带混杂和 $i(\omega)$ 名

顾 ♠ 南 (中国科学院近代物理研究所)

稟 搐

本文讨论了 β 带、 γ 带和基带的混杂对 $i(\omega)$ 的影响,解释了 $i(\omega)$ 在某个 ω 值之后的下降行为,并表明了在超带和基态带的交叉点(w,)附近,超带的排列 角动量只是 i(ω) 的一部份。 说明在讨论 i(ω) 时,考虑多带混杂的影响是必要 的.

一、引 言

Bohr 和 Mottelson 定义了 $i(\omega)$ 为超带和基态带的角动量差值⁽¹⁾ $i(\omega) = I_{s}(\omega) - I_{s}(\omega).$

它反映激发的粒子角动量向原子核转动方向排列的程度,因而可称为排列角动量。 当超 带为转动排列带,在完成转动排列后,激发粒子的排列角动量(近似)不变。

我们在前文^[2]中指出,一些实验上已确认为形状相变的核,例如¹ Hg, ¹⁶ Hg, 仍有较 大的 i(ω) 值,加上其他方面的分析表明, i(ω) 是一个等效的量。 又从现有的实验能谱值 发现, $i(\omega)$ 在某个 ω 值之后是下降的,例如¹⁶⁴Er,¹⁵⁶Dv核,

本文试图从多带交叉混杂方面来讨论这个问题。

二、三带混杂与 $i(\omega)$

设混杂前的 g 带,β 带和 γ 带为 hg,hg 和 hγ,混杂后为 λg、λg 和 λγ. 混杂矩阵元为 K. 根据振动转动模型^[3]

$$\begin{split} h_{g} &= A_{g} l (l+1) = A_{g} \hat{l}^{2}, \quad K_{g\beta} = \eta_{g\beta} (\hat{l}^{2} - 2), \\ h_{\beta} &= A_{\beta} \hat{l}^{2} + E_{\beta}, \quad K_{g\tau} = \eta_{g\tau} [(l-1) \hat{l}^{2} (l+2)]^{\frac{1}{2}} \delta_{l}; \quad l = 2, 4 \cdots \\ h_{\tau} &= A_{\tau} (\hat{l}^{2} - 4) + E_{\tau}, \quad K_{\beta\tau} = \eta_{\beta\tau} [(l-1) \hat{l}^{2} (l+2)]^{\frac{1}{2}} \delta_{l}; \quad l = 2, 4 \cdots \end{split}$$

 $A_{g}, A_{\beta} 和 A_{\gamma}$ 是基带、 β 带和 γ 带的转动惯量参数 $\left(A = \frac{1}{2 \mathscr{I}}\right); \eta$ 是带间混杂参数; E_{β} , E_{τ} 是 β 带、 τ 带的带头能量。 A, η 都可以用 E_{β} , E_{τ} 和 ε 三个参数表示。

$$\varepsilon = \frac{1}{\mathcal{J}_0}, \ \hbar = 1. \tag{1}$$

本文 1980 年 9 月 8 日收到。

求解三带混杂特征行列式

$$\begin{pmatrix} h_{g} - \lambda & K_{g\beta} & K_{g\gamma} \\ K_{g\beta} & h_{\beta} - \lambda & K_{\beta\gamma} \\ K_{g\gamma} & K_{\beta\gamma} & h_{\gamma} - \lambda \end{pmatrix} = 0$$
 (2a)

或特征多项式

$$\lambda^3 + b_1\lambda^2 + b_2\lambda + b_3 = 0, \qquad (2b)$$

即可得到 λ_a、λ_b和 λ_a.

在 I 不大或混杂较小时,可用微扰法求解得到解析表达式

$$\lambda_{g} = A'_{g} \hat{I}^{2} - \beta \hat{I}^{4}, \qquad (3)$$

$$A'_{g} = \frac{1}{2} \varepsilon \left(1 + 3 \frac{\varepsilon}{E_{\tau}} + \frac{3}{2} \frac{\varepsilon}{E_{\beta}} + 2 \frac{\varepsilon}{E_{\tau}} \frac{\varepsilon}{E_{\tau} - 2\varepsilon} \right),$$

$$B = \frac{1}{2} \varepsilon \left(\frac{\varepsilon}{E_{\tau}} \frac{\varepsilon}{E_{\tau} - 2\varepsilon} + 3 \left(\frac{\varepsilon}{E_{\beta}} \right)^{2} \right)$$
(4)

\$

 $\Delta \lambda_{g}(l) = \lambda_{g}(l) - \lambda_{g}(l-2) = A'_{g}(4I_{g}-2) - 4B(2I_{g}-1)(l_{g}^{2}-I_{g}+1), \quad (5)$

