HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS

过渡区核⁸⁷Zr 的高自旋态研究*

赵广义^{1,2} 李广生¹ 吴晓光¹ 刘祥安¹ 温书贤¹ 陆景斌² 袁观俊¹ 杨春祥¹ 1(中国原子能科学研究院 北京 102413) 2(吉林大学物理系 长春 130023)

摘要 通过東流能量为 118MeV 的⁵⁹Co(³²S,3pn)⁸⁷Zr 熔合蒸发反应,用在束 γ 谱学方法研究了⁸⁷Zr 的高自旋态.利用 7 台反康普顿谱仪组成的探测阵列进行 γ-γ 符合测量,并确定部分 γ 射线的 DCO 值,在此基础上建立了自旋直到 (37/2⁺)和(43/2⁻)的能级纲图.观测到了多条新的能级.与相邻的同中子异荷 素的比较表明,中子对核结构性质的影响远大于质子的贡献.随着质子数的增 加,第一交叉频率呈减小的趋势.

关键词 高自旋态 在東γ谱学 能级纲图

1 引言

在 $A \approx 80$ 区,原子核内中子数和质子数相近,都处在 28 和 50 两个满壳之间.任何一种核子数的改变都会引起核形状的显著变化,呈现出复杂的能级结构,并蕴含着丰富的核结构信息,因此引起人们对该核区的很大兴趣.1996 年,Rudolph 等^[1] 对这些过渡核进行了研究,并用壳模型进行了很好的解释.他们的研究结果表明,对于 $40 \le Z \le 45$ 的核来说,N = 46 是集体结构向球形核变化的转折点。在缺中子区, $40 \le N \le 50$ 的 Zr(Z = 40) 同位素核能够为原子核的形变过程提供一个很好的示例。⁸⁷ Zr 含有 47 个中子,处于变形核和球形核之间的过渡区,通过研究它有助于我们对核形变过程的了解,到目前,只有Arnell 等^[2] 利用⁸⁴ Sr(α ,n)⁸⁷ Zr 和⁸⁶ Sr(α ,3n)⁸⁷ Zr 反应对⁸⁷ Zr 进行过在束研究,提出一个自旋直到 27/2⁺ 的能级纲图.为了获得⁸⁷ Zr 的更多的核结构信息

为此,我们通过重离子反应,利用在束γ谱学方法对⁸⁷Zr的高自旋结构进行了探讨.

2

能科学研究院 HI-13 申列加速器上进行的,利用入射能量为

1998-12-31 收稿,1999-05-20 收修改稿 国家自然科学基金资助项目(19675056)

213-219

118MeV 的⁵⁹Co(³²S,3pn)⁸⁷Zr 熔合蒸发反应布居⁸⁷Zr 的高自旋态. 实验用的靶为附有 Ta 衬的厚度为 1082μg/cm² 的⁵⁹Co 箔,Ta 衬主要是起阻停作用,便于能级寿命的测量.用 7 台 HpGe 探测器组成的探测阵列进行 γ-γ 符合测量.为了提高峰康比,每个探测器都有一 个对称形的 BGO 反康普顿屏蔽装置. 这些探测器放在与束流成 38°,90°和 142°的位置 上以便获得 γ 射线的 R_{ICO}值.同时,采用了一个平面型 HPGe 探测器以利于探测低能 γ 射线.用¹⁵²Eu 和⁶⁰Co 标准源进行能量刻度和相对效率测量.7 台具有反康屏蔽的 HPGe 探测器的相对效率为 15%—30%,能量分辨率为 1.9—2.1keV. 本实验记录了约 1.5× 10⁸ 个两重或多重符合事件,并以事件 – 事件方式存入磁带.

离线时对事件进行反演分类,建立 4096×4096 二维矩阵.通过对该二维符合矩阵的 开窗投影确定了各 γ 射线之间的级联关系.

