- 40.47		0.669	10.0	0.772

									续表
Band	$E_{\gamma}^{I_0+2 \rightarrow I_0}$	A	В	С	D	R ₁	R ₃	I ₀	σ
	keV		(×10 ⁻⁴)	(×10 ⁻⁸)	(×10 ⁻¹¹)				(×10 ⁻³)
		5.047	-0.557					7.5	1.816
¹⁹⁵ Pb(1)	182.13	5.069	-0.978	2.145		2.844		7.5	0.615
		5.080	- 1.379	7.052	-1.935		-3.225	7.5	0.340
		5.098	- 0.039					6.5	1.958
¹⁹⁵ Pb(2)	162.58	5.070	0.539	- 3. 151		- 13.73		6.5	0.527
		5.063	0.808	- 6.680	1.488		- 43.09	6.5	0.637
		5.020	- 1.012					8.5	4.984
¹⁹⁵ Pb(3)	198.19	4.978	- 0.324	-2.956		- 34.96		8.5	3.020
		4.924	1.280	- 19.42	5.462		- 40.89	8.5	1.861
		5.391	- 2.223					8.5	2.799
¹⁹⁵ Pb(4)	213.58	5.421	-2.815	3.176		0.543		8.5*	2.339
		6.114	~ 13.29	99.7 0	- 34.47	_	0.634	7.5	2.259
		5.686	-2.416					6.0	3.271
¹⁹⁶ Pb(1)	171.5	5.720	-2.943	2.124		0.351		6.0	1.420
		5.723	~ 3.026	2.938	-0.254		0.334	6.0	1.337
_		5.401	- 2.031					8.0	3.598
¹⁹⁶ Pb(2)	204.5	5.463	- 3. 149	5.747		0.770		8.0	1.474
		5.451	- 2.795	1.043	1.795	_	1.200	8.0	1.314
		5.385	- 1.991					9.0	3.690
¹⁹⁶ Pb(3)	226.7	5.436	-2.875	4.100		0.674		9.0*	1.461
		4.890	2.603	- 30.18	8.496		- 10.24	10.0	1.043
-		5.105	-0.635					7.5	1.891
¹⁹⁷ Pb(1)	184.4	5.121	-0.837	0.679		1.242		7.5	0.973
		5.138	- 1.266	4.174	-0.911		-1.595	7.5	0.447
		5.161	0.324					8.5	2.409
¹⁹⁷ Pb(2)	205.5	5.124	0.169	- 1.734		- 77.98		8.5	0.646
		5.125	0.144	- 1.522	-0.058		118.2	8.5	0.630
		5.656	- 1. 562					12.0	3.500
¹⁹⁸ Pb	305.1	5.704	- 2. 134	1.835		0.575		12.0	1.638
		5.756	- 3.225	10.03	-2.019		0.557	12.0	0.650
		5.075	- 0. 934					11.5	1.881
¹⁹⁵ Bi	261.5	5.014	0.739	- 13.26		- 30.41		11.5	0.813
		4.430	8.421	- 87.00	31.12		- 1.785	12.5	0.791
		5.431	- 1.324					6.0	7.595
¹⁹⁶ Bi	166.2	5.498	- 2.780	8.197		1.458		6.0	4.082
		5.549	- 4.827	36.09	- 12.17		0.761	6.0	2.384
		5.842	- 4.152					6.0	4.680
¹⁹⁸ Po	175.9	5.915	- 6.462	19.41		0.687		6.0	1.259
		5,930	- 7, 325	36.82	- 11.33		0.595	6.0	0.975

注:表190区超形变带计算能谱和实验能谱的相对方均根差、带首自旋及参数值,实验能谱依次选自文献[6--26];带"*"的自旋为我们的建议值。

结果见表1的9—10列,几乎所有四参数公式拟合的相对方均根差和近一半三参数公式 拟合的相对方均根差在万分之几以下,大多数三参数公式拟合的相对方均根差小于千分 之五,而两参数公式拟合的相对方均根差也都在千分之几以下.四参数公式拟合的结果 好于三参数公式,三参数公式拟合的结果又好于两参数公式.所有这些说明:Bohr-Mottelson的I(I+1)展开是个较好的公式,190区超形变带的转动谱支持I(I+1)展开公式, I(I+1)展开的收敛性是令人满意的.同时可以看出:I(I+1)展开的项数越多,拟合的 精度越高,表明I(I+1)展式越趋近于原子核真实的转动谱公式.对于大多数190区超 形变带,三个公式确定的带首自旋也完全相同.少数超形变带的带首自旋有±ħ的偏差 可能是实验误差所致.我们从拟合精度和参数关系两方面综合考虑给出了带首自旋的建 议值,这些结果与其文献基本一致.