对于超带有

$$\lambda_{s}(I) = \frac{1}{2\mathcal{J}_{s}} (I - J_{s})^{2} + \lambda, \ \Delta \lambda_{s}(I) = E_{\tau} = A_{s}(4I - 4J_{s} - 2), \qquad (6a)$$

$$\omega_s = \frac{\partial \boldsymbol{\lambda}_s(l)}{\partial l} = \frac{E_r}{2}.$$
 (6b)

这里 J,(A,) 和 J, 是超带的转动惯量和排列角动量. 于是由(5)式和(6)式有

$$= J_{i} - J_{g}^{i}(1).$$

$$\Delta \lambda_{i}(1) = A_{g}^{i}(4l - 4J_{i}^{g}(1) - 2),$$
(6c)

如

则 Jf(I) 一般与 I 有关,由(5) 式和(6c) 式有

$$i(\omega) = J_{s}^{g}(l) - \frac{B}{A_{g}^{\prime}}(2I_{g}-1)(I_{g}^{2}-I_{g}+1) = J_{s}^{g}(l) - J_{g}(l).$$
(8)

第5券

(7) 式和(8) 式示意如图1(a), (b), 图1(a), (b) 中的 *i*(ω) 相同, 但 J₂ 和 J, 的表示式 不同. 图 2 是 ¹⁵⁶Dy, ¹⁶⁶Er 的实验的 *i*(ω) 值^[5].

三、讨 论

1. 众所周知,超带(转动排列带)与基态带、 β 带(可能还有 γ 带)的混杂较小,一般可 由交叉点处能量差($E_s(I_c) - E_g(I_c)$)估计约为几十 KeV. 而根据(1)式(对 ¹⁴Gd)的 估计⁽⁴⁾

$$\eta_{g\beta} = -8.64 \text{KeV}, \quad K_{g\beta} = 2.33 \text{MeV}, \quad \eta_{g\tau} = -4.22 \text{KeV}, \\ K_{g\tau} = 1.14 \text{MeV}, \quad \eta_{\beta\tau} = 3.38 \text{KeV}, \quad K_{\beta\tau} = 0.92 \text{MeV},$$
(9)

如果 $K_{sg}(I_c)$ 中的 $I_c \simeq 16$,则 K_{gg} , K_{gr} , K_{gr} 比 K_{sg} , K_{sg} (可能 K_{sr})大一个量级以上.如考虑四带交叉混杂,则超带在混杂前后的变化很小^[6],主要是交叉点处变化大些,所以可分别考虑它和混杂后的基态带, β 带和 r 带的交叉混杂.

2. 对于基态带 I = R,而对于超带 I = R + J, 在低自旋处 J,(在转动方向的投 影)是缓慢上升还是突然增大到最大值的,至今还不太清楚,但在转动排列完成后,其 J,值应(或近似地)不随 ω 而变.(6a)式就是这种情况。从 ¹⁶⁴Er 的实验能谢^[5]看,的确是 这种情况.它的能量的二级差分 $\Delta^2 E(I) = A_x \times 8 = 75$ KeV,得到 $J_i = 4.0, A_i, J_i$ 都 是常数值.但是如果变换成(6c)式,则 J_i 变成为

$$J_{s}^{\mathbf{z}}(I) = \left[\left(\frac{A_{\mathbf{z}}'}{A_{s}} - 1 \right) \left(I_{s} - \frac{1}{2} \right) + J_{s} \right] \cdot \frac{A_{s}}{A_{\mathbf{z}}'}, \tag{10}$$

而(7)式中的 $J_{i}(I)$,是基态带的带效排列角动量 J_{i} 和 J_{i} 的意义是不同的,前者是准粒子的转动排列对 $i(\omega)$ 的贡献,而后者是其它项的贡献。

3. $J'_{i}(I)$ 项的影响。从(7)式可见,第一项 J_{i} 是常数值。 对不同形变区 $J'_{i}(I)$ 对 $i(\omega)$ 的影响是不同的。

大形变核: $A_i \gtrsim A'_{s}$, $\left(\frac{A'_s}{A_s} - 1\right)$ 很小;由于 ε 小 (E_r , E_{θ} 大), $\frac{B}{A_s}$ 也小.第二项和第 三项都很小, $i(\omega)$ 基本上就是常数值;中等形变核: 如图 1 (a), (b) 所示;小形变核: A_s 一般比 A'_s 小几倍, ε 值也大,所以第二项和第三项都大, $i(\omega)$ 值上升很快,直至最大值后 又很快下降;小形变核,但超带为形状相变的带。例如 ¹⁶⁴Hg 等。由于基态带近似为振动 谱,又加上基带, β 带等与超带的混杂很大,情况比较复杂。(6a) 式不适用, (6a) 式中 J_s , 'A, 也不可能是常量。总之,对三种形变核,能说明 $i(\omega)$ 在一定的 ω 值之后的下降趋势。

4. I_{gmax} ,我们求 $J'_{g}(I)$ (也即 $i(\omega)$)的极值,因为 I 不是连续量,仍用差分,

 $\Delta i(\omega) = i(\omega, l_g) + i(\omega, l_g - 2) = 0,$

$$I_{gmax} = \frac{3}{2} + \frac{1}{2} \sqrt{\frac{2}{3} \cdot \frac{1}{B} (A'_g - A_i)}.$$
 (11)

用(4)式和(11)式,对¹⁵⁶Er,¹⁶⁶Er; 计算 I^T_{gmax} ≈ 4 和 8, 而实验值 I^B_{gmax} ≈ 6 和 10. 如果

不是微扰解,而是严格解 (2a) 式或 (2b) 式,则 I_{gmax}^r 预期将和 I_{gmax}^e 相近. 类似地可求 $i(\omega) = J_s$ 的 I_g 值,即 $J'_g(1) = 0$ 的 I_g 值.对于不同核,它随 ω_c/ω_2 +增加而增加. 将 I_{gmax} 代人 (7) 式,便可得到 $i_{max}(\omega)$.

总结 2, 3, 4 各点,可以看到,对轻稀土区 Z = 66、68、70 等同位素核,随着中子对的添加,形变增大, I_{gmax} 增大, $J'_{g}(I)$ 曲线变得 平缓. 由于 $i'(\omega)$ 下降 和 J_{s} 的下降, (N = 96 的核例外)使 $J'_{gmax}(I)$ 也下降.

综上所述,我们分析了三带混杂对基带的影响.如果将混杂后的基带称为基态带,即 实验测到的带,则*i*(ω)的表示式为(7)式.*i*(ω)由两部分所组成,一部分是准粒子转动 排列的贡献(*J*.近似为常量),另一部分是其它项的贡献.同时,解释了*i*(ω)在某个 ω 值 之后的下降行为,而且认为软核比硬核要下降的更快些.¹⁵⁶Dy($\frac{E(4^+)}{E(2^+)} = 2.93$)比¹⁶⁴Er ($\frac{E(4^+)}{E(2^+)} = 3.28$)软些,实验的*i*(ω)值是下降的快些(图 2).在三带混杂中,对(2)式求 近似解,是为了得到*i*(ω)的解析表达式,便于分析讨论,要作定量计算这是不够的.这 里得到的 A_i ($\frac{1}{2 \int_i}$)也是比较合理的,例如¹⁵⁶Er(2 $\int_i \approx 100$ MeV⁻¹)¹⁶²Er(2 $\int_i \approx 110$ MeV⁻¹) 与负字称转动排列带的 2 \int 相近.如果这种图象或解释是合理的,则预期这种现象---*i*(ω)在某个 ω 值后下降,而且软核比硬核下降得要快些-----在实验*i*(ω)中可能将是普遍 的.目前只有¹⁵⁶Dy,¹⁶⁴Er 核实验数据较多.希望不久以后能有更多核的实验数据,以便 对一些问题深入讨论.

作者感谢兰州大学徐躬耦先生的宝贵意见和有益讨论.

参考文献

- A. Bohr, B. R. Mottelson, Proc. Int. Conf. on Nuclear Structure (Tokyo) 1977; Phys. Today, 32(1979), No. 5, 27.
- [2] R. M. Lieder, H. Ryde, Advances in Nucl. Phys., 10(1978), 1.
- [3] J. M. Eisenberg, W. Greiner, Nuclear Model, (1970), 152; Y. EL. Masrt et al., Nucl. Phys., A271(1976), 133.
- [4] D. Ward et al., Nucl. Phys., A332(1979), 433; N. R. Johnson et al., Phys. Rev. Lett., 40(1978), 151.
- [5] 顾金南、王正大,高能物理与核物理,4(1980),652.

THE MULTIBAND MIXING AND THE $i(\omega)$

GU JIN-NAN

(Institute of Modern Physics, Academia Sinica)

ABSTRACT

The effect for the mixing of the three-band, the g, γ and β bands, on the $i(\omega)$ is discussed. The decreasing behavior for $i(\omega)$ after some value is interpreted, and it is shown that near the crossing point (ω_c) of the s and g bands, rotation-aligned angular momentum of the quasiparticle is only a part of the total $i(\omega)$.