×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

THE LOOP PHASE-FACTOR APPROACH TO GAUGE FIELDS

  • The gauge field theory is formulated via loop phase factors with a fixed point O as their initial and final point. Let G be the gauge group. When the base space is the Minkowski space E4, we introduce a set of standard paths Ox (for example, the set of line segments Ox), where x is arbitrary. The phase factor for the infinitesimal loop Oxx+dxO corresponds to an element in the Lie algebra g and can be expressed as a g-valued differential form kx, dx) which satisfies the following conditions of consistency (a) kO, dx)=0, (b) kx, v)=0, where v is the tangential vector of Ox at x. It is shown that an equivalent class of gauge fields is determined by kx, dx) or (ad akx, dx) where a is a fixed element of G. Hence if we adopt k(x, dx) for the fundamental physical quantity of a gauge field then a great part of gauge indefiniteness is eliminated. Moreover if the phase factors Φxo for standard paths Ox are given then the phase factors for differential arcs x x+dx are easily calculated, and hence a gauge field in the equivalent class is extracted. We call the set of phase factors for standard paths a gauge and kx, dx) may be interpretated as the gauge potential under a special gauge under which Φxo=the unit element of G.The method is useful in considering the equivalence problem and the spacetime symmetry of gauge fields. For example, it is quite easy to determine all spherically symmetric gauge fields if they are free of singularities. By using the method it can also be proved that if two gauge fields have the same gauge and the same field strength then their gauge potentials are equal to each other. Consequently, under a given gauge in the above sense the field strength determines the gauge potential completely.For a general base manifold Mn, every equivalent class of gauge fields over Mn can be defined by loop phase factors also. In this case, Mn is expressed as the sum of a set of neighborhoods each of which is homeomorphic to the Euclidean space. The standard paths are constructed according a certain rule, the phase factors for standard differential loops are also introduced. The transition functions and gauge potentials of a gauge field in the given equivalent class are derived as the phase factors for some finite loops and standard differential loops respectively. Further it is remarkable that a global gauge field is determined completely by the field strength and some discrete loop factors, if the phase factors for the standard paths are gwen.In mathematical terminology principal G-bundle structure as well as a connection in it is determined by the holonomic mapping which maps the set of loops through a fixed point into the group G, provided the mapping is differentible in a certain.The author is very grateful to Prof. Yang Chen Ning for many helpful discussions.
  • 加载中
  • [1] C. N. Yang(杨振宁),Phys. Rev. Gett., 33 (1974), 445.[2] 谷超豪、杨振宁,Scientia Sinica, 18 (1975), 483;复旦学报(自然科学版),1975, 2.[3] T. T. Wu(吴大峻)and C. N. Yang, Phys. Rev., D12 (1975), 3845. [4] 谷超豪、杨振宁,Scientia Sinica, 20 (1977), 47;复旦学报(自然科学版),1976, 3, 4, 146.[5] 谷扭豪,复旦学报(自然科学版),1977, 2, 30.[6] 胡和生,关于规范场的化约性(未发表).[7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, chap. 2 (1963).[8] 谷超豪、胡和生,物理学报,26 (1977), 155.[9] 谷超紊,复旦学报(自然科学版),1975, 4, 83:中国科学,1976, 3, 320.
  • 加载中

Get Citation
GU CHAO-HAO. THE LOOP PHASE-FACTOR APPROACH TO GAUGE FIELDS[J]. Chinese Physics C, 1978, 2(2): 97-108.
GU CHAO-HAO. THE LOOP PHASE-FACTOR APPROACH TO GAUGE FIELDS[J]. Chinese Physics C, 1978, 2(2): 97-108. shu
Milestone
Received: 1976-04-26
Revised: 1900-01-01
Article Metric

Article Views(2494)
PDF Downloads(338)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

THE LOOP PHASE-FACTOR APPROACH TO GAUGE FIELDS

  • Futan Univergity

Abstract: The gauge field theory is formulated via loop phase factors with a fixed point O as their initial and final point. Let G be the gauge group. When the base space is the Minkowski space E4, we introduce a set of standard paths Ox (for example, the set of line segments Ox), where x is arbitrary. The phase factor for the infinitesimal loop Oxx+dxO corresponds to an element in the Lie algebra g and can be expressed as a g-valued differential form kx, dx) which satisfies the following conditions of consistency (a) kO, dx)=0, (b) kx, v)=0, where v is the tangential vector of Ox at x. It is shown that an equivalent class of gauge fields is determined by kx, dx) or (ad akx, dx) where a is a fixed element of G. Hence if we adopt k(x, dx) for the fundamental physical quantity of a gauge field then a great part of gauge indefiniteness is eliminated. Moreover if the phase factors Φxo for standard paths Ox are given then the phase factors for differential arcs x x+dx are easily calculated, and hence a gauge field in the equivalent class is extracted. We call the set of phase factors for standard paths a gauge and kx, dx) may be interpretated as the gauge potential under a special gauge under which Φxo=the unit element of G.The method is useful in considering the equivalence problem and the spacetime symmetry of gauge fields. For example, it is quite easy to determine all spherically symmetric gauge fields if they are free of singularities. By using the method it can also be proved that if two gauge fields have the same gauge and the same field strength then their gauge potentials are equal to each other. Consequently, under a given gauge in the above sense the field strength determines the gauge potential completely.For a general base manifold Mn, every equivalent class of gauge fields over Mn can be defined by loop phase factors also. In this case, Mn is expressed as the sum of a set of neighborhoods each of which is homeomorphic to the Euclidean space. The standard paths are constructed according a certain rule, the phase factors for standard differential loops are also introduced. The transition functions and gauge potentials of a gauge field in the given equivalent class are derived as the phase factors for some finite loops and standard differential loops respectively. Further it is remarkable that a global gauge field is determined completely by the field strength and some discrete loop factors, if the phase factors for the standard paths are gwen.In mathematical terminology principal G-bundle structure as well as a connection in it is determined by the holonomic mapping which maps the set of loops through a fixed point into the group G, provided the mapping is differentible in a certain.The author is very grateful to Prof. Yang Chen Ning for many helpful discussions.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return