TOPOLOGICAL ACTION RELATIONG TO BERRY'S PHASE AND NON-ADIABATIC EFFECTS

  • In non-adiabatic cases the topological action assocaiated with Berry's phase and the corresp onding effective Hamiltonian are obtained by path-integral method.We also give the non-adiabatic transition probability amplitude in the first-order approximation.It is thereby shown that the Berry's phase and the induced gauge structure have universality of existence.As an example,dynamics of induced monople relating to the Bitter-Dubber's experiment is analysed in terms of induced gauge field.
  • 加载中
  • [1] M.V. Berry, Proc. R. Soc. Lond., A 392(1984),45.[2] R. Jackiw, Com. Atom.Mole. Phys., 21(1988),71.and therein.[3] H. Kuratsuji and S. Iida, Prog. Thcor. Phys., 74(1985), 439.[4] H. Kuratsuji and S. Iida, Phys. Rcv. Lett, 56(1986), 1003.[5] C. -P. Sun, J. Phys., A21(1988), 1595.[6] C. -P. Sun, High Encrgy Phys. Nucl. Phys. 12(1988), 352.[7] C. -P. Sun, Phys. Rev., D38(1988), 2908.[8] C.-P. Sun, Chinese Phys. Lett., 6(1989), 97.[9] 孙昌璞,高能物理与核物理,13(1989),110,[10] 孙昌璞,高能物理与核物理,13(1989),403,[11] J. Moody et, al, Phys. Reu. Lett., 59(1987),161.[12] T. Bitter and D. Dubbers, Phys. Rev. Lett., 59(1987), 251.[13] 孙昌璞,张林芝,高能物理与核物理,14(1990),136,[14] 马中骐,戴安英,《群论及其在物理学中的应用,,北京理工大学出版社(1988),
  • 加载中

Get Citation
SUN Chang-Pu. TOPOLOGICAL ACTION RELATIONG TO BERRY'S PHASE AND NON-ADIABATIC EFFECTS[J]. Chinese Physics C, 1990, 14(8): 692-699.
SUN Chang-Pu. TOPOLOGICAL ACTION RELATIONG TO BERRY'S PHASE AND NON-ADIABATIC EFFECTS[J]. Chinese Physics C, 1990, 14(8): 692-699. shu
Milestone
Received: 1900-01-01
Revised: 1900-01-01
Article Metric

Article Views(2831)
PDF Downloads(439)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

TOPOLOGICAL ACTION RELATIONG TO BERRY'S PHASE AND NON-ADIABATIC EFFECTS

    Corresponding author: SUN Chang-Pu,
  • Theoretical Physics Division,Nankai Institute of Mathematics,Tianjin and Physics Department,Northeast Normal.University,Changchun

Abstract: In non-adiabatic cases the topological action assocaiated with Berry's phase and the corresp onding effective Hamiltonian are obtained by path-integral method.We also give the non-adiabatic transition probability amplitude in the first-order approximation.It is thereby shown that the Berry's phase and the induced gauge structure have universality of existence.As an example,dynamics of induced monople relating to the Bitter-Dubber's experiment is analysed in terms of induced gauge field.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return