Equation of State of Spin-Polarized Neutron Metier

  • Within the spin-dependent Brueckner-Hatree-Fock framework, the equation of state of the spin-polarized neutron matter has been investigated by adopting the realistic nucleon-nucleon interaction AV18 supplemented with a microscopic three-body force. The related physical quantities such as spin-symmetry energy, magnetic susceptibility and the Landau parameter G0 in spin channel, have been extracted. The three-body force effects have been studied and discussed with a special attention. It is shown that in the whole range of spin-polarization, the energy per particle of spin-polarized neutron matter fulfills a quadratic relation versus the spin-polarization parameter δ= (p-p )/p . The predicted spin-symmetry energy is positive in the density region up to ρ = 0.8fm-3 and increase monotonically as increasing density so that no any evidence is found for a spontaneous transition to a ferromagnetic state in neutron matter. The three-body force effect is to strongly increase the spin-symmetry energy and reduce the magnetic susceptibility at high densities, as a consequence , to make neutron matter become more stable against spin fluctuation. The obtained Landau parameter G0 and its density dependence may serve as a constraint on the spin-spin parts of the phenomenological Skyrme and Skyrme-like interactions .
  • 加载中
  • [1] Pacini F. Nature, 1967, 216:567; Gold T. Nature, 1968, 218:731 2 Taylor J H, Stinebring D R. Annu. Rev. Astron. Astrophys., 1986, 24:2853 Chanmugan G, Brecher K. nature, 1987, 329:696; Colpi M, Possenti A, Popov S et al. Lecture Notes in Physics, 2001, 578:4404 Silverstein S D, Phys. Rev. Lett., 1969, 23:139; Clark J W. Phys. Rev. Lett., 1969, 23: 1463; Pearson J M, Saunier G. Phys. Rev. Lett,, 1970, 24:325; Pandharipande V R, Garde V K, Srivastava J K. Phys. Lett., 1972, B38:485; Vidaurre A, Navarro J, Bernabeu J. Astron. Astrophys., 1984, 135:361; Niembro R, Narcos S, Quelle M L et al. Phys. Lett., 1990, B249:373; Cugnon J, Deneye P, Lejeune A. Europhys. Lett., 1992, 17:1295 Kouveliotou C et al. Nature, 1998, 393:235; Hurley K et al. Astrophys. J., 1999, 510: L1116 Fantoni S, Sarsa A, Schmidt K E. Phys. Rev. Lett., 2001, 87: 1811017 Maruyama T, Tatsumi T. Nucl. Phys., 2001, A693:7108 Vidana I, Polls A, Ramos A. Phys. Rev., 2002, C65:035804; Vidana I, Bombaci N. Phys. Rev., 2002, C66:0458019 Iwamoto N, Pethick C J. Phys. Rev., 1982, D25:31310 Reddy S, Prakash M, Lattimer J M et al. Phys. Rev., 1999, C59: 288811 Margueron J, Navarro J, Van Giai N. The Nuclear Many Body Problem 2001. NATO Sci. Series Ⅱ(Kluwer Acad Publ., Dordrecht, 2002) 329 12 Skyrme T H R. Nucl. Phys., 1959, 9:615; ZHOU Y Z, HAN L Y, WU X Z et al. Prog. Theor. Phys., 1998, 79:100 13 Coestor F, Cohen S, Day B et al. Phys. Rev., 1970, C1:769 14 Baldo M. The Many–body Theory of the Nuclear Equation of State, in Nuclear Methods and the Nuclear Equation of State, Ed. Baldo M, Singapore: World Scientific, 1999; Machleidt R. Adv. Nucl. Phys., 1989, 16:189 15 ZUO Wei, Lombardo U, LIU Jian–Ye et al. High Energy Phys. and Nucl. Phys., 2002, 26:1238(in Chinese)(左维,Lombardo U,刘建业等.高能物理与核物理,2002,26:1238)16 ZUO Wei, Lombardo U, LI Zeng–Hua et al. High Energy Phys. and Nucl. Phys., 2002, 26:1134(in Chinese)(左维,Lombardo U,李增花等.高能物理与核物理,2002,26:1134) 17 Bethe H A, Brandow B H, Petschek A G. Phys. Rev., 1963, 129: 225; Day B D. Rev. Mod. Phys., 1967, 39:719; Jeukenne J P, Lejeune A, Mahaux C. Phys. Rep., 1976, 25:8318 Baldo M, Bombaci I, Giansiracusa G et al. Phys. Rev., 1990, C41: 1748; ZUO Wei, Lombardo U, LI Zeng–Hua et al. High Energy Phys. and Nucl. Phys., 2002, 26:703(in Chinese)(左维,Lombardo U,李增花等.高能物理与核物理,2002,26:703)19 SONG H Q, Baldo M, Giansiracusa G et al. Phys. Rev. Lett., 1998, 81: 1584 20 Sartor R. Chapter 6 in Nuclear Methods and the Nuclear Equation of State, Ed. Baldo M. Singapore: World Scientific, 1999 21 Wiringa R B, Stoks V G J, Schiavilla R. Phys. Rev., 1995, C51:28 22 Grange P, Lejeune A, Martzolff M et al. Phys. Rev., 1989, C40: 104023 Landau L D. Sov. Phys. JETP, 1956, 3:920; 1957, 5:101; 1959,8:7024 Backman S O, Brown G E, Niskanen J A. Phys. Reps., 1985, 124:1
  • 加载中

Get Citation
ZUO Wei, Lombardo U, SHEN Cai-Wan, LIU Jian-Ye and LI Jun-Qing. Equation of State of Spin-Polarized Neutron Metier[J]. Chinese Physics C, 2003, 27(11): 999-1004.
ZUO Wei, Lombardo U, SHEN Cai-Wan, LIU Jian-Ye and LI Jun-Qing. Equation of State of Spin-Polarized Neutron Metier[J]. Chinese Physics C, 2003, 27(11): 999-1004. shu
Milestone
Received: 2003-02-19
Revised: 1900-01-01
Article Metric

Article Views(4059)
PDF Downloads(627)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Equation of State of Spin-Polarized Neutron Metier

    Corresponding author: ZUO Wei,
  • Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, ChinaINFN-LNS, 44 Via S. Sofia, I-95123 Catania, Italy

Abstract: Within the spin-dependent Brueckner-Hatree-Fock framework, the equation of state of the spin-polarized neutron matter has been investigated by adopting the realistic nucleon-nucleon interaction AV18 supplemented with a microscopic three-body force. The related physical quantities such as spin-symmetry energy, magnetic susceptibility and the Landau parameter G0 in spin channel, have been extracted. The three-body force effects have been studied and discussed with a special attention. It is shown that in the whole range of spin-polarization, the energy per particle of spin-polarized neutron matter fulfills a quadratic relation versus the spin-polarization parameter δ= (p-p )/p . The predicted spin-symmetry energy is positive in the density region up to ρ = 0.8fm-3 and increase monotonically as increasing density so that no any evidence is found for a spontaneous transition to a ferromagnetic state in neutron matter. The three-body force effect is to strongly increase the spin-symmetry energy and reduce the magnetic susceptibility at high densities, as a consequence , to make neutron matter become more stable against spin fluctuation. The obtained Landau parameter G0 and its density dependence may serve as a constraint on the spin-spin parts of the phenomenological Skyrme and Skyrme-like interactions .

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return