2.2 三参数关系

在用公式(2) 拟合超形变带 E2 跃迁谱的同时,系统计算了各参数 A, B 和 C 的数值, 计算表明: I(I+1) 展开系数很有规律性, 所有带的参数 A 总是正的, 它与原子核的转动 惯量相关联. 大部分带的参数 B 小于零,参数 C 大于零,与 ab 公式的理论预言相一致. 三参数数值关系 R₁ 也被计算(结果见表1的第6列),从中可以看出:在所研究的 61 条 超形变带中有 32 条带的 R_1 值接近于 0.5, 与 ab 公式的预期值($R_1 = 1/2$)相一致, 11 条 带的 R₁ 值接近于 1.0, 与 Harris 公式的预期值(R₁=1)相一致. 这说明:对于 190 区超形 变态,大部分带的三参数数值关系支持 ab 公式而小部分的三参数数值关系与 Harris 公 式相符,即 ab 公式比 Harris 公式具有更广泛的实用性,190 区大部分超形变态具有吴一 曾所假设的简单结构,只有小部分超形变态可能与 Harris 所假设的结构相似.此外,还有 18条带的三参数数值关系 R_1 值为负数,与 ab 和 Harris 公式都存在明显的偏离.表明原 子核超形变态是一个复杂的体系,不能用统一的公式描述所有超形变带.按照上述三参 数关系可将 190 区超形变带分成三类:(i)支持 ab 公式的带,这些核态具有很小的非轴对 称 γ 形变, 与吴 - 曾所假设的结构相似. (ii) 支持 Harris 公式的带, 这些核态可能与 Harris 所假设的结构相似. (iii)偏离 ab 和 Harris 公式的带,这部分核态的结构比较复杂,可能 不具有吴一曾和 Harris 所假设的简单结构.因而难以仅用两参数 ab 或 Harris 公式描述 它们的超形变带.我们也能看出,除¹⁹⁰Hg(1)带之外,190区所有晕带的三参数数值关系 都与 ab 公式的理论预期值接近,这进一步表明支持 ab 公式的超形变核态具有比较简单 的结构.

2.3 四参数关系

为了进一步检验超形变带两参数 *ab* 公式比 Harris 公式具有更广泛的实用性,我们 又用 Bohr-Mottelson 的四参数公式(3)系统拟合了 190 区 61 条超形变带,求出了四参数 *A*,*B*,*C*,*D* 的值,然后计算它们的比值 *R*₃

$$R_3=\frac{AC}{4B^2}-\frac{A^2D}{24B^3}$$

所有结果见表 1 的第 7 列,大部分超形变带的四参数数值关系接近 ab 公式的理论预期值 ($R_3 = 7/24 \approx 0.29$),而与 Harris 公式有系统的偏离.从而说明了,无论对于正常形变带还 是超形变带,两参数 ab 公式都比 Harris 公式优越.部分超形变带的四参数数值关系不支 持 ab 和 Harris 公式,说明超形变核态是一个复杂的体系,这些超形变带核态可能不具有 吴 - 曾和 Harris 所假定的简单结构.总之,通过上述三参数和四参数数值关系的分析可 以看出:对于 190 区超形变核态,尽管它们的形变较大,大部分核态可能仍然具有较为简 单的结构,非轴对称 γ 形变很小,十分接近于吴 - 曾所假设的简单结构,从而能用两参数 ab 公式较好地描述它们的超形变带能谱 这或许是 ab 公式比 Harris 公式优越的原因之

3 结论

用 Bohr-Motelson 的两参数,三参数和四参数公式都能较好地拟合超形变带的 E2 跃 迁谱,并能给出基本一致的带首自旋.大部分带的三参数数值关系符合 ab 公式的理论预 期值,小部分带的三参数数值关系符合 Harris 公式的理论预期值,一半以上带的四参数数 值关系与 ab 公式的理论预期值接近,而与 Harris 公式偏离较大,这不仅说明了 Bohr-Motelson 展式对于超形变带的合理性,同时说明了两参数 ab 公式比 Harris 公式具有更广泛 的实用性.

参考文献(References)

- 1 Bohr A, Mottelson B R. Nuclear Structure, (Benjamin, New York), 1975, II
- 2 Harris S.M. Phys. Rev. Lett., 1964, 13:663-666; Phy. Rev., 1965, B138:509
- 3 WUCS, ZENG J Y. Commun. in Theor. Phys. (Beijing), 1987, 8:51-74
- 4 XU FuXin, XU Ni. High Energy Phys. and Nucl. Phys. (in Chinese), 1993, 17:1039-1047 (徐辅新,徐霓. 高能物理与核物理,1993,17:1039-1047)
- 5 HU ZuoXian, ZENG Jing Yan. High Energy Phys. and Nucl. Phys (in Chinese), 1998, 22:446 (胡佐贤,曾谨言. 高能物理与核物理,1998,22:446-453)
- 6 Vo DT, Kelly W H, Wohn F K et al. Phys. Rev. Lett. 1993, 71:340-343
- 7 Bearden L G, Janssens R V F, Carpenter M P et al. Z. Phys., 1992, A341:491-492
- 8 Crowell B, Carpenter M P, Janssens R V F et al. Phys. Rev., 1995, C51; R1599-R1603
- 9 Carpenter M P, Janssens R V F, Cederwell et al. Phys. Rev., 1995, C51:2400-2405
- 10 Fallon P, Lauritsen T, Anmad I et al. Phys. Rev., 1995, C51:R1609-R1612
- 11 Joyce M J, Sharpey-Schafer J F, Riley M A et al. Phys. Lett., 1994, B340:150-154
- 12 Krücken R, Hackman G, Delelanque M A et al. Phys. Rev., 1996, C54:R2109-2113
- 13 Hackman G, Krücken R, Janssens R V F et al. Phys. Rev., 1997, C55:148-154
- 14 Pilotte S, Yu C H, Jin H Q et al. Phys. Rev., 1994, C49:718-724
- 15 Fischer S M, Carpenter M P, Janssens R V F et al. Phys. Rev., 1996, C53:2126-2133
- 16 Bouneau S, Wilson A N, Azaiez F et al. Phys. Rev., 1996, C53:R9-R13
- 17 Azaiez F et al. Phys. Rev. Lett., 1991, 66:1030-1033
- 18 Duprat J, Azaiez F, Bourgeois C et al. Phys. Lett., 1994, B341:6-11
- 19 Ducroux L, Astier A, Beraud R et al. Z. Phys., 1995, A352:13-14
- 20 Ducroux L, Astier A, Duffait R et al. Phys. Rev., 1996, C53:2701-2708
- 21 Hughes J R, Becker J A, Brinkman M J et al. Phys. Rev., 1994, C50:R1265-R1269

- 22 Farris L P, Henry E A, Becker J A et al. Phys. Rev., 1995, C51:R2288-R2292
- 23 van Severen U J, Korten W, Hubel H et al. Z. Phys., 1995, A353:15-16
- 24 Hibbert I M, Wadsworth R, Hauschild K et al. Phys. Rev., 1996, C54:2253-2258
- 25 Clark R M, Bouneau S, Wilson A N et al. Phys. Rev. , 1996, C53:117-123
- 26 McNabb D P, Baldsiefen G, Bernstein L A et al. Phys. Rev., 1996, C53:R541-R543

Research on Superdeformed Bands with Bohr-Mottelson's Formulas*

GUO JianYou^{1,2} XU FuXin¹ RUAN TuNan²

1(Department of Physics, Anhui University, Hefei 230039) 2(Department of Modern Physics, University of Science and Technology of China, Hefei 230027)

Abstract The superdeformed bands in the A~190 region are systemically analyzed by using Bohr-Mottelson's two, three and four-parameter I(I+1) expansions. All results show that three formulas are reasonable to the description of superdeformed bands and the agreement with the spin determination. The parameter-relation R_1 for most of bands agrees with the theoretical expected value of *ab* formula and the parameter-relation R_1 for a part of bands agrees with the theoretical expected value of Harris formula. The parameter-relation R_3 for half bands deviates from the theoretical expected value of Harris two-parameter ω^2 expansion, but is closer to the theoretical expected value of *ab* formula, which may indicate that the *ab* formula is superior to the Harris two-parameter ω^2 expansion.

Key words superdeformed band, the parameter-relation, I(I+1) expansion

Received 21 June 1999

^{*} Supported by National Natural Science Foundation of China (19677102, 19775044), Beijing Electron-Positron Collision of National Laboratory of China, Center of Theoretical Nuclear Physics of Lanzhou Heavy Ion Accelerator National Laboratory of China, Natural Science Foundation of Anhui Province and Education Committee Foundation of Anhui Province