Turcotte 等^[3]和 Votsilka 等^[4]早就通过β衰变研究了⁸⁷Zr 的能级结构,⁸⁷Zr 的基态自 旋被确定为 9/2⁺,这个指定与相邻的 N = 47 奇 A 核⁸⁵Sr^[5],⁸⁹Mo^[6]和⁹¹Ru^[7]的情况相一 致.在文献[2]的基础上,我们根据γ射线的符合关系和相对强度,将⁸⁷Zr 的激发态上推 到自旋(43/2⁻)和(37/2⁺),建立了图1所示的能级纲图.自旋的指定主要通过γ跃

图 1 本工作中建立的⁸⁷ Zr 的能级纲图

图 2 1070keV 和 1132keVy 跃迁开窗的相加谱

迁的 R_{DCO} 比值来实现. 图 2 给出 1070keV 和 1132keV 两条最强 γ 射线开窗的相加谱,除 看到了文献[2]中的大部分 γ 射线外,还发现了一些新的 γ 射线. 表 1 给出了 γ 射线的能量、相对强度和 DCO 比值 R_{DCO} .

E_{γ}/keV	Iγ	R _{DCO}	开窗	J_{i}^{π}	J ^π _f	E _y /keV	Iγ	R _{DCO}	开窗	J_{i}^{\star}	Jĩ
110.6	100(9)			17/2-	17/2+	770.5	<10			19/2-	17/2 -
129.7	16(2)			21/2-	19/2-	886.5	<10			(9/2+)	7/2+
134.6	<10			1/2-	7/2*	899.8	155(8)	0.86(19)	Α	21/2-	17/2 -
154.5	108(16)			17/2-	17/2-	903.0	<10			(37/2+)	(35/2+)
200.8	47(7)			7/2 *	9/2+	911.3	15(1)			29/2-	27/2-
238.8	268(33)	1.52(24)	Α	17/2 -	13/2 -	924.6	125(7)	0.77(15)	В	19/2-	17/2-
285.6	10(2)			27/2 -	25/2 -	949.4	<10			13/2-	11/2+
295.4	10(2)	0.54(11)	А	33/2+	31/2*	966.6	219(11)	0.95(13)	Α	25/2-	21/2-
339.3	< 10			(35/2+)	33/2+	977.8	13(1)			29/2+	27/2+
377.8	136(10)	0.51(8)	В	21/2 -	19/2 -	1003.9	460(23)			13/2 -	13/2+
401.5	27(3)	0.47(12)	Α	27/2+	25/2+	1048.5	42(3)			25/2+	21/2+
416.4	105(8)			13/2~	11/2+	1069.5	1000(49)	1.05(12)	В	13/2+	9/2+
431.0	11(2)	0.48(10)	Α	33/2+	31/2*	1087.5	<10			(9/2*)	9/2+
455.0	60(4)	0.39(10)	Α	29/2	27/2-	1112.3	<10			29/2+	25/2+
486.1	202(15)	0.49(5)	Α	23/2+	21/2+	1124.5	33(2)			11/2+	9/2 *
521.7	42(3)	0.61(16)	Α	19/2 -	17/2 -	1132.4	828(41)	0.98(8)	Α	17/2+	13/2+
524.5	11(2)	0.60(12)	С	29/2+	27/2+	1149.7	27(2)	0.82(41)	Α	27/2+	23/2+
562.1	68(4)	0.49(8)	Α	25/2+	23/2+	1162.5	24(2)			(25/2+)	21/2+
578.6	<10			(31/2~)	(29/2-)	1179.5	<10			33/2*	29/2+
587.5	26(2)	0.50(10)	Α	27/2+	25/2+	1183.0	<10			(35/2-)	(31/2-)
569.7	<u>< 10</u>			11/2+	(9/2+)	1196.8	37(2)			29/2-	25/2~

表1 本实验测量的⁶⁷Zr γ射线强度和部分 γ射线的 R_{DCD}值

笛	24	**
SPP.	24	怔

E_{γ}/keV	Iγ	RDD	开窗	J ^π	J f	E_{γ}/keV	Iγ	R _{DCO}	开窗	J_i^{π}	J۳
612.9	<10			35/2-	33/2 -	1242.6	<10			(37/2 *)	33/2+
615.6	34(2)			(29/2-)	27/2-	1273.0	49(3)	1.01(33)	Α	31/2+	27/2+
627.5	23(1)	0.60(11)	Α	33/2-	31/2-	1314.0	<10			(43/2-)	$(39/2^{-})$
676.2	43(3)	0.54(9)	С	19/2 -	17/2-	1325.7	<10			(39/2)	$(35/2^{-})$
683.4	94(5)	0.51(21)	Α	31/2	29/2	1378.7	22(2)	1.09(25)	А	29/2+	25/2+
691.9	731(36)	1.02(9)	Α	21/2+	17/2+	1456.1	16(1)			11/2+	7/2+
741.1	298(13)	0.50(9)	Α	27/2-	25/2-	1656.6	18(1)			11/2+	9/2+
748.3	33(2)	0.51(12)	Α	25/2+	23/2+						

(续表)

A,B,C分别是由 1067.0→1071.5,964.5→968.0,690.0→694.0 keV 开窗得到的.

2.1 正字称带

(1) 4057keV 能级:通过对 1070,1132 和 692keV γ 射线的开窗均看到了 1163keV γ 射线, 而在 486keV 开窗谱中没有出现 1163keV γ 射线. 此外对 1163keV γ 射线开窗也只 看到了 1070,1132 和 692keV γ 射线, 故把 1163keV γ 射线作为 2894keV 能级的馈入跃 迁,建立了 4057keV 的新能级,其自旋只能推断地给定为(25/2⁺).

(2) 5055keV 能级:对 562 和 588keV 的 γ 射线开窗首次看到了 525,1180,977,295, 1273,431,339 和 903keV 的 γ 射线.并在对 562keV γ 射线的开窗谱中还看到了 1112keV 的 γ 射线,而在对 588keV γ 射线开窗谱中则没有看到这条 γ 射线.反之,通过对 1112keV γ 射线的开窗看到了 562keV γ 射线,但 588keV 和 525keV 的 γ 射线都没有出现.且 587keV 加上 525keV 恰好等于 1112keV,故把 525keV γ 射线馈入 4530keV 能级, R_{DCO}值 确定其为 ΔI = 1 的跃迁,所以这条新建的 5055keV 能级的自旋定为 29/2⁺.

(3) 5507keV 能级:在对 748keV γ射线开窗谱中可以看到 402,977 和 1379keV γ射线,在 402keV γ射线开窗谱看到了 748 和 977keV γ射线,却没有发现 1379keV γ射线. 又因为 402 和 977keV 相加等于 1379keV,所以 977keV 和 1379keV γ射线都是 5507keV 能级的退激跃迁而分别布居 4530keV 27/2*态和 4128keV 25/2*态.基于 1379keV γ射 线的 R_{mo}表明其为 ΔI = 2 跃迁,故 5507keV 能级的自旋被指定为 29/2*.

(4) 5803keV 能级:对 977keV 和 295keV γ射线开窗谱均可相互看到,但都没有看到
1273keV γ射线,且 295.4keV 加上 977.4keV 等于 1273keV,又因 977keV γ射线的开窗
谱中没有观察到 1379keV γ射线,可确定 295keV γ 跃迁布居在 5507keV 能级. 1273keV
γ射线的 R_{IXX}值表明它是一个 ΔI = 2 的跃迁,所以 5803keV 能级的自旋被定为 31/2⁺.

(5) 6234keV 能级:由 525keV 29/2⁺→27/2⁺ 跃迁开窗看到 1180,339 和 903keV γ 射线,而对 295 开窗看到了 977,431,339 和 903keV γ 射线,且又在 431keV 开窗谱中看到了 295,977 和 1273keV γ 射线,但没有看到 1180 和 525keV γ 射线,而且,431,295.4, 977.4keV 的和与 524.5,1179.5keV 的和相等,故把 431keV γ 射线放在能级 5803keV 之上,确立了 6234keV 的能级,而 1180keV γ 射线也同时退激该能级,馈入 5055keV 29/2⁺ 态.根据 431 跃迁的 R_{DCO}值可以指定 6234keV 能级的自旋为 33/2⁺.

(6) 6573 和 7476keV 能级:由于级联布居 6234keV 33/2⁺态的 339keV 和 903keV γ

射线强度非常弱,得不到它们的 R_{DCO} 值,因而 6573 和 7476keV 这两条新能级自旋只能推测性的给出.

2.2 负字称带

(1) 5530,5691,6213,6270,6841 和 7453keV 能级:在对 741keV γ射线开窗谱首次 看到了新的 616,579,1183,455,683,628,612,1326 和 1314keV 的 γ射线,对 455,683, 628 和 612keV γ射线开窗可证明它们相互符合,但却看不到 616,579 和 1183keV γ射 线,同样对 616,579 和 1183keV γ射线开窗,表明它们也相互符合,却没有看到 455,683, 628 和 612keV γ射线. 由此可知,它们是两个都馈入 5075keV 27/2⁻ 能级的衰变系列,从 而依次建立了 5530,5691,6213,6270,6841 和 7453keV 6 条新能级. 根据 455,683 和 628keV γ射线的 $R_{\rm mo}$ 值显示它们都是 $\Delta I = 1$ 的跃迁,可以确定 5530,6213 和 6481keV3 条能级的自旋分别是 29/2⁻,31/2⁻ 和 33/2⁻. 鉴于 616,579,1183 和 612keV γ 跃迁的强 度较弱,得不到它们的 $R_{\rm mo}$ 值,只能推断性的给出 5691,6270 和 7453keV 能级的自旋.

(2) 8779 和 10093keV 能级:由于 455,683,628,612keV γ 射线的和与 616,579, 1183keV γ 射线的和相等,且均与 1326 和 1314keV γ 射线相符合,说明这两串衰变系列 是同时退激 7453keV 能级的,并由 1326 和 1314keV γ 跃迁级联馈人该能级,从而确定 8779 和 10093keV 两个高激发态,但它们的自旋尚不能确定性地给出.

3 讨论

从图 1 可以看到能级纲图在 17/2^{*} 以上分裂成两个不同宇称的带结构. 在正宇称带 中,除了非常强的 E2 跃迁 1070,1132 和 692keV 以外,还发现了其它的一些如 1049, 1112,1180 和 1243keV γ 射线,但这些 E2 跃迁的强度都很弱,这是由于快 M1 跃迁与它 们竞争的结果. 在能级纲图左侧的负宇称系列有着非常复杂的结构,在高自旋时似乎表 现出近似转动的特性.

比较⁸⁷Zr 和周围相邻同中子奇 A 核的正宇称带(见图 3),它们间的相似性意味着其

48

能级结构基本不依赖于 Z 发生变化.也就是说,质子对核形变的影响是很小的,而中子影 响占主要地位.

为了研究核子数对回弯频率的影响,我们在图 4 中画出⁸⁷ Zr 和⁸³ Zr^[8],⁸⁵ Zr^[9],⁸⁹ Mo^[6], ⁹¹Ru^[7]的正宇称带运动学转动惯量 $J^{(1)}$ 随转动频率的变化曲线.图中可以看到,⁸⁷ Zr 在转 动频率约 0.43MeV 处发生第一回弯.与⁸³ Zr 和⁸⁵ Zr 相比,它的第一回弯频率提前.还可 以看到,这一核区同位素的第一回弯频率随着中子数的增加呈减小的趋势.与同中子异 荷素⁸⁹ Mo 和⁹¹ Ru 相比,⁸⁷ Zr 第一回弯频率相对延迟,随着质子数的增加第一回弯频率呈 减小趋势.图 4 还表明,中子数对第一回弯频率的影响比质子数对第一回弯频率的影响

图 5 ⁸⁶ Zr,⁸⁷ Zr 和⁸⁸ Zr 的低位能态的比较

要大

为了便于比较,图 5 给出了⁸⁶ Zr^[10],⁸⁸ Zr^[11] 和⁸⁷ Zr 的相应低自旋能级图,可以看出,⁸⁷ Zr 的 13/2⁺ 和 17/2⁺ 态与⁸⁸ Zr 的 2⁻ 和 4⁺ 态符合 得很好,而⁸⁶ Zr 的 2⁺ 和 4⁺ 态激发能明显要 低,这主要是由于含有 47 个中子的⁸⁷ Zr 和含 有 48 个中子的⁸⁸ Zr 靠近 N = 50 大壳,更接近 于球形. 而⁸⁶ Zr 离 N = 50 大壳远一些,因而 集体特性更强一些.

对于⁸⁷Zr来说,它的一些低激发态可以用 相邻的偶偶核(Z,N + 1)的核芯激发态 0⁺

2⁺,4⁺,6⁺ 等耦合上一个中子空穴态 $\nu(g_{9/2})^{-1} 来解释^{[2]}$.那么图 5 中⁸⁷ Zr 13/2⁺ 态的组态 可能是 $\nu(g_{9/2})^{-3}$ 或 $\pi(g_{9/2})_{I=2}^{2}\nu(g_{9/2})^{-1}$.考虑到 17/2⁺ 态的能级结构随 Z 的变化比 13/2⁺ 态要明显,那么 17/2⁺ 态的组态极有可能是 $\pi(g_{9/2})_{I=4}^{2}\nu(g_{9/2})^{-1}$ 占主要成份.基于同样的 考虑 21/2⁺ 态的组态应该是 $\pi(g_{9/2})_{I=6}^{2}\nu(g_{9/2})^{-1}$ 占主要成份,并可能混有少量 $\pi(g_{9/2})_{I=8}^{2}$ $\nu(g_{9/2})^{-1}$ 的成份.对于 23/2⁺ 态,通过一条很强的 M1 跃迁退激到 21/2⁺ 态,这种结构在 ⁸⁰Mo^[6]也存在,从图 5 中可以看到 23/2⁺ 态和⁸⁸ Zr 的 8⁺₂ 态符合得非常好,且在相邻的⁸⁸ Zr 中 8⁺₂ 被确定为 $\pi(g_{9/2})_{I=8}^{2}$ 组态,故把 23/2⁺ 确定为 $\pi(g_{9/2})_{I=8}^{2}\nu(g_{9/2})^{-1}$ 是合理的. 25/2⁺₁ (25/2⁺₂)和⁸⁸ Zr 的 8⁺₁ (8⁺₂)态偏离很大,这表明 25/2⁺₁ (25/2⁺₂)态与 13/2⁻,17/2⁺ 和 21/2⁺ 态相比有着更为复杂的结构,它们的组态除了 $\pi(g_{9/2})_{I=8}^{2}\nu(g_{9/2})^{-1}$ 以外还应包含其 它组态的混杂,在本文中认为是 $\pi(g_{9/2})_{I=8}^{2}\nu(g_{9/2})^{-1}$ 和 $\pi(g_{9/2})_{I=8}^{2}\nu(g_{9/2})_{In}^{-3}$ (*In* 是指 3 个 $\nu(g_{9/2})_{I=8}^{-1}\nu(g_{9/2})_{I=8}^{-1}\nu(g_{9/2})_{I=8}^{-1}\nu(g_{9/2})_{I=8}^{-3}\mu$ 造成的.由于 $\pi(g_{9/2})_{I=8}^{2}\nu(g_{9/2})^{-1}$ 自旋最高只能耦合到 25/2⁺,所以对于 $I \ge 27/2^+$ 态,则是 $\pi(g_{9/2})_{I=8}^{2}\nu(g_{9/2})_{I=8}^{-3}$

4 小结

利用重离子反应结合在束 γ 谱学的方法对⁸⁷ Zr 进行了高自旋态的研究.建立了自旋 直到(37/2⁺)和(43/2⁻)的能级纲图,观察到许多过去未知的新能级.随着角动量增加,出 现 $\pi(g_{9/2})_{I=8}^{2}\nu(g_{9/2})^{-1}$ 组态和 $\pi(g_{9/2})_{I=8}^{2}\nu(g_{9/2})_{I_{n}}^{-3}$ 组态之间的混杂. 对于 $I \ge 27/2^{+}$ 高自旋态,则是 $\pi(g_{9/2})_{I=8}^{2}\nu(g_{9/2})_{I_{n}}^{-3}$ 组态占主要地位. 系统学的分析表明,在核子数对核结构的影响中,中子的贡献远大于质子,随质子数的增加第一交叉频率呈减小趋势.

感谢许国基同志在制靶工作中给予的热情帮助.感谢 HI-13 串列加速器运行人员 为我们提供了良好的東流条件.

参考文献(References)

- 1 Rudolph D, Lieb K P, Grawe H. Nucl. Phys., 1996, A597(2):298-326
- 2 Arnell S E, Sjöberg S, Skeppstedtö et al. Z. Phys., 1978, A289(1):89-102
- 3 Turcotte R, Iafigliola R, Moore R B et al. Nucl. Phys., 1972, A198(1):67-72
- 4 Votsilka I, Kratsik B, Liptak I et al. Izv. Akad, Nuak. Ser. Fiz., 1974, 38:57-61
- 5 Arnell S E, Sjøberg S, Skeppstedtø et al. Nucl. Phys., 1977, A280(1):72-85
- 6 Weiszflog M, Rudolph D, Gross C J et al. Z. Phys., 1993, A344(4):395-403
- 7 Heese J, Grawe H, Maier K H et al. Phys. Rev., 1994, C49(4):1896-1903
- 8 Rudolph D, Gross C L, Lieb K P et al. Z. Phys., 1991, A338(2):139-148
- 9 Jungclaus A, Albers S, von Brentano P et al. Z. Phys., 1995, A352(1):3-4
- 10 Hattula J, Juutinen S, Helppi H et al. Phys. Rev., 1983, C28(4):1860-1862
- 11 Oxorn K, Mark S K, Kitching J E et al. Z. Phys., 1985, A321(3):485-498

Study of High Spin States in Transitional Nucleus ⁸⁷Zr*

ZHAO GuangYi^{1,2} LI GuangSheng¹ WU Xiao Guang¹ LIU XiangAn¹
WEN ShuXian¹ LU JingBin² YUAN GuanJun¹ YANG ChunXiang¹
1 (China Institute of Atomic Energy, Beijing 102413, China)
2 (Department of Physics, Jilin University, Changchun 130023, China)

Abstract High spin states in ⁸⁷Zr was studied through the fusion evaporation reaction ⁵⁹Co(³²S, 3pn) ⁸⁷Zr at a beam energy of 118 MeV using in-beam γ -ray spectroscopic method. γ - γ coincidence measurement was performed by using an array consisting of seven anti-Compton spectrometers, and DCO ratios of some γ rays were determined. The level scheme of ⁸⁷Zr wasestablished up to spin (37/2⁺) and (43/2⁻). Many previously unknown states have been observed. Comparison with neighboring isotones indicates that effect of neutron on nuclear structure property is predominant compared to proton, and there is a tendency of reduction in band crossing frequency with increasing proton number.

Key words high spin states, in-beam ray spectroscopy, level scheme

219

Received 31 December 1998, Reveised 20 May 1999

^{*} Project (19675056) supported by National Natural Science Foundation